Abstract:
A flexible joint assembly is disclosed for use in an extreme temperature fluid flow system. In an embodiment, the flexible joint assembly can be used in a fluid flow system configured to carry high temperature fluid, such air or other gas, and/or in a fluid flow system configured to carry low temperature fluid, such air or other gas. The flexible joint assembly ccomprises: a pair of opposing standoffs (20) axially spaced apart, a pair of inner flow liners (30) coupled to the standoffs and defining an annular space therebetween; insulation (50) in the annular space between each inner flow liner and the respective one of the standoffs; a bellows member (60) spanning the gap between the opposing standoffs, an outer and an inner race (80, 70) coupled to the standoffs; a bearing portion (90) between the inner and outer races.
Abstract:
Dispositif de transfert de fluide entre deux structures (5, 7) séparées comprenant une canalisation rigide à double enveloppes s'étendant selon un axe longitudinal (x), la canalisation comprenant une enveloppe (2) extérieure abritant, dans son volume interne sous vide, au moins une conduite (3) interne de transfert de fluide, la canalisation comprenant, à une première extrémité, une première liaison (4) rigide de l'enveloppe (2) extérieure avec la première structure (5) et, à une seconde extrémité, une seconde liaison (6) rigide de l'enveloppe (2) extérieure avec la seconde structure (7), les première et seconde extrémités de l'enveloppe (2) extérieure étant reliées rigidement à la au moins une conduite (3) interne, la canalisation comportant un système de rattrapage de déplacements comprenant au moins une zone (13, 14) flexible et au moins une zone (10, 11, 30) élastique, selon la direction longitudinale (x), le système de rattrapage de déplacements comprenant en outre une liaison coulissante (12) selon l'axe longitudinal (x) entre l'enveloppe (2) extérieure et la première structure (5) et un mécanisme (17) de cardans contenant deux cardans et reliant mécaniquement les deux extrémité de la zone flexible (13, 14).
Abstract:
A device for connecting pipelines in a flexible gas-tight manner has a bellows provided at each end with a pipe union which can be connected to a pipeline. The device is characterized in that an insulating cassette (6) in the form of a double tube filled with a temperature-resistant material (9) with excellent heatinsulating properties is arranged inside the device.
Abstract:
The present invention is directed towards an expansion joint comprising a rolled two-step shaped stainless steel dynamic flange welded atop a cylindrical inner sleeve, such that the inner sleeve connects on one end to gas exhaust and that the expansion joint is capable of withstanding thermal shock due to the quick rise in temperature.
Abstract:
A bellows cover (20) for insulating a heat-transfer pipe according to the present invention has a multi-layered complex structure, in which an insulating material (22) of high heat-resistance and a reinforcement material (24) of high elasticity and impact-resistance are alternately and repetitively stacked. In the bellows cover (20) for insulating a heat-transfer pipe according to the present invention, the insulating material includes three minimal component layers, in which an inner insulating layer (S1) and an outer insulating layer (S2) are respectively disposed at the innermost and outermost sides, and an intermediate reinforcement layer (D1) is disposed between the inner insulating layer and the outer insulating layer and formed of a reinforcement material. A corrosion-preventing film (201) is provided on the surface of the inner insulating layer and the surface of the outer insulating layer. The insulating layer is formed of heat-resistant silicon material. The reinforcement material is formed of an aramid fiber material. According to the present invention as above, the impact-resistance and the heat-resistance are high due to the properties of the complex structure of the insulating material and the reinforcement material such that the cover does not easily deteriorate even when extension and retraction operations of the cover are carried out for a long time while repetitively in contact with high temperature working fluids.
Abstract:
A bellows expansion joint to be located between a pair of axially aligned pipes (1), which comprises an inner bellows (5) located within a cover pipe (10), the ends of which cover pipe are to be located adjacent the ends of the pipes being connected, and further comprising an outer bellows (15) located within an outer protection cover pipe (17), the ends of which outer cover pipe are to be located adjacent the ends of the pipes (1) being connected, characterised in that the outer bellows (15) is made of metallic material.
Abstract:
An expansion element for insulating an axial compensator (10) comprises a pair of skid pipes (1, 2) attached in spaced relationship (11, 12) around pipe ends (13, 14) of the compensator. Each skid pipe (1, 2) is slidable in an end of a guide pipe (5) which over a substantial part of its length is surrounded by a protective pipe (8). All the spaces (9, 11, 12) between the skid pipes (1, 2) and pipe ends (13, 14) and between the protective pipe (8) and the guide pipe (5) are filled with heat insulation material. Due to the ability of the skid pipes (1, 2) to slide in the guide pipe (5), the expansion element follows changes in length of the compensator (10) in response to temperature variations. The expansion element is fitted to the axial compensator (10) before the two are mounted in a pipe line.
Abstract:
The invention provides a housing (1) for a pipeline compensator, the housing (1) enclosing a holding space (7) arranged for holding at least a pipeline compensator therein, the housing (1) further having a first opening (4) and a second opening (5), wherein the first opening (4) is provided for passing fluid between a pipe arranged at the exterior of the housing (1) to a pipeline compensator arranged inside the housing (1)and fixed with a first end against the first opening (4), wherein the second opening (5) is provided for passing a pipe connected to a second end of a pipeline compensator arranged inside the housing (1) to the exterior of the housing (1), characterised in that there is arranged a moveable covering means (10) at the second opening (5), which covering means (10) allows passage of a pipe passing through the second opening, and which covering means (5) is provided for following the movement of a pipe passing through the second opening (5) within the second opening (5).
Abstract:
본 발명에 따른 전열관단열용 벨로우즈커버(20)는, 내열성이 높은 단열재(22)와 탄력성 및 내충격강도가 높은 보강재(24)가 교대로 반복적층된 다층 복합구조로 이루어진다. 본 발명에 따른 전열관단열용 벨로우즈커버는 상기 단열재가 가장 안측과 가장 외측에 배치되어 내곽단열층(S1)과 외곽단열층(S2)을 구성하고, 상기 내곽단열층과 외곽단열층 사이에는 보강재로 이루어진 중간보강층(D1)이 배치되는 3중겹을 최소한의 구성으로 하여 이루어진다. 상기 내곽단열층의 표면과, 외곽단열층의 표면에는 부식방지피막(201)이 갖추어진다. 상기 단열재는 내열실리콘 소재로 이루어지고, 상기 보강재는 아라미드(aramid)섬유 소재로 이루어진다. 이와 같은 본 발명에 따른 전열관단열용 벨로우즈커버에 의하면 단열재와 보강재가 복합된 구성으로 이루어지는 특성상 내충격성과 내열특성이 높기 때문에 반복적인 고열의 작동유체와 접하여 오랜시간 동안 신축작동이 이루어지는 경우에도 불구하고 쉽게 열화되지 않는다는 이점이 있다.
Abstract:
Kompensator für die Durchführung eines heißen Prozessrohres (6) durch eine Wand (5), bestehend aus einem Prozessrohr, das aus einem heißen Raum (H) hinein in einen kalten Raum (K) durch ein Kanalstück (1) verläuft, das in einen Durchbruch in der Wand eingepasst ist, und einer Isolation (5a) auf der Wand und einem Isolationsinnenrohr (2), das das Prozessrohr umschließt und einem Isolationsaußenrohr (2b), das auf der Innenseite des Kanalstückes aufliegt und einem Winkelflansch (1d), der die wandferne Stirnseite des Isolationsaußenrohres mit dem Prozessrohr verbindet und einem etwa hohlzylindrischen, flexiblen Gewebekompensator (7), der mit der Außenfläche des Kanalstücks und dem Winkelflansch verbunden ist, wobei zwischen Isolationsinnenrohr und Isolationsaußenrohr ein laterales Spiel (L) besteht und auf dem Prozessrohr ein Isolationszusatzrohr (2a) aufliegt, das vom Winkelflansch ausgeht und in dessen Nähe befestigt ist und sich bei der niedrigsten Temperatur bis zur wandfernen Stirnseite des Isolationsinnenrohres erstreckt und bei der höchsten Betriebstemperatur um einen Abstand (Z) davon entfernt ist,wobei sich der Abstand bei allen Betriebstemperaturen gegenüber vom Isolationsaußenrohr befindet.