Abstract:
Embodiments of the present invention include high-temperature staged recirculating burners and radiant tube burner assemblies that provide high efficiency, low NOx and CO emissions, and uniform temperature characteristics. One such staged recirculating burner includes a combustion tube (47) having inside and outside helical fins forming opposing spiral pathways for combustion gases and products of combustion, a combustion nozzle (32) coupled to the combustion tube, a gas tube (37) running axially into the combustion tube, and a staging gas nozzle (51) coupled to the gas tube, where the staging gas nozzle includes radial exit holes into the combustion tube and an axial gas staging tube (10) extending into the combustion nozzle to stage combustion.
Abstract:
A method of operating an axial stage combustion system in a gas turbine engine (12) including an EGR system (14) that extracts a portion of exhaust gas produced by the gas turbine engine (12) to a second axial stage of a combustor (18). The extracted exhaust gas is provided at an elevated temperature to a group of injector nozzles (50) at the second axial stage (34) of the combustor (18). A secondary fuel supply line (34) extends to an inlet on each of the injector nozzles (50), and the fuel is mixed with the exhaust gas within the injector nozzles (50) and the mixture of fuel and exhaust gas is injected into the second axial stage (34) of the combustor (18).
Abstract:
The invention relates to a method to operate a power generation system (PGS) and the device itself comprising an oxyfuel burner (OXB), a first heat exchanger assembly (HEA1), and a rankine-cycle (RC). To improve the efficiency further features are proposed. Said oxy-fuel burner (OXB) generates an exhaust fluid (EXH) submitted to an exhaust fluid line (EXL) and said rankine-cycle (RC) is operated with said working media (PF) which is circulating separately from said exhaust fluid (EXH). Said exhaust fluid line (EXL) is provided with a recirculation line (RCL) downstream said first heat exchanger assembly (HEA1) and upstream said working media heat exchanger (FWE) extracting exhaust fluid (EXH) from said exhaust fluid line (EXL), conducting extracted exhaust fluid (EXE) to a compression unit (PU) to increase pressure and injecting downstream said extracted exhaust fluid (EXE) into said oxy-fuel burner (OXB).
Abstract:
The invention relates to a method to operate a power generation system (PGS) and the device itself comprising: - an oxy-fuel-burner (OXB), - a first heat exchanger assembly (HEA1), - a rankine-cycle (RC), - wherein said rankine-cycle (RC). To improve the efficiency further features are proposed. Said oxy-fuel burner (OXB) generates an exhaust fluid (EXH) submitted to an exhaust fluid line (EXL) and said rankine-cycle (RC) is operated with said process fluid (PF) which is circulating separately from said exhaust fluid (EXH). Said exhaust fluid line (EXL) is provided with a recirculation line (RCL) downstream said first heat exchanger assembly (HEA1) and upstream said feed water heat exchanger (FWE) extracting exhaust fluid (EXH) from said exhaust fluid line (EXL), conducting extracted exhaust fluid (EXE) to a pump (PU) to increase pressure and injecting downstream said extracted exhaust fluid (EXE) into said oxy-fuel burner (OXB).
Abstract:
A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel and a first diluent, and the second flow includes a first oxidant. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
Abstract:
A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an exhaust flow circumferentially around the head end chamber. The flow distributor includes at least one exhaust gas flow path.
Abstract:
An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
Abstract:
Le dispositif de stabilisation de la combustion diluée destiné à être utilisé dans une enceinte de combustion (245) dite à parois froides, munie d'un brûleur comprenant au moins une arrivée de comburant (205) et au moins une arrivée de combustible (210), les arrivées de comburant et de combustible débouchant séparément dans l'enceinte à une distance adaptée à la mise en place d'une combustion (240) fortement diluée par des recirculations internes (220) des produits de combustion vers la zone du brûleur, Le dispositif comporte un élément chauffant (215) adapté à réchauffer, en régime stationnaire de fonctionnement, les produits de combustion pour maintenir des conditions d'auto-inflammation, ledit élément chauffant étant positionné dans la zone de dilution et entourant l'ensemble des jets (295) de comburant et de combustible.
Abstract:
L'invention concerne un appareil de chauffage (1), comprenant un échangeur de chaleur à condensation (2), un brûleur à gaz (3), une manchette (40) d'amenée d'un mélange air/gaz au brûleur (3), des moyens (42) de mise en circulation dudit mélange dans l'appareil (1) et une conduite (430) d'introduction du gaz dans ladite manchette d'admission (40), l'échangeur de chaleur (2) comprenant un tube (21), monté à l'intérieur d'une enceinte (200) délimitée par une enveloppe (20), ce tube (21) étant parcouru par un fluide à réchauffer et exposé à des gaz chauds générés par ledit brûleur (3), ladite enveloppe (20) comprenant une manchette (205) d'évacuation des gaz brûlés. L'invention est remarquable en ce qu'au moins un tube de Venturi (70) est disposé dans ladite manchette d'admission (40), en aval de ladite conduite (430) d'introduction du gaz, la chambre de dépression (76) du Venturi (70) étant en communication de fluide avec le col (71), percé d'un trou (710), du Venturi et par le fait qu'au moins une pièce tubulaire de jonction (8) relie l'intérieur de ladite enceinte (200) avec ladite chambre de dépression (76), de façon à prélever une partie des gaz brûlés et à les incorporer au mélange air/gaz introduit dans le brûleur.
Abstract:
A method of and control apparatus for operation of a boiler plant are described. The boiler plant has a furnace volume, an oxyfuel firing system for oxyfuel combustion of fuel in the furnace volume, and a compression system for compression of gases exhausted from the furnace volume after combustion. The method and control apparatus are characterized by the step of controlling mass flow of gases through the compression system as a means to control pressure within the furnace volume. This invention relates to both single and multi unit arrangements.