Abstract:
The invention relates to a method for combusting a fuel gas with an oxidant by using a burner assembly (10) comprising a burner (12) and a lance (14), the method comprising providing via the burner (12) a main gas flow to a combustion, wherein the main gas flow comprises a main part of the fuel gas and a first part of the oxidant. Further, the method comprises providing via the lance (14) a staging gas flow to the combustion, wherein the staging gas flow comprises a second part of the oxidant and an auxiliary part of the fuel gas. The main part of the fuel gas is larger than the auxiliary part of the fuel gas. Furthermore, the invention relates to a burner assembly (10) and a furnace comprising such.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Regenerativbrennersystems (100) mit mindestens einem Brenner (120), der einen Regenerator mit einem Wärmespeicherkörper (114) umfasst, wobei der Regenerator abwechselnd in einem ersten und einem zweiten Betriebsmodus betrieben wird, wobei in dem ersten Betriebsmodus ein Brennstoff mit einem Verbrennungsunterstützungsgas, welches Verbrennungsluft umfasst und welches zumindest teilweise über den Regenerator zugeführt wird, unter Erhalt eines Verbrennungsabgases (141) in einer Brennkammer (101) verbrannt wird, und in dem zweiten Betriebsmodus das Verbrennungsabgas über den Regenerator aus der Brennkammer ausgeleitet wird. Erfindungsgemäß wird im ersten Betriebsmodus als Verbrennungsunterstützungsgas mit Sauerstoff angereicherte Verbrennungsluft verwendet.
Abstract:
Integration of an oxyfuel combustion boiler at elevated pressures and a heat exchanger is achieved to produce carbon dioxide by feeding flue gas comprising carbon dioxide and water from the oxyfuel combustion boiler to a direct contact cooler column wherein water is condensed at a temperature of 0 to 10°C lower than its dew point; feeding a portion of the condensed water from the direct contact cooler column to the oxyfuel combustion boiler; feeding a portion of the carbon dioxide from the direct contact cooler column to the oxyfuel combustion boiler; and recovering a portion of the carbon dioxide from the direct contact cooler column.
Abstract:
The present invention provides a method and system (1) for producing oxygen. Oxygen- carrier particles are transferred between a reduction process (10) and an oxidation process (15) connected to form a chemical looping process. The reduction process produces oxygen-depleted carrier particles and an exhaust gas mixture. Oxygen is separated from the exhaust gas mixture, preferably by a condenser (5). The oxygen-depleted carrier particles are returned to the oxidation process for regenerating the oxygen-depleted carrier particles with oxygen. The reduction process is performed during a first time period and the oxidation process is performed in a second time period.
Abstract:
Der Erfindung liegt die Aufgabe zugrunde, den elektrischen Wirkungsgrad bzw. den Anteil der Nutzarbeit von Gasturbinen signifikant zu erhöhen und dies bereits für kleine Gasturbinen bzw. Mikrogasturbinen einfacher Bauart zu ermöglichen. Erfindungsgemäß werden die aufgeführten Nachteile des Standes der Technik durch eine nasse Verbrennung mit Sauerstoff gelöst, wobei der Sauerstoff über gemischt leitende keramische Membranen bereitgestellt wird. Dabei wird die Triebkraft für den Durchtritt des Sauerstoffs durch Erniedrigung des Sauerstoffpartialdrucks auf der Permeatseite des Membranmoduls (5) realisiert und die dafür erforderliche Energie der Prozessenergie des Gasturbinenprozesses entnommen.
Abstract:
The invention relates to a method of making a mineral melt, the method comprising providing a circulating combustion chamber which comprises an upper zone, a lower zone and a base zone, injecting primary particulate fuel and particulate mineral material and primary combustion gas into the upper zone of the circulating combustion chamber, thereby at least partially combusting the primary particulate fuel and thereby melting the particulate mineral material to form a mineral melt and generating exhaust gases, injecting into the lower zone of the circulating combustion chamber, through at least one first burner, secondary combustion gas and gaseous fuel and secondary particulate fuel, wherein the secondary combustion gas and gaseous fuel and secondary particulate fuel are injected via a single first burner, wherein the amount of secondary combustion gas injected via each first burner is insufficient for stoichiometric combustion of the total amount of gaseous fuel and secondary particulate fuel injected via that first burner, and injecting tertiary combustion gas into the lower zone of the circulating combustion chamber, through at least one tertiary combustion gas injector, whereby the tertiary combustion gas enables completion of the combustion of the gaseous fuel and the secondary particulate fuel, separating the mineral melt from the hot exhaust gases so that the hot exhaust gases pass through an outlet in the circulating combustion chamber and the mineral melt collects in the base zone. The invention also relates to apparatus suitable for use in the method.
Abstract:
A method for incinerating waste comprising a first step of contacting, in a precombustion chamber (7), a first waste stream and oxygen- containing gas having insufficient oxygen for complete combustion to occur, thereby producing a partially combusted waste stream, and then contacting, in an incinerator chamber (13), the partially combusted waste stream and oxygen-containing gas, thereby causing the partially combusted waste stream to completely combust.
Abstract:
The invention relates to a method for separating a gas containing carbon dioxide by means of distillation. According to the method, the gas containing at least 50% of carbon dioxide is cooled in a first exchanger (43) so as to produce a cooled fluid, a liquid (23) derived from the cooled fluid is sent to a distillation column (25) to be separated therein, a head gas (6) is withdrawn from the distillation column and reheated in the first exchanger, a vat liquid (27), which is richer in carbon dioxide than the gas containing at least 50% of carbon dioxide, is withdrawn and at least a portion thereof is heated in the first exchanger, at least a first portion of the vat liquid is vaporized in the first exchanger in order to produce a vaporized portion, the vaporized portion (31) is sent back to the column and an NOx removal column is supplied with the liquefied cycle gas (155) produced by vaporizing and reliquefying the vat liquid from the column.
Abstract:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.