Abstract:
Die vorliegende Erfindung betrifft ein Verfahren (100) zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes, umfassend das Absenken (130) eines Verbrennungsluftverhältnisses λ zwischen zugeführter Verbrennungsluft und zugeführtem Brennstoff in einer Brennkammer des brennstoffbetriebenen Fahrzeugheizgerätes für ein Zeitintervall At von einem Ausgangswert λ start > 1 in einen Bereich λ start . Die vorliegende Erfindung betrifft weiterhin ein brennstoffbetriebenes Fahrzeugheizgerät mit einem Steuergerät, das zur Ausführung des Verfahrens (100) eingerichtet ist.
Abstract:
Heizsystem mit zumindest einer Wärmeerzeugereinheit (12a; 12b), mit zumindest einer Abgasleitung (14a; 14b), mit zumindest einem Gebläse (16a; 16b) zur Erzeugung einer Gasströmung (18a; 18b) innerhalb der zumindest einen Abgasleitung (14a; 14b) und mit einer Sensoreinheit (20a; 20b), welche in einem Messbetriebszustand zu einer Erfassung zumindest eines Strömungskennwerts der Gasströmung (18a; 18b) vorgesehen ist. Es wird vorgeschlagen, dass das Heizsystem eine Prüfeinheit (22a; 22b) umfasst, welche dazu vorgesehen ist, in einem Prüfbetriebszustand zu einer Funktionskontrolle der Sensoreinheit (20a; 20b) zumindest eine Eingangsgröße der Sensoreinheit (20a; 20b) in zumindest einem Prüfungsschritt, welcher sich von einem Deaktivieren des zumindest einen Gebläses (16a; 16b) unterscheidet, zu verändern.
Abstract:
A burner control system for controlling operation of a burner includes a control unit 10 that controls the flow of air and fuel and receives an input signal relating to ambient air pressure and/or temperature from sensors (14, 15) and also an input signal from an exhaust gas analysis system (9). Those input signals are used to trim the proportion of air to fuel fed to the burner. The control unit (10) includes a store (13) in which pairs of air and fuel valve settings are stored together with readings of gas pressure from a sensor (11) and of air pressure from a sensor (12).
Abstract:
A combustion control method for a burner comprises: the fuel supply system outputs fuel oil to the atomization equipment; the fuel atomization equipment sprays fuel atomization gas; said gas is ignited by the portfire; the airflow is sent to help burning by the air blow equipment; the amount of the fuel and the amount of air are adjusted automatically and simultaneously by the rotating speed of the electric motors of the fuel supply system and the air blow equipment. An autocontrol burner comprises a main body, an oil pump (2), a fan (1), a spray gun (9) and an ignition gun (10), and it also comprises a programmable control unit (18), rotating speed control units (16, 17) of the electric motors and a sign acquisition assembly. The output port of the sign acquisition assembly is connected with the input port of the programmable control unit (18). The oil pump (2) and the fan (1) are linked with the programmable control unit (18) by the rotating speed control units (16, 17) of the electric motors.
Abstract:
A pressure proving gas valve (10) insures safe and efficient operation of a fuel-burning appliance by monitoring combustion airflow and appropriately controlling the valve based (22) upon this airflow. An airflow sensor (26) is incorporated into a pressure proving valve housing (20) itself thus providing integrated solution for the control of the combustion process. Consequently, when heat is called for, no fuel is provided to the combustion chamber (12) unless appropriate combustion air is sensed. Further, by monitoring the actual airflow, additional control capability is provided. That is, a variable speed blower (60) associated with the combustion apparatus can be controlled to provide very precise fuel to air mixtures.
Abstract:
A method for operating a boiler with a deposited fuel bed and a movable grate is disclosed. The method for operating the boiler (10) comprises determining the desired output power of the boiler (10) and the amount of fuel, while adjusting the flow rate of a primary air flow (18) depending on the output power and the measured stoichiometric excess of oxygen, incrementally adjusting the bed height and continuously adjusting the speed of the grate. The method further comprises determining a recycling rate for the flue gas (34) exiting the boiler, and mixing the collected flue gas with the primary air so that the resulting mixture flows at a rate corresponding to the recycling rate. The method is useful for reducing the nitrogen oxide (NOx) content of boiler flue gas.
Abstract:
A burner control system for controlling operation of a burner includes a control unit 10 that controls the flow of air and fuel and receives an input signal relating to ambient air pressure and/or temperature from sensors (14, 15) and also an input signal from an exhaust gas analysis system (9). Those input signals are used to trim the proportion of air to fuel fed to the burner. The control unit (10) includes a store (13) in which pairs of air and fuel valve settings are stored together with readings of gas pressure from a sensor (11) and of air pressure from a sensor (12).