Abstract:
Unidad de cocción de alimentos compuesta por quemadores de gas (1), electroválvulas de regulación (3) del gas suministrado; un sensor de infrarrojos (5) enfocado hacia la zona de cocción; un termopar (6) en contacto térmico con las llamas y en conexión con una electroválvula de seguridad (4) a través de un relé (10) y un dispositivo de control electrónico (7) conectado al dicho sensor de infrarrojas (5), a la citada al menos una electroválvulas de regulación (3) y al relé (10) y que almacena diferentes programas de regulación y que regula la electroválvula de regulación (3) y/o Interrumpe la conexión del termopar con la electroválvula de seguridad en respuesta a las señales obtenidas del sensor de infrarrojos (5) y/o del termopar (6), y emite avisos en respuesta a señales del termopar (6).
Abstract:
A method is for determining information about liquid droplet fallout during operation of a gas-liquid flare apparatus. The method includes disposing a plurality of tiles in a spaced apart fashion over a monitoring area. A gas hydrocarbon fuel is injected into the gas-liquid flare apparatus to create a combustible flow, and a test fluid is injected into the gas-liquid flare apparatus such that the test fluid is dispersed into the combustible flow. The combustible flow is combusted in in the gas-liquid flare apparatus, resulting in fallout of liquid droplets of the test fluid onto the plurality of tiles. Images of the liquid droplets on the plurality of tiles are analyzed so as to determine the information about liquid droplet fallout in the monitoring area, using a computer. The information about liquid droplet fallout may be used to estimate combustion inefficiency of the gas-liquid flare apparatus.
Abstract:
The invention relates to a method and to an arrangement for monitoring performance of a burner (1) of a suspension smelting furnace (2). The burner (1) is arranged at the top structure (3) of a reaction shaft (4) of the suspension smelting furnace (2). The burner (1) has a solids feeding channel (5) that has a solids outlet (6) opening up into the reaction shaft (4), and a reaction gas channel (12) comprising a reaction gas channel (12) a that has a reaction gas outlet (8) opening up into the reaction shaft (4). The arrangement comprises at least one imaging means (9) for producing images representing the cross- section of the reaction gas channel (12), and a processing means (10) for receiving images of the cross-section of the reaction gas channel (12) from the imaging means (9). The invention relates also to uses of the method and of the arrangement.
Abstract:
A combustion control system, including a first set of sensors for generating sample data including data representing a sequence of detected images of different samples of a fuel made up of solid particles; a fuel analysis module for controlling a processor of a computing device to: (i) determine attributes for one or more predetermined physical characteristics of the particles in each said sample based on the sample data, and (ii) generate an index value for each said sample based on said attributes, said index value representing a level of combustibility of the particles in each said sample; and a combustion control module for controlling a processor of a computing device to adjust one or more parameters for controlling a combustion process based on changes to said index value over time.
Abstract:
Verfahren zur Charakterisierung der Abgasausbrandqualität einer Verbrennung in Verbrennungsanlagen mit einer Gasausbrandzone. Aufgabe ist es, ein derartiges Verfahren als Basis für eine Optimierung des Abgasausbrandes vorzuschlagen, welches einen vollständigen Ausbrand auch bei instationären Verbrennungsvorgängen mit einem Minimum an Sekundärgas sicherstellt und insbesondere Bereiche, in denen mangels Brenngase überhaupt keine Verbrennungsaktivitäten stattfinden, grundsätzlich auch als solche erkennt. Die Aufgabe wird dadurch gelöst, dass das Verfahren in einem Strömungsquerschnitt der Gasausbrandzone Verbrennungsbereiche, Bereiche ohne Verbrennung und Rußbereiche im sichtbaren Wellenlängenbereich optisch erfasst werden, wobei sich die Bereiche ohne Verbrennung und die Rußbereiche durch eine unterschiedliche Dynamik auszeichnen und durch eine Mittelung mehrerer aufeinander folgender Einzelaufnahmen in ihren Übergangsbereichen zu den Verbrennungsbereichen unterscheidbar sind.
Abstract:
There is described a method and apparatus for controlling the combustion by-product formation rate in at least one burner of a fossil fuel fired power plant. The burner has an associated flame scanner which is focused on a small area of the burner flame to obtain an image signal of the flame. A flame signal that represents properties of temporal combustion in the visible light spectrum of the burner is generated from the image signal. Combustion turbulence at the burner is analyzed from the flame signal by a dynamic invariant that has a relationship to the combustion by-product values and different combustion by-product levels at the burner and the combustion turbulence is correlated to the combustion by-product formation rate at the burner.The method and apparatus can also be used to correlated the combustion turbulence at a multiplicity of burners to the associated combustion by-product formation rate.
Abstract:
The system for continuous thermal combustion of matter, such as waste matter, is provided with an incinerator comprising an inlet, an outlet and a combustion path extending between the inlet and the outlet. The system further comprises air supply means for supplying heated air to the combustion path. The system is further provided with regulating means for automatically regulating the magnitude of the air supply and/or the temperature of the air supplied with the aid of the air supply means, depending on the heating value of the matter (the amount of heat which is generated upon combustion of the matter in the incinerator).
Abstract:
A device for supplying fluid to a combustion chamber (3) of a furnace (2) or technically equivalent plant includes a pipe which has peripheral openings (5e) and which is supported externally of the furnace combustion chamber (3), and means for moving the pipe axially into and out of an opening in the chamber wall. The fluid is supplied through a flexible hose (7). A cleaning device is arranged in a supply device housing (11) and functions to clean the pipe as the pipe moves inwardly and/or outwardly. Threaded plugs that function as nozzles through which fluid is delivered to the chamber are screwed into one or more of the openings (5e). One (9) of the plugs is provided with a camera lens (60) that enables an on-line-study and/or photoelectric recording of the combustion process in the chamber (3) to be made.
Abstract:
A method for measuring and controlling flame quality in real-time, the method comprising the steps of: acquiring a plurality of flame images in a first field of view; acquiring a plurality of flame images in a second field of view; processing the acquired plurality of flame images of said first and second fields of view to determine an overall flame quality parameter; and comparing the overall flame quality parameter to a tolerance range. In other aspects, a system for measuring and controlling flame quality in real-time and a non- transitory computer readable medium (CRM) storing instructions configured to cause a computing system to measure and control flame quality in real-time are provided.
Abstract:
A method (100) of reducing plant emissions includes providing (101) a MPC model for a flaring process including one-to-one models between controlled variables (CVs) including a smoke count and/or a flare count (CV1) and a noise level (CV2), and flow of assist gas as a manipulated variable (MV) and another process gas flow as a disturbance variable (DV). The MPC model receives sensed flare-related parameters (102) during the flaring process including a measure of CV1 (CV1*) and CV2 (CV2*). Provided CV1* is above a minimum setpoint for CV1 (CV1 setpoint) and CV2* is above a setpoint for CV2 (CV2 setpoint), the flaring process is automatically controlled (103) using the MPC model which determines an updated flow setpoint for MV from CV1* and CV2*, the CV1 and CV2 error, and the identified one-to-one models.