Abstract:
La presente invención se refiere a un sistema para la producción de nanotubos de carbono a partir de materia carbonosa, preferentemente, desechos plásticos y energía solar; método de producción.
Abstract:
Technical challenges of efficiently and cost-effectively deriving energy from the sun are addressed using a manifold and an array of evacuated tubes in fluid connection, in a butterfly or other planar arrangement. Tube and manifold fluid guides are plumbed for coaxial flow and/or parallel flow, and thermally protected by sleeves, stainless steel piping, and/or vacuum. Tubes are provided with a selective low emissivity coating and/or internal mirror to reduce thermal loss. The solar absorption surface of evacuated tubes may be five square meters or more, with only low-quality concentration optics, or no concentration optics used. The tubes array tracks the sun with a two-axis motion platform. Fluid operating temperatures range from 150 to 300 degrees centigrade, depending on the sunlight exposure, working fluid, and supplemental heat source if any. Fluid may circulate heat between the manifold and heat engine, cogeneration facility, and/or other module.
Abstract:
태양전지가 다수 설치되어 있는 태양광 집광판이 태양을 향하도록 태양광 집광판의 고도 조절 및 수평 회전을 수행하는 태양광 트랙커로서, 볼록한 지지면에 태양을 정면으로 하여 상측에 균등하게 이격되어 형성된 하나 이상의 제1 광센서와, 하측에 균등하게 이격되어 형성된 하나 이상의 제2 광센서를 구비하여, 상기 태양광 집광판의 고도 조절을 위해 태양광을 감지하는 고도 조절 광센서부; 볼록한 지지면에 태양을 정면으로 하여 좌측에 균등하게 이격되어 형성된 하나 이상의 제3 광센서와, 우측에 균등하게 이격되어 형성된 하나 이상의 제4 광센서를 구비하여, 상기 태양광 집광판의 수평 회전을 위해 태양광을 감지하는 수평회전 광센서부; 상기 제1 광센서 및 상기 제2 광센서의 출력 광량 차이를 비교하는 하나 이상의 제1 비교회로와 상기 제3 광센서 및 상기 제4 광센서의 출력 광량 차이를 비교하는 하나 이상의 제2 비교회로를 구비하여 광량값이 더 큰 방향으로 태양광 집광판의 고도 조절 및 수평 회전을 수행하기 위한 구동값을 출력하는 수동소자회로; 및 상기 태양광 집광판의 태양전지로부터 구동전원을 공급받고 상기 수동소자회로의 구동값에 따라 태양광 집광판의 고도 조절을 수행하는 고도 조절 구동부 및 수평 회전을 수행하는 수평회전 구동부를 포함하는 자가 동력 태양광 트랙커가 제공된다.
Abstract:
A solar thermal interconnection system is provided with at least one solar thermal interconnection system with at least one linear Fresnel mirror collector with at least one linear Fresnel mirror for concentrating sunlight in a focal line of the linear Fresnel mirror; at least one heat pipe with at least one heat pipe working fluid for absorbing solar energy, wherein the heat pipe is located in the focal line of the linear Fresnel mirror: at least one heat absorber system with a heat absorber medium; wherein the heat pipe and the heat absorber system are thermally coupled such that a heat trans¬ fer from the heat pipe working fluid to the absorber medium can occur. For instance the heat absorber system comprises a heat receiver tube. The absorber medium is a heat transfer fluid. Moreover a solar thermal power plant for transferring solar energy into electrical energy with at least one solar thermal interconnection system is disclosed, wherein the Fresnel mirror collector is oriented with its longitudinal alignment in north-south direction. Preferably a plurality of solar thermal interconnection systems is set up.
Abstract:
Methods and systems for use with solar devices. The present invention may be used with solar panels, solar dishes, or any other devices for which an optimal exposure to the sun is desired. The present invention first adjusts an azimuth of the solar device until an optimal solar exposure, from an azimuth point of view, is achieved. Then, an altitude of the solar collector is adjusted until an optimal solar exposure, from an altitude point of view, is achieved. The invention also uses a load compensation mean to alleviate the amount of lifting or braking torque needed from the motor to tilt the solar collector.
Abstract:
A described embodiment provides a technology for concentrating or focusing electromagnetic energy to an arbitrary desired spatial distribution, utilizing a rotatable base, a plurality of mirrors mounted to the rotatable base, and an optical receiver that is moveable in an azimuth path relative to the plurality of mirrors. A described embodiment can comprise a driver for rotating the base and a adjusting linkage that connects the plurality of mirrors so that they track in a coordinated fashion. Another embodiment comprises an optical positioning assembly on which each mirror is mounted. An optical positioning assembly adjusts each mirror to the sun's altitude and the location for the optical receiver. This assembly is connected to the adjusting linkage so that a single driver can move all the mirrors if desired.
Abstract:
This invention relates to a solar energy collector that converts solar radiation into both electrical and thermal energy. More specifically this invention relates to a concentrating solar energy collector with an integrated construction that minimizes cost, bulk, and weight, and maximizes overall efficiency. Typical non-concentrating solar collectors use photovoltaic cells over the entirety of their surface. These solar cells are the most expensive part of the collector. This invention discloses using a reflector to concentrate the incident radiation on photovoltaic cells with one-twentieth the area of the reflector, and transferring the co-generated thermal energy into a working fluid pumped through the cell support structure.