Abstract:
Ein Verfahren zur Erhöhung des von einem Solarkollektor (2) über einen vorgegebenen Betrachtungszeitraum (Tl bis TN) hinweg erzeugten Ertrags, wobei der Solarkollektor (2) eine durch Sonnenlicht beaufschlagte Kollektorfläche (6) aufweist, die gegenüber der Horizontalen um einen ersten Elevationswinkel (a) geneigt und relativ zur Nord-Südrichtung (N, S) um einen Azimutwinkel (ß) gedreht ist, und wobei gegenüber der Kollektorfläche (6) ein gegenüber der Horizontalen um einen während des Betrachtungszeitraums (T\ bis TN) festen zweiten Elevationswinkel (y) geneigter Reflektor (4) angeordnet ist, welcher einen vom Sonnenstand abhängigen Anteil des auf den Reflektor (4) auftreffenden Sonnenlichts auf die Kollektorfläche (6) reflektiert, zeichnet sich dadurch aus, dass der zweite Elevationswinkel (y) in Abhängigkeit vom geografischen Aufstellungsort des Solarkollektors (2) und der Größe des ersten und zweiten Winkels (a, ß) in der Weise gewählt ist, dass die Summe der in aufeinanderfolgenden Betrachtungsintervallen über einen vorgegebenen Betrachtungszeitraum (Ti bis TN) hinweg aufsummierten Produkte aus dem je Betrachtungsintervall (ΔΤ) auf die Kollektorfläche (6) reflektierten Anteil des Sonnenlichts und einem dem Solarkollektor (2) zugeordneten Ertragswert maximal ist.
Abstract:
A Solar Energy System allowing the spread of the unit of light beam to a larger receiver surface in the same unit area. A Solar Energy System allowing the spread of the unit of light beam to a larger receiver surface in the same unit area. Invention, from a light source (10) of the incident beam, owned by the solar panel (30) to achieve thermal and/or electrical energy is related to an energy system is obtained. The invention is characterized; light emitting element that emits a beam by reflecting or bending the beam towards a surface which is larger than the installation ground area; it is said light emitting element is reflected or refracted by the inclusion of solar panels positioned at the point of the incident beam to fall.
Abstract:
La présente invention concerne, selon un aspect, une ligne de réflecteurs pour centrale solaire à concentration comprenant une pluralité de réflecteurs alignés les uns par rapport aux autres selon un axe d'alignement et comprenant une structure porteuse (1000), caractérisée en ce que la structure porteuse (1000) comprend au moins un support configuré pour soutenir la pluralité de réflecteurs et comprenant une fondation (1030) depuis laquelle s'étend l'au moins un support, la fondation (1030) comprenant : - au moins une embase (1010) comprenant du béton ou du béton armé, à être ancrée dans le sol; - la fondation (1030) s'étendant de manière continue selon l'axe d'alignement et tout le long de la pluralité de réflecteurs.
Abstract:
Vacuum Tube (3) of galvanized iron tube (21) of big diameter, e.g. Ø 125mm with 2 arrays (26) attached water cooled photovoltaic concentrating cells (18) in the lower side surface in the focus (19) zones of a parabolic, stable reflector (28) of big opening in its lower part, of about 1 m (not binding) and on the upper the 1/3 of the lower (Fig. 1). The lower opening of the parabolic reflector (28) is also reinforced by the Flat Reinforced Mirror (22) properly adjusted in front of it, so that the focuses (19) in suns are reinforced by 40% and so that we have a beneficially techno economical performance of cells (18) (Fig. 1&2). The cells (18) will be put in groups of ten, connected (+) ( - ) in arrays or in lines of length equal in length to that of the group of ten cells, not binding, in sandwiches (24) between two layers of isinglass (mica) (23), so that it will be a thermally conductible contact on the metal tube, but not electrically conductible. The support of each sandwich (24) of a group of ten is succeeded by natural magnets (25) in the rims (27). The terminals of each group of cells (18) are connected with the next group through by pass access (diode), in case there is a faulty cell (18) and thus faulty group, in general. Thus we produce electrical energy outside of the collector (1) and the hot water, almost 80° C, as Thermal Energy (Fig. 1&3) due to water or fluid (7) circulation for cell (18) freezing. Thermal energy is for household, industrial uses, air conditioning and desalinations.
Abstract:
The disclosure relates to a solar heating system having overheating prevention means. Specifically, the disclosure relates to systems comprising overheating prevention means configured to modulate the effective surface area of the system's heating panel exposed to the sun in response to predetermined environmental parameters.
Abstract:
A retractable intelligent reflector system for directing light onto a solar device includes one or more movable reflectors operable to direct light at the solar device, a support structure for supporting the one or more movable reflectors, at least one motor for motivating the one or more movable reflectors, and a controller for issuing actuation signals to the motor as a function of one or environmental conditions. The solar device can be a photovoltaic cell array, or a solar water heater. The environmental conditions can include at least one of time of day, calendar date, season, location, latitude, temperature, wind speed, wind direction, strain, and light conditions.
Abstract:
Solar energy device (100) comprising at least one of a photovoltaic cell or a solar thermal collector (101) having an absorption bandwidth in the infrared wavelength region of the solar spectrum; a visible light-transmitting reflector (103); and at least one of a graphic film or lighted display (105). The graphic film or a lighted display present is visible through the visible light-transmitting reflector. The solar energy devices can be used, for example, as a sign (e.g., an advertising sign or a traffic sign), on the side and/or roof, as well as in a window, of a building.
Abstract:
The present invention relates to a solar energy collection apparatus and design method. In particular, the invention provides a solar energy collection apparatus incorporating one or more reflectors and a solar collector for receiving incoming solar radiation, including reflected radiation from the one or more reflectors, wherein the one or more reflectors and the collector are oriented according to a pre-calculated offset length and offset angle based at least on the latitude of the apparatus. The invention further provides a computer-implemented method of designing a solar collection apparatus including determining the optimal offset length and offset angle between the one or more reflectors and the collector for a given latitude and other inputs.
Abstract:
A support structure (10) for carrying a plurality of heliostats (12) is provided. The support structure (10) includes a frame (20) formed from a number of girders (22). The frame has a triangular outer perimeter and a plurality of mountings (26) for carrying the heliostats (12) are provided along the perimeter. At least one mounting (26) is provided at or near each vertex (16) of the triangular outer perimeter of the frame (20), and at least one additional mounting (26) is provided part-way along each side (17) of the triangular outer perimeter of the frame (20).