Abstract:
Die Erfindung betrifft ein Verfahren (90) zum Scannen einer Probe (99) mittels einer Röntgenoptik (100) zum Bestrahlen der Probe (99) mit Röntgenstrahlen (107a), umfassend folgende Schritte: (a) Verschieben einer durch einen optischen Ausgangspunkt (108) der Röntgenoptik (100) definierten Messstelle (106) in der Probe (99) in einer ersten Scanrichtung (92) mittels Schwenkens der Röntgenoptik (100) um eine erste Schwenkachse (336); (b) Erfassen einer von der Probe (99) ausgehenden Strahlung (107b) an mindestens zwei Messstellen (106) entlang der ersten Scanrichtung (92); (c) Zusammenfügen von mit der erfassten Strahlung (107b) korrelierenden Messwerten zu einem Gesamtscan. Zudem betrifft die Erfindung eine Apparatur (96) zum Scannen einer Probe (99) umfassend: Eine Röntgenoptik (100) zum Bestrahlen einer Probe (99) mit Röntgenstrahlen (107a); einen, mit der Röntgenoptik (100) verbundenen Goniometermechanismus (300), wobei der Goniometermechanismus (300) eingerichtet ist, ein Verschwenken der Röntgenoptik (100) um eine erste Schwenkachse (336) auszuführen; wenigstens einen Aktor (117), welcher zur Betätigung des Goniometermechanismus (300) ausgebildet ist; und eine Steuerungseinrichtung (97), welche zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche ausgebildet ist.
Abstract:
A transmission mode x-ray diffraction screening system has a sample support that holds a sample tray with multiple samples to be tested. The sample support is connected to a translation stage that is movable in three dimensions, and that it offset from the location of the sample support. An x-ray source is located to one side of the sample support, and a detector is located to the other side, thereby allowing the detection of x-rays that are diffracted by the sample in a transmission mode. A retractable beamstop may be located between the sample and the detector to block at least part of the non-diffracted x-rays from the source. A video camera may also be provided for imaging the sample location, which may be illuminated by a laser. The entire system may be automated such that each sample in the sample tray may be sequentially analyzed.
Abstract:
Es wird eine Vorrichtung und ein Verfahren zur bestimmung der Orientierung einer kristallografischen Ebene (100) relative zu einer Kristalloberfläche (2) bereitgestellt, bei dem die Orientierung frei von Klebefehlern des Kristalls oder Verunreinigungen der Halterungen für den Kristall ist. Hierzu wird der Winkel, den die zu vermessende Kristalloberfläche mit einer Bezugsachse einschliesst und der Winekl, den die kristallografische Ebene mit der Bezugsachse einschliesst, gemessen und die Differenz gebildet. In einer Drahtsägevorrichtung mit einer X-Y-Positionierungseinheit wird anschliessend die gewünschte Korrektur anhand der messung der orientierung vorgenommen und dabei der kristall in horizontaler und vertikaler Position verstellt. Dadurch bleibt ein weiterer Freiheitsgrad der Drehung des kristalls in der Trennebene zum Erreichen eines Schnitts der senkrecht zur Vorschubrichtung und Drahtrichtung kräftefrei ist, so dass keine Werkzeugauslenkung erflogt bzw. Die Schnittkräfte minimal sind. Ferner ist die Orientierungsgenauigkeit erhöht.
Abstract:
A goniometer head, particularly for an X-ray diffractometer, is provided with a support which can be attached to the diffractometer and with parts, which can be adjusted in the x, y and z direction and which have an x and y slide, respectively, and appertinent x and y, respectively, adjusting lead screws. The part which is adjustable in the z direction is constructed to accommodate a sample holder. The support is made of plastic and has an upright section having a hole, which acts as the x slide and in which the x adjusting lead screw extends with a smooth central shank portion. A top part likewise made of plastic is fastened, by means of a snap-fit connection element, on the central shank portion of the x adjusting lead screw. The top part has a hole, which acts as the y slide and in which the y adjusting lead screw extends with a smooth central shank portion. Fastened thereto is a second snap-fit connection element for mounting the part which is adjustable in the z direction.
Abstract:
Die Erfindung betrifft eine Vorrichtung (98) zur räumlichen Ausrichtung einer Röntgenoptik (100) mit einem Eingangspunkt (104) und einem Ausgangspunkt (108). Die Vorrichtung (98) umfasst einen Parallelverschiebemechanismus (200) zur Justage des Eingangspunkts (104) der Röntgenoptik (100) auf einen ersten vorbestimmten Punkt mittels Parallelverschiebens der Röntgenoptik (100). Zudem umfasst die Vorrichtung (98) einen Goniometermechanismus (300) zur Justage des Ausgangspunkts (108) der Röntgenoptik (100) auf einen zweiten vorbestimmten Punkt (108) mittels wenigstens näherungsweisen Verschwenkens der Röntgenoptik (100) um den Eingangspunkt (104). Zudem betrifft die Erfindung eine Apparatur (96), welche die Vorrichtung (98) und eine Röntgenoptik (100), umfasst.
Abstract:
For easy control of the temperature of a sample as well as for precise control of an incident angle of a synchrotron X-ray beam, the present invention provides a method for controlling a synchrotron grazing incidence X-ray scattering apparatus, which comprises a step initializing a sample control section and a temperature control section; a step of aligning a vacuum sample chamber by driving a stepping motor drive of the sample control section, a step of compensating the incident angle of the synchrotron X-ray beam with respect to the sample by driving the goniometer drive of the sample control section, and a step of controlling the temperature of a sample stage where the sample is seated by controlling the temperature control section.
Abstract:
A goniometer sample holder for aligning a sample to a radiation beam. The sample holder is rotatable about a first axis. An arm having a longitudinal axis provides a sample mount and is pivotally connected to a support by a ball and socket joint so as to allow angular displacement of the longitudinal axis in at least two planes. This permits relatively easy and rapid alignment of the sample to the beam.
Abstract:
A method of determining the concentrations of the constituents in a mixture of substances by way of an X-ray diffractogram of the mixture. The fundamental difficulty that it is not possible to determine the entire power spectrum (PS) of the diffraction is avoided by making a suitable estimate of the PS on the basis of the diffractions that can be observed. Using an estimate of the dispersive power of the individual atoms in the unity cells of the constitutents and the PS, the absolute intensities are determined from the relative intensities and on the basis thereof the concentrations of the constituents in the mixture are determined.
Abstract:
A method for performing an X-ray diffraction analysis of a crystal sample (112) using a two-dimensional detector (114) that integrates an X-ray diffraction signal while the position of the sample (112) relative to an X-ray source (102) is changed along a scan direction, such as a rocking scanning curve. The resulting image is compressed along the scan direction, but may be collected very quickly. The capture of both on-axis and off-axis reflections in a single image provides a common spatial frame of reference for comparing the reflections. This may be used in the construction of a reciprocal space map, and is useful for analyzing a sample with multiple crystal layers, such as a crystal substrate with a crystalline film deposited thereupon.
Abstract:
In an X-ray detector operating in a rolling shutter read out mode, by precisely synchronizing sample rotation with the detector readout, the effects of timing skew on the image intensities and angular positions caused by the rolling shutter read out can be compensated by interpolation or calculation, thus allowing the data to be accurately integrated with conventional software. In one embodiment, the reflection intensities are interpolated with respect to time to recreate data that is synchronized to a predetermined time. This interpolated data can then be processed by any conventional integration routine to generate a 3D model of the sample. In another embodiment a 3D integration routine is specially adapted to allow the time- skewed data to be processed directly and generate a 3D model of the sample.