Abstract:
Embodiments of the present invention provide an electromagnetic sensor (400) for detecting a microstructure of a metal target, comprising: a magnetic device (410, 420) for providing an excitation magnetic field; a magnetometer (430) for detecting a resultant magnetic field induced in a metal target; and a calibration circuit (450, 551, 552, 553, 554) for generating a calibration magnetic field for calibrating the electromagnetic sensor, wherein the calibration reference magnetic field is generated by an electrical current induced in the calibration circuit by the excitation magnetic field.
Abstract:
To provide a surface property inspection device and surface property inspection method with which the surface treatment condition of treated material such as steel subjected to such surface treatments as shot-peening treatment or heat treatment, nitriding, and the like can be non-destructively and precisely inspected, and which offers a high degree of general purpose application. A surface property inspection device 1 includes a AC power supply 10, an AC bridge circuit 20, and a judgment device 30, and the AC bridge circuit 20 has a variable resistor 21 with a variable split ratio ƒチ, a benchmark detector 22, and an inspection detector 23. In variable resistor setting step S1, the split ratio ƒチ of a variable resistor 21 is adjusted and set so that the output from the AC bridge circuit 20 is increased; after setting a frequency at which the output from the AC bridge circuit 20 is maximized using a frequency setting step S2, in pass/fail judgment step S4, a benchmark sample S is brought into contact with the benchmark detector 22, the sample under inspection M is brought into contact with the inspection detector 23, and the output from the LPF 33 and the threshold value set in the threshold value setting step S3 are compared and a pass/fail judgment is made of the surface condition of the sample under inspection M.
Abstract:
A method of estimating mechanical hardness of a steel by the measurement of a plurality of magnetic parameters of the steel, comprises the steps of estimating for each parameter one or more probable hardness ranges by reference to a stored set of hardness ranges and associated parameters and combining these estimates to provide an estimate of the hardness range. Preferably three parameters are measured and these may be coercivity, power loss and permeability. These parameters may be measured simultaneously.
Abstract:
Verfahren zur Bestimmung einer mechanisch-technologischen Kenngröße von ferromagnetischen Metallen, vorzugsweise ferromagnetischen Stählen und insbesondere von feingranularen Stählen, die in Pipelines verwendet werden, wobei eine zumindest einen Permanent- oder Elektromagneten (17) aufweisende Magnetisiervorrichtung das zu bestimmende Metall magnetisiert und eine Sensorvorrichtung (11) umfassend eine Sendespule (24) ein Magnetfeld erzeugt, welches mit dem von der Magnetisiervorrichtung im Metall erzeugten Magnetfeld wechselwirkt und einen Wirbelstrom erzeugt, wobei der Wirbelstrom in dem magnetisch zumindest im Wesentlichen gesättigten Metall erzeugt und der Wirbelstrom von einem Wirbelstromsensor der Sensorvorrichtung (11) gemessen wird, wobei ein Magnetfeldstärkesensor (12) das Magnetfeld des Metalls zumindest oberflächennah misst, und wobei mittels einer Auswertevorrichtung (43) aus den Daten des Wirbelstromsensors anhand von Referenzdaten die elektrische Leitfähigkeit oder der spezifische elektrische Widerstand des Metalls ermittelt sowie aus der Leitfähigkeit oder dem Widerstand die Kenngröße des Metalls abgeleitet wird sowie Inspektionsmolch zur Durchführung eines solchen Verfahrens.
Abstract:
Embodiments of the present invention provide an electromagnetic sensor (400) for detecting a microstructure of a metal target, comprising: a magnetic device (410, 420) for providing an excitation magnetic field; a magnetometer (430) for detecting a resultant magnetic field induced in a metal target; and a calibration circuit (450, 551, 552, 553, 554) for generating a calibration magnetic field for calibrating the electromagnetic sensor, wherein the calibration reference magnetic field is generated by an electrical current induced in the calibration circuit by the excitation magnetic field.
Abstract:
Embodiments of the invention relate to polycrystalline diamond ("PCD") exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds ("Oe") or more and a specific magnetic saturation of about 15 Gauss cm3/grams ("G cm 3 /g") or less. Other embodiments are directed to polycrystalline diamond compacts ("PDCs") employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
Изобретение относится к устройствам для автоматизированного неразрушающего контроля металлических конструкций и может применяться для неразрушающего контроля резервуаров для хранения нефти и нефтепродуктов. Устройство включает в себя блоки неразрушающего контроля: ультразвуковой, по методу утечки магнитного поля, вихретоковый, а также блок навигации, блок управления, причем все указанные блоки установлены во взрывозащищенном корпусе, имеющем средства перемещения по поверхности контролируемой металлической конструкции.
Abstract:
A method for determining a case depth of a hardened layer in a surface of a metal object includes: (a) placing an eddy current probe at a location adjacent the surface; (b) using the eddy current probe, generating a time-varying eddy current in the object; (c) using the eddy current probe, outputting a measured eddy current and providing a signal representative of the measured eddy current to a computer; (d) using the computer, comparing the time-varying measured eddy current to a correlation of measured eddy currents to known case depths; and (e) determining the case depth at the location of the probe based on the correlation.