Abstract:
A test fixture for testing a flat sample of a material is disclosed. The test fixture having a test vessel for a fluid selected to test the desired properties of the material. The test fixture having a housing with a first end, a second end, and at least one wall extending from the first end to the second end. The housing may have a cylindrical configuration, a parallelpiped configuration, or other geometries. An opening in the housing is provided for receiving the flat test sample such that the assembled housing and the sample form a pressure vessel with an interior chamber.
Abstract:
A diffusion-based method for detecting activity of a biologic or chemical species is described. The method includes supplying the biologic or chemical species to a finite volume diffusion channel having a transport axis. The method further includes supplying a reactive constituent in fluid communication with the biologic or chemical species, whereby the reactive constituent is known of suspected of being reactive to the biologic or chemical species. The method further includes detecting the presence or absence of a diffusion gradient occurring between the biologic or chemical species and the reactive constituent. The presence or absence of the diffusion gradient can then be correlated to the presence or absence of activity of the biologic or chemical species.
Abstract:
A method is provided for the determination of the concentration of compounds in body tissue and fluids. The method utilizes two compartments containing reference solutions, which are separated from the sample by two different semi-permeable membranes, in a serial manner, whereby a difference in osmotic pressure occurs in the two compartments due to compounds, which can permeate one of the membranes, but not the other. The difference in osmotic pressure reflects the concentration of these compounds. The method is especially suited for analysis of the concentration of glucose in blood or tissue of diabetic patients, where a device is implanted underneath the skin of the patient and where the method is carried out by using the implanted device.
Abstract:
A multimodal sensor includes a microtensiometer for measuring the chemical potential of a sub-saturated liquid, a temperature sensor, and a water content sensor. The microtensiometer includes a sensor body comprising a first gas-impermeable layer, an opposing second gas-impermeable layer, and a porous membrane layer disposed therebetween. The sensor body defines an internal liquid reservoir. The membrane layer is fluidly connected with the liquid reservoir, and extends to an outside edge of the microtensiometer. The membrane layer defines a plurality of through pores providing an open path from the liquid reservoir to the outside edge of the microtensiometer. The pores have a maximum diameter of 3 millimeters. The microtensiometer further includes a sensor adapted to measure changes in pressure between the liquid reservoir and an outside environment. The temperature sensor is integrated onto the microtensiometer body, and the water content sensor is coupled to the microtensiometer body.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Messung der Qualität eines in einem Tank (10) bevorrateten Betriebsstoffes und/oder Hilfsstoffes (12), insbesondere eines Reduktionsmittels, wobei ein Referenzbehälter (20) mit dem Betriebsstoff und/oder dem Hilfsstoff (12) über eine semipermeable Membran (24) in Verbindung steht und der Referenzbehälter (20) mit einem Medium (22) gefüllt ist, welches einen bekannten osmotischen Druck relativ zum verwendeten Betriebsstoff und/oder Hilfsstoff (12) aufweist.
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Analyse von Gaskomponenten einer Matrix (12) mit zwei Sensoren 1A, 1B, die jeweils einen durch eine Membran verschlossenen Hohlraum umfassen, wobei beide Membranen 2A, 2B jeweils einseitig der Matrix (12) und mit ihrer anderen Seite einem Spülgas ausgesetzt sind und nachfolgend ab einem Start Zeitpunkt t A der zeitliche Verlauf des Differenzdrucks Δp s gemessen wird, der sich zwischen den beiden Sensoren 1A, 1B infolge der Permeation von Gaskomponenten der Matrix 12 und/oder des Spülgases durch beide Membranen 2A, 2B einstellt. Um eine qualitative und genetische Gasdifferenzierung zu ermöglichen, werden Membranen 2A, 2B in einem Membranset verwendet, die unterschiedliches Permeationsverhalten für besagte Gaskomponenten bewirken. Aus dem zeitlichen Verlauf wird ein Zeitpunkt t E bestimmt, an dem der gemessene Differenzdruck dem zum Zeitpunkt t A gemessenen Differenzdruck gleicht, wobei aus der Zeitdifferenz Δt = t E - t A die vom Spülgas differierende Gaskomponente der Matrix und deren Genese bestimmt wird.
Abstract translation:本发明涉及一种用于矩阵(12)具有两个传感器1A,1B,的气体成分的分析的方法和装置的每一个包括由膜腔,关闭其中两种膜2A,2B,分别在基质(12)的一侧,并且与它们 另一侧暴露于净化气体和随后?PS是从开始时间t的压力差,这是位于两个传感器1A之间的一个时间过程测定,图1B,由于基质12和/或净化气体的气体组分的渗透通过两个膜片2A, 2B成立。 为了允许定性和遗传气体分化,是膜2A,2B在膜片组使用时,会导致不同的渗透用于所述气体成分。 一个时刻tE是从确定的时间过程在该测得的差压是类似于在时间tA差压测量,其中,从所述时间差T =; TE - TA中的从基体的净化气体组分和其中的被确定的起源不同?
Abstract:
The invention relates to a micromechanical sensor and to a method for producing a micromechanical sensor that has at least one membrane. The membrane is made of a first material whereby, in order to sense a medium surrounding it, this membrane is accommodated in a second material. The invention is characterized in that the membrane is reinforced, at least in part, by a third material at breakable locations on membrane edge. Reinforcement of the membrane edge increases the stability and thus the serviceable life of the membrane and of the sensor.