Abstract:
Embodiments disclosed herein are directed towards systems and methods for acquiring point-receiver seismic data. Embodiments may include one or more receiver locations. Embodiments may also include providing at least two sensors per receiver location, wherein at least one of the at least two sensors per receiver location are in-phase sensors and the remainder are random polarity sensors. Embodiments may further include deploying at least one cable including a first transmission line and a second transmission line, wherein each of the in-phase sensors are associated with the first transmission line and each of the random polarity sensors are associated with the second transmission line. Embodiments may also include receiving one or more signals at the at least two sensors per receiver location.
Abstract:
A micro geophone having pole pieces do not extend out around the sides of the magnet, thereby allowing a reduced geophone diameter for a given magnet diameter. The pole pieces are adhesively bonded to the magnet using an adhesive, which may be made suitably electrically conductive by silver or nickel fillers or non-conductive by mica fillers such as borosilicate glass micro-spheres. Axial space is economized by eliminating traditional spider retaining rings. The spider springs are seated directly against the coil form and secured by adhesive fillets disposed on the outward-facing spring circumferences. The spider springs include circumferential notches to receive adhesive. A two-piece bimetallic coil form of aluminum and a heavier material, joined by adhesive, is provided. Headers are affixed to the housing within the seats by adhesive. A straight or rounded chamfer at each of the geophone ends allows the overall geophone dimensions to be maximized.
Abstract:
A vertical geophone that includes a lower frequency spring, which forms part of the gcophone electrical circuit, that is positioned directly on the lower end cap This arrangement eliminates the "'spring supported by a spring'" arrangement of prior art geophones to minimize geophone distortion and simplify tuning of the frequency springs. A contact spring is positioned between the lower frequency spring and the lower pole piece for forming part of the geophone electrical circuit. One surface of contact spring includes a plurality of wiper surfaces that ensure consistent sliding electrical contact against either the bottom surface of the lower pole piece or the upper surface of the lower frequency spring. The obverse surface of the contact spring is preferably spot welded to the other adjacent member.
Abstract:
A geophone in which a coil bobbin assembly ideally includes a provision for receiving a third coil winding between the upper and lower coils. A third mass-tuning coil is wound around die bobbin whose purpose is to adjust the overall mass of the bobbin assembly with greater accuracy and precision than can be achieved by machining techniques alone. Mass is adjusted by adding or subtracting one or more turns of wire in the tuning coil. The tuning coil is preferably electrically shorted for increasing geophone damping.
Abstract:
A motion sensing element with position sensing includes a case, a magnet positioned within the case, a spring assembly having an electrically conductive member and a coil assembly coupled to the spring assembly. The coil assembly and magnet are moveable with respect to one another. A capacitor plate is proximate the electrically conductive member with a distance between the capacitor plate and electrically conductive member being variable as the magnet and coil assembly move. Leads connect the capacitor plate and electrically conductive member to a sensing circuit for estimating the relative positions of the magnet and coil assembly.
Abstract:
A motion sensing element with position sensing includes a case, a magnet positioned within the case, a spring assembly having an electrically conductive member and a coil assembly coupled to the spring assembly. The coil assembly and magnet are moveable with respect to one another. A capacitor plate is proximate the electrically conductive member with a distance between the capacitor plate and electrically conductive member being variable as the magnet and coil assembly move. Leads connect the capacitor plate and electrically conductive member to a sensing circuit for estimating the relative positions of the magnet and coil assembly.
Abstract:
A dual core geophone includes a dual magnetic core packaged in a housing providing higher sensitivity and a reduction of electric wires in the device. The geophone includes a locking mechanism for the dual magnetic core to protect the device from strong vibrations when the device is not in use. A method for measuring acoustic vibrations in a downhole with a dual core geophone as above includes locking the dual magnetic core when the geophone is not detecting acoustic vibrations.
Abstract:
Vibration transducers, sensors including the vibration transducers, and methods for manufacturing the same. The vibration transducer may include a magnet. The vibration transducer may include a bobbin disposed about the magnet. The vibration transducer may include a first coil disposed about the bobbin. The vibration transducer may include a controllable damping coil disposed about the bobbin. The first coil is movable relative to the magnet. The magnet is polarized with respect to the axis of the vibration transducer.
Abstract:
In one aspect, an apparatus is disclosed comprising: a housing; a proof mass movable within the housing; an optical element mounted on one of the housing and the proof mass; a reflective element on the other one of the housing and the proof mass; a light source configured to illuminate grating and mirror; and one or more detectors configured to detect light incident from the reflective element and the diffractive element and generate a signal indicative of the relative displacement of proof mass and the housing.