Abstract:
A sample holder comprises one or more elongated sample tubes. The one or more elongated sample tubes are adapted for accommodating a plurality of samples to be imaged at an imaging position. The imaging position is defined by at least one illumination objective lens and at least one detection objective lens of a microscope. A microscope is disclosed, comprising at least one illumination objective lens and at least one detection objective lens, which define an imaging position. The microscope further comprises a sample holder for holding a plurality of samples. The sample holder is moveable with respect to the imaging position.A method for imaging a plurality of samples by means of the microscope is disclosed.
Abstract:
An apparatus (100) for analysing a specimen (102) is disclosed. The apparatus comprises an optical device (104) having reflective or refractive surfaces arranged at a first angle (101) relative to a first axis (103) of the optical device to reflect or refract optical beams emitted from the specimen, the optical beams optically reflected or refracted by the reflective or refractive surfaces to be projected as a distribution of optical points on a plane (105) orthogonal or arranged at a second angle (122) relative to a second axis (107) of the optical device; and an imaging device (106) to process the projected distribution of optical points into at least one image corresponding to a cross-sectional view of a portion of the specimen. A corresponding method for analysing the specimen using the apparatus is also disclosed.
Abstract:
A superresolution STED-NSEVI apparatus having an epifluorescence architecture utilizing a 2D structured STED pattern having a N.A. less than a N.A. of the microscope objective and no surface plasmon resonance (SPR) effects. A superresolution STED-NSEVI imaging method using a fully deterministic imaging processing method, in which a pre- calibrated set of parameters are used to process all image data.
Abstract:
Die Erfindung betrifft ein Verfahren zum Untersuchen einer Probe sowie eine Vorrichtung zum Ausführen eines solchen Verfahrens. Die Erfindung betrifft außerdem eine Vorrichtung, die zum Untersuchen einer Probe ausgebildet ist und die wenigstens eine Lichtquelle zum Erzeugen eines Beleuchtungslichtbündels (1), das wenigstens eine zur Fluoreszenzanregung der Probe geeignete Wellenlänge aufweist, und zum Erzeugen eines Abregungs- oder Schaltlichtbündels (6), das wenigstens eine zur Abregung der Probe geeignete Wellenlänge aufweist, beinhaltet und die wenigstens ein Objektiv zum Fokussieren des Beleuchtungslichtbündels (1) und des Abregungs- oder Schaltlichtbündels (6) beinhaltet. Die Vorrichtung zeichnet sich dadurch aus, dass das Beleuchtungslichtbündel (1) und das Abregungs- oder Schaltlichtbündel (6) derart geführt sind, dass eine zu untersuchende Probe in einer Probenebene entlang einer Probenlinie mit dem sich entlang der Probenlinie ausbreitenden Beleuchtungslichtbündel (1) beleuchtet ist und das Abregungs- oder Schaltlichtbündel (6) in der Probenebene wenigstens teilweise räumlich mit dem Beleuchtungslichtbündel (1) überlappt, und dass eine Detektionsoptik vorhanden ist, die ein Detektionsobjektiv beinhaltet und die von dem mittels des Beleuchtungslichtbündels (1) entlang der Probenlinie beleuchteten Probenbereich ausgehendes Detektionslicht in eine Detektionsebene abbildet, in der ein Detektor angeordnet ist, der den Teil des von der Probenebene ausgehenden Fluoreszenzlichts als Detektionslicht detektiert, der aus einem ersten Unterbereich (19) des Überlappungsbereichs stammt, in dem die Wahrscheinlichkeit einer Wechselwirkung der Probenmoleküle mit dem Abregungs- oder Schaltlichtbündel (6) größer als 90%, insbesondere größer 95%, ganz insbesondere größer 99%, ist, und/oder aus einem zweiten Unterbereich (20) stammt, der von dem ersten Unterbereich (19) wenigstens abschnittweise umgeben ist und/oder in dem das Abregungs- oder Schaltlichtbündel (6) eine Nullstelle aufweist, während der Detektor gleichzeitig das von außerhalb des ersten und zweiten Unterbereichs (19, 20) stammende Fluoreszenzlicht wenigstens teilweise ausgeblendet und nicht detektiert.
Abstract:
Die Erfindung betrifft ein Mikroskop, aufweisend eine Beleuchtungsoptik zur Fluoreszenzanregung von Punktlichtquellen einer Probe, eine Detektionsoptik und eine Kamera mit einem Sensor, wobei die Dichte der Punktlichtquellen zur Minimierung der Überdeckung hintereinander oder nahe nebeneinander liegender Punktlichtquellen in jedem von der Kamera aufgenommenen Bild gering gehalten, und wobei im Strahlengang der Detektionsoptik ein Mittel zur Unterteilung der Detektionsapertur in einzelne Teilaperturen vorgesehen ist, so dass die Bilder, die von den einzelnen Teilaperturen auf dem Kamerasensor erzeugt werden, ein Objektvolumen aus unterschiedlichen Raumrichtungen abbilden.
Abstract:
Apparatus for imaging a sample (109), said apparatus comprising: illumination means (101, 102, 103, 104, 105, 106, 107, 108) for illuminating said sample (109) simultaneously in a line focus or an array of foci; and detection means (108, 107, 106b, 111, 112, 113) for detecting photons emitted or scattered from a sample (109) simultaneously in an array of fields of view; wherein an array of sub-observation volumes in a sample (109), from which photons are emitted or scattered during imaging, is defined by the volumes in space where the line focus or array of foci from the illumination means (101, 102, 103, 104, 105, 106, 107, 108) overlap with the corresponding array of field of views of the detection means (108, 107, 106b, 111, 112, 113); a sample holder (110, 110a), preferably a cylindrical sample holder (110, 110a), configured to hold the sample (109) at a surface thereof, said sample holder (110, 110a) being rotatably arranged such that at least a portion of said sample (109) can be transported through at least one of said sub-observation volumes by rotating the sample holder (110, 110a).
Abstract:
A microscope system including: a source of light; a sample objective configured for focusing the light at a focal plane within a sample; a remote focus unit configured for changing a position of the focal plane along an axis perpendicular to the focal plane; one or more optical element configured for directing the focused light to a location within the focal plane; and a detector configured for detecting light emitted from the focal plane within the sample; wherein the one or more optical element is located after the remote focus unit along a beam path of the light from the source to the sample objective, such that the changing the position of the focal plane along the axis is performed before the directing the focused light to the location within the focal plane.
Abstract:
A segmented chromatic phase plate (1) comprises a main axis (8) and at least three stacks (2 to 5) of optical flats (6, 7). The at least three stacks (2 to 5) are arranged around the main axis (8). Each stack (2 to 5) comprises at least two plane-parallel optical flats (6, 7) made of different materials (11, 12). Each of the at least three stacks (2 to 5) is stacked along the main axis (8), and each of the at least three stacks (2 to 5) has a same overall height along the main axis (8). The materials (11, 12) and the thicknesses of the optical flats (6, 7) in the at least three stacks (2 to 5) are selected such that optical path lengths of light of a first wavelength passing through the different ones of the at least three stacks (2 to 5) along the main axis (8) differ by integer multiples of the first wavelength, whereas optical path lengths of light of a second wavelength passing through the different ones of the at least three stacks (2 to 5) along the main axis (8) differ by integer multiples plus defined fractions of the second wavelength. The two materials (11, 12) of the at least two optical flats (6, 7) of all of the at least three stacks (2 to 5) have different refractive indices (n0(λ), n1(λ)) for both the first and second wavelengths; and derivatives of the differences between the optical path lengths with respect to wavelength (λ) are zero at at least one of the first and second wavelengths.
Abstract:
A fluorescence microscope instrument (1 ) includes a light source (2) providing light (3) to be directed to a sample (4); a detector (5) detecting fluorescence light (5) emitted out of the sample (4); an objective (7) focusing the light (3) from the light source (2) into a focal area within the sample (4) and collecting the fluorescence light (6) emitted out of the focal area to be detected by the detector (5); and a beam path separator (9) arranged in a beam path of the light (3) from the light source (2) between the light source (2) and the objective (7) and in a beam path of the fluorescence light (6) between the objective (7) and the detector (5). Wavelengths of the light (3) to be directed to the sample (4) and of the light (6) to be detected by the detector fall into a range of wavelengths extending from a low end wavelength over at least 20 % of the low end wavelength. The beam path separator (9) separates the beam path of the fluorescence light (6) from the beam path of the light (3) from the light source (2) in that it is transferable between a first state in which it is transparent for light of any wavelength falling in the range of wavelengths and coming along the beam path of the light (3) from the light source (2), and a second state in which it is transparent for light of any wavelength falling in the range of wavelengths and coming along the beam path of the fluorescence light (6) from the sample (4).
Abstract:
Provided is a medical imaging device comprising: a color separation prism that has a dichroic film configured to split light into first light belonging to a visible light wavelength band and second light belonging to a fluorescence wavelength band; a fluorescence image sensor that is provided at an output side of the color separation prism and that is configured to image at least part of the second light belonging to the fluorescence wavelength band separated by the dichroic film; a visible light image sensor that is provided at the output side of the color separation prism and that is configured to image at least part of the first light belonging to the visible light wavelength band separated by the dichroic film; and a bandpass filter that is disposed between the color separation prism and the fluorescence image sensor, wherein the fluorescence image sensor and the visible light image sensor are arranged such that an optical path difference between an optical path length of a fluorescence optical path for the second light imaged on the fluorescence image sensor via the color separation prism and an optical path length of a visible light optical path for the first light imaged on the visible light image sensor via the color separation prism corresponds to an amount of a shift between a fluorescence imaging position and a visible light imaging position, the shift being generated by an imaging lens positioned at an input side of the color separation prism, and wherein the fluorescence imaging position is an imaging position of filtered second light, which results from passing the second light through the bandpass filter, such that the amount of shift is based on the filtered second light.