Abstract:
The invention relates to a mobile microscopic imaging device comprising a sample stage for holding a sample to be imaged, at least one light source for illumination of the sample, an imaging panel capable of capturing an image of the sample upon transmission illumination of the sample by the light source, and an optical magnification unit between the sample and the imaging panel for guiding light from the illuminated sample to the imaging panel so that a magnified image of at least portion of the sample is formed at the imaging panel. According to the invention, the optical magnification unit comprises a filter integrated polymeric lens assembly in a transmitted light fluorescence configuration which allows for both miniaturization of the device to a truly mobile level and reducing manufacturing costs.
Abstract:
La présente invention concerne une lentille ophtalmique transparente comprenant un substrat ayant une face principale avant et une face principale arrière, ladite face principale avant étant revêtue d'un revêtement interférentiel multicouche, de préférence antireflet, comprenant un empilement d'au moins une couche ayant un indice de réfraction supérieur à 1,6 et d'au moins une couche ayant un indice de réfraction inférieur à 1,55, caractérisée en ce que : o le facteur moyen de réflexion sur ladite face principale avant revêtue dudit revêtement interférentiel, entre 350 nm et une longueur d'onde comprise entre 380 et 400 nm, de préférence entre 350 et 380 nm, pondéré par la fonction W(l), est supérieur ou égal à 35% pour au moins un angle d'incidence compris entre 0° et 17°; o le facteur de réflexion lumineuse à 400 nm sur ladite face principale avant revêtue dudit revêtement interférentiel est inférieur ou égal à 35% pour au moins un angle d'incidence compris entre 0° et 17°.
Abstract:
An optical filter, a sensor device including the optical filter, and a method of fabricating the optical filter are provided. The optical filter includes one or more dielectric layers and one or more metal layers stacked in alternation. The metal layers are intrinsically protected by the dielectric layers. In particular, the metal layers have tapered edges that are protectively covered by one or more of the dielectric layers.
Abstract:
The present invention disclosure provides a spectrally selective panel that comprises a first material being at least partially transmissive for light having a wavelength in the visible wavelength range and being arranged for guiding suitable light. Further, the panel comprises a diffractive element being positioned in, at or in the proximity of the first material. The diffractive element is arranged to deflect predominantly light having a wavelength in an IR wavelength band. The first material is arranged and the diffractive element is oriented such that at least a portion of energy associated with IR light incident from a transversal direction of the spectrally selective panel is directed along the panel towards a side portion of the panel.
Abstract:
An optical coating and method for coating an optical element are disclosed. The optical element substrate may be made of fused silica and the coating may include a non-fluoride adherence layer such as SiO 2 that is deposited on the substrate to overlay and contact a surface of the substrate. The coating may further include a multilayer system having at least one layer of a dielectric fluoride material, the multilayer system overlaying the non-fluoride adherence layer.
Abstract:
An optical array containing a system of absorptive filters (3), a system of interference filters (4) and a scatterer (1). For the sun light the spectral characteristics of transmission of the optical array is close to the world-wide accepted Diffey Standard. That standard models human skin sensitivity to UV burning. The invention allows making inexpensive, miniature UV sensors that can be applied in miniature devices measuring burning power of UV contained in the sun light.
Abstract:
Die Erfindung betrifft optische Elemente, Verfahren zur Herstellung solcher optischer Elemente und die Bestimmung der erreichten optischen Eigenschaften. Bei den optischen Elementen handelt es sich insbesondere um solche für die Reflexion, Transmission, Führung und/oder Filterung elektromagnetischer Strahlung im Wellenlängenbereich zwischen 100 und 400 nm. Auf einem Substrat ist dabei mindestens eine Schicht eines metallischen Fluorides ausgebildet. Mit der erfindungsgemässen Lösung sollen die optischen Eigenschaften verbessert und insbesondere der störende Einfluss von Lumineszenz weitestgehend vermieden werden. Im Anschluss an die Schichtausbildung können die so hergestellten optischen Elemente durch Bestrahlung mit elektromagnetischer Strahlung einer vorgebbaren Wellenlänge bestrahlt und die Lumineszenzintensität mit optischen Detektoren bestimmt werden.