Abstract:
An optical space switch is used in a centralised switching system for an optical network and connects light from one of a number of inputs (1) to a selected one of a number of outputs (6). The switch includes a number of multiplexed phase volume holograms (4), a spatial light modulator (3) for imposing a selected phase change on light passing through it, distribution means (2) for coupling light from the inputs (1) via the spatial light modulator (3) to the multiplexed phase volume holograms (4), and collection means (5) for collecting light diffracted by the multiplexed phase volume holograms (4). Each multiplexed phase volume hologram (4) diffracts light to a selected output (6) in dependence upon the phase change imposed by the spatial light modulator (3) on the light incident upon that hologram (4).
Abstract:
A photonic integrated circuit (PIC) (600) comprises an optical switch (650), a plurality of input edge couplers (620) comprising a first input edge coupler (620) and coupled to the optical switch (650), a plurality of input surface grating couplers (SGCs) (630) comprising a first input SGC (630) and coupled to the optical switch (650), a plurality of output edge couplers (620) comprising a first output edge coupler (620) and coupled to the optical switch (650), and a plurality of output SGCs (630) comprising a first output SGC (630) and coupled to the optical switch (650). A method (1100) of fabricating a PIC (600) comprises patterning and etching a silicon substrate to produce a first optical switch (650), a first surface grating coupler (SGC) (630) coupled to the first optical switch (650), and a first edge coupler (620) coupled to the first optical switch (650).
Abstract:
An optical device includes an optical port array, an optical arrangement, a dispersion element, a focusing element and a programmable optical phase modulator. The optical port array has at least one optical input port for receiving an optical beam and a plurality of optical output ports. The optical arrangement allows optical coupling between the input port and each of the output ports and prevents optical coupling between any one of the plurality of optical output ports and any other of the plurality of optical output ports. The dispersion element receives the optical beam from the input port after traversing the optical arrangement and spatially separates the optical beam into a plurality of wavelength components. The focusing element focuses the plurality of wavelength components. The programmable optical phase modulator receives the focused plurality of wavelength components and steers them to a selected one of the optical outputs.
Abstract:
A reconfigurable optofluidic apparatus includes a microfluidic chip including a microfluidic channel further including an inlet for a liquid core waveguide fluid; a channel pathway for the liquid core waveguide fluid; a plurality of non-core waveguide fluid inlets; a switching chamber having a larger cross sectional area than the channel pathway; and an outlet for the liquid core waveguide fluid and non-core waveguide fluid, further including a plurality of non-liquid core waveguides disposed in the switching chamber. Light input to the apparatus propagates in the liquid core/liquid cladding (liquid) waveguide. The path of the liquid waveguide can be steered in a region of the apparatus over one of the non-liquid core waveguides such that the light is end-fire- or evanescently-coupled into the non-liquid core waveguide and output therefrom or between two of the non-liquid core waveguides and not coupled or output. Associated optofluidic switching methods are disclosed.
Abstract:
A MEMS optical switch-based LiDAR beam steering unit may comprise an optical switching array comprising two or more translatable optical switch gratings. The two or more translatable optical switch gratings may be arranged in a foveal pattern. Each of the two or more translatable optical switch gratings may have an associated MEMS structure operative to selectively translate the optical switch grating between a first position and a second position, and a first waveguide associated with the translatable optical switch grating. The grating being in the first position may cause the grating to be sufficiently close to the first waveguide to produce a strong optical coupling between the grating and the first waveguide. The grating being in the second position may cause the grating to be sufficiently far from the first waveguide to produce a weak optical coupling between the grating and the first waveguide.
Abstract:
The present invention generally relates to optical circuits for mitigating power loss in medical imaging systems and methods for using such circuits. Circuits of the invention can involve a first optical path, a second optical path, and a means for recombining an optical signal transmitted through the first and second optical paths by sequentially gating the first and second optical paths to a single output.
Abstract:
An optical device includes an optical port array, a first walk-off crystal, a first half-wave plate, a second walk-off crystal and a segmented half-wave plate. The optical port array has a first and second plurality of ports for receiving optical beams. The first walk-off crystal spatially separates the beams into first and second portions that are in first and second orthogonal polarization states, respectively. The first portions are walked-off by the first walk-off crystal and the second portions pass therethrough without being walked-off. The first half-wave plate rotates the polarization state of the first and second portions of the optical beams. The second walk-off crystal is oriented in an opposite direction from the first walk-off crystal such that the second portions are walked-off by the second walk-off crystal and the first portions pass therethrough without being walked-off. The segmented half-wave plate receives the first or second portions of the beams.