Abstract:
La présente invention concerne une configuration de cœur de réacteur à neutrons rapides, refroidi par un métal liquide. Le cœur comporte un ensemble d'éléments combustibles comprenant un matériau fertile et/ou un matériau fissile, l'ensemble de tels éléments combustibles étant agencé selon une forme générale de cylindre. Au sens de l'invention, un premier ensemble d'éléments combustibles (Cl, C2, C3), disposé selon une couronne en périphérie du cylindre, comporte relativement plus de matériau fissile qu'un deuxième ensemble d'éléments combustibles (FERT), disposé au centre du cylindre. Un tel agencement permet avantageusement de réduire un effet de vidange du métal liquide et de là, d'améliorer la sécurité du réacteur.
Abstract:
A modular, nuclear waste conversion reactor that continuously produces usable energy while converting U-238 and/or other fertile waste materials to fissionable nuclides. The reactor has a highly uniform, self-controlled, core (2) with a decades-long life and does not require reactivity control mechanisms within the boundary of the active core during operation to retain adequate safety. The exemplary embodiment employs high-temperature helium coolant, a dual-segment (22) initial annular critical core, carbide fuel, a fission product gas collection system, ceramic cladding and structural internals to create a modular reactor design that economically produces energy over multiple generations of reactor cores with only minimum addition of fertile material from one generation to the next.
Abstract:
Изобретение относится к конструкциям легководных ядерных реакторов, в которых в качестве топлива применяется торий, в частности, к конструкциям бесчехловых тепловыделяющих сборок, из которых сформированы активные зоны водо-водяных энергетических реакторов, таких как реакторы типа PWR (например, AP-1000, EPR и т.д.). Топливная сборка (1) легководного реактора имеет в плане квадратную форму и содержит запальный модуль (2), окружающий его воспроизводящий модуль (3), головку (4), хвостовик (5) запального модуля и хвостовик (6) воспроизводящего модуля. Пучок топливных элементов запального модуля (2) расположен рядами по рядам и столбцам квадратной координатной сетки и имеет четырехлепестковый профиль, образующий по длине топливного элемента винтовые дистанционирующие ребра. Воспроизводящий модуль (3) содержит каркас, в котором расположен пучок топливных элементов, выполненных из тория с добавлением обогащенного урана. Топливные элементы воспроизводящего модуля расположены по двум рядам и столбцам квадратной координатной сетки. В другом варианте осуществления изобретения топливная сборка легководного реактора имеет аналогичную конструкцию, при этом топливные элементы воспроизводящего модуля расположены по трем рядам и столбцам квадратной координатной сетки. Изобретение относится также к топливным элементам, используемым в топливных сборках и легководным реакторам типа PWR (например, AP-1000, EPR и т.д.), использующих топливные сборки.
Abstract:
A locking mechanism (95, 125, 130) for a nuclear fuel assembly (2) having seed and blanket (6) subassemblies is configured to selectively lock the seed subassembly within the blanket subassembly, preventing separation thereof. The locking mechanism contains one or more detents (95) on one of the seed subassembly or the blanket subassembly, that are configured to engage with a surface feature on the other of the seed subassembly or the blanket subassembly. The locking mechanism contains a locking member movable between two positions. In a first position, the locking member (100) is configured to prevent the one or more detents from disengaging from the surface feature (125, 130), thereby holding the blanket subassembly and the seed subassembly together. In a second position, however, the detents are able to move into a non- locking position, such that the one or more detents may disengage from the surface feature as the seed subassembly is separated from the blanket subassembly.
Abstract:
Illustrative embodiments provide a reactivity control assembly for a nuclear fission reactor, a reactivity control system for a nuclear fission reactor having a fast neutron spectrum, a nuclear fission traveling wave reactor having a fast neutron spectrum, a method of controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, methods of operating a nuclear fission traveling wave reactor having a fast neutron spectrum, a system for controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, a method of determining an application of a controllably movable rod, a system for determining an application of a controllably movable rod, and a computer program product for determining an application of a controllably movable rod.
Abstract:
Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, re-use of nuclear fission fuel, alternate fuels and fuel geometries, modular fuel cores, fast fluid cooling, variable burn- up, programmable nuclear thermostats, fast flux irradiation, temperature-driven surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.
Abstract:
Illustrative embodiments provide a reactivity control assembly for a nuclear fission reactor, a reactivity control system for a nuclear fission reactor having a fast neutron spectrum, a nuclear fission traveling wave reactor having a fast neutron spectrum, a method of controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, methods of operating a nuclear fission traveling wave reactor having a fast neutron spectrum, a system for controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, a method of determining an application of a controllably movable rod, a system for determining an application of a controllably movable rod, and a computer program product for determining an application of a controllably movable rod.
Abstract:
Illustrative embodiments provide a reactivity control assembly for a nuclear fission reactor, a reactivity control system for a nuclear fission reactor having a fast neutron spectrum, a nuclear fission traveling wave reactor having a fast neutron spectrum, a method of controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, methods of operating a nuclear fission traveling wave reactor having a fast neutron spectrum, a system for controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, a method of determining an application of a controllably movable rod, a system for determining an application of a controllably movable rod, and a computer program product for determining an application of a controllably movable rod.
Abstract:
A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.
Abstract:
The present invention relates to a configuration of a liquid-metal-cooled fast-neutron reactor core. The core comprises an assembly of fuel elements comprising a fertile material and/or a fissile material, the assembly of such fuel elements being arranged in the general form of a cylinder. In the context of the invention, a first assembly of fuel elements (C1, C2, C3), arranged in a ring around the periphery of the cylinder, comprises relatively more fissile material than a second assembly of fuel elements (FERT), which is placed at the centre of the cylinder. Such an arrangement advantageously enables a liquid metal draining effect to be reduced and thereby improves the safety of the reactor.