Abstract:
Methods and articles are provided for reducing the amount of water consumed by a plant over a period of time, sequestering CO 2 , and producing electricity, where each method includes providing the plant with a composition including at least about 0.1 (wt./wt. or vol./vol.) % CO 2 and/or at least about 0.1 wt./wt.% of a composition that generates CO 2 . An apparatus is also disclosed for providing the plant with a composition including CO 2 and/or a composition that generates CO 2 .
Abstract:
A dryer including a housing, a drying chamber disposed within the housing, and a heating element coupled to the housing. The dryer further includes an intake configured to supply intake air to the drying chamber and an exhaust vent configured to vent exhaust air out of the drying chamber. The intake, the drying chamber, and the exhaust vent define an air flow path from the intake through the drying chamber and out the exhaust vent. The dryer includes a heat exchanger and a heat pump having a condenser. The heat exchanger and the heat pump are each configured to absorb thermal energy from the exhaust air and transfer the thermal energy to the intake air. The air flow path is configured such that the intake air is heated directly or indirectly by the heat exchanger prior to the intake air being further heated directly or indirectly by the condenser. The air flow path is configured such that the intake air is further heated directly or indirectly by the condenser prior to the intake air entering the drying chamber.
Abstract:
Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
Abstract:
A suppressor grid is configured proximate to an anode to produce a suppressor electric field selected to provide a force on an electron in a direction pointing away from the anode, wherein the suppressor electric field is further selected to pass electrons from the suppressor grid to the anode.
Abstract:
Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
Abstract:
Illustrative embodiments provide for the operation and simulation of the operation of fission reactors. Illustrative embodiments and aspects include, without limitation, nuclear fission reactors and reactor modules, including modular nuclear fission reactors and reactor modules, nuclear fission deflagration wave reactors and reactor modules, modular nuclear fission deflagration wave reactors and modules, methods of operating nuclear reactors and modules including the aforementioned, methods of simulating operating nuclear reactors and modules including the aforementioned, and the like.
Abstract:
Illustrative embodiments provide a nuclear fission reactor, a vented nuclear fission fuel module, methods therefor and a vented nuclear fission fuel module system.
Abstract:
A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
Abstract:
Systems include one or more medicinal storage containers. For example, an integrally thermally sealed medicinal storage container may include one or more segments of at least one ultra efficient insulation material, the one or more segments having one or more surface regions, the one or more segments principally defining at least one storage region, one or more regions of substantially thermally sealed connections between at least one of the one or more surface regions of the one or more segments wherein the one or more regions of substantially thermally sealed connections and the one or more segments form at least one integrally thermally sealed medicinal storage region, one or more thermal variant units, and at least one selectively-operable thermal conduction unit.
Abstract:
Systems include at least one substantially thermally sealed storage container, including an outer assembly including one or more sections of ultra efficient insulation material substantially defining at least one thermally sealed storage region, and an inner assembly including one or more interlocks configured to provide controllable egress of a quantity of a material from one or more of the at least one thermally sealed storage region.