Abstract:
The invention relates to a coaxial cable for transmitting signals, comprising an inner conductor (302), said inner conductor (302) comprising a conducting layer (400) for conducting a signal The conducting layer (400) of the inner conductor (302) has a thickness that depends on the skin factor of the highest frequency component contained in signals to be transmitted in the coaxial cable (300). The invention also relates to a method for manufacturing said coaxial cable.
Abstract:
A cable having a conducting member made from a nanostructure-based material, and a shielding layer made of nanostructure-based material. The shielding layer can be circumferentially situated about the conducting member so as to enhance conductivity along the conducting member. A coupling mechanism may be situated between the shielding layer and the conducting member so as to secure the shielding layer in its position on the conducting member. A method of making the cable is also disclosed.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Litzeninnenleiters (1), respektive eines Koaxialkabels (9). In einem ersten Schritt wird ein Litzeninnenleiter (2) bereitgestellt, der aus mehreren verseilten Drähten (3) besteht. Anschliessend wir der Litzeninnenleiter (1) mittels einer Rundknetvorrichtung (10) rundgeknetet. In einem weiteren Schritt wird der rundgeknetete Litzeninnenleiter (3) mit einem Dielektrikum (4) umhüllt. In einem weiteren Schritt wird das Dielektrikum (4) mit einem Aussenleiter (5), sowie einem Kabelmantel (6) umhüllt.
Abstract:
A nanostructured sheet that can include a substantially planar body, a plurality of nanotubes defining a matrix within the body, and a protonation agent that can be dispersed throughout the matrix of nanotubes for enhancing proximity of adjacent nanotubes to one another. A method of making such a nanostructured sheet is also disclosed.
Abstract:
A method of making a coaxial cable includes forming a conductive tube and setting a settable material therein to define an inner conductor. Forming may include advancing a conductive strip and bending it into a tube having a longitudinal seam. The settable material may be dispensed onto the conductive strip continuously with the forming. Alternately, the settable material may be dispensed onto the conductive strip prior to advancing. The dispensing may use a puller cord as the settable material or carrying some or all of the settable material. The method may further include forming a dielectric layer surrounding the inner conductor, and forming an outer conductor surrounding the dielectric layer.
Abstract:
Ein Koaxialkabel umfasst einen Innenleiter (2), einen Außenleiter (3) und ein Dielektrikum (4). Das Dielektrikum (4) ist zwischen dem Innenleiter (2) und dem Außenleiter (3) angeordnet. Ein Innenleiter und/oder ein Außenleiter des Koaxialkabels ist gemäß einer oder beider nachfolgender Möglichkeiten gebildet: a) das Dielektrikum (4) ist als Hohlkörper, insbesondere als Hohlzylinder ausgebildet; das Dielektrikum (4) umfasst eine Innenwandung (5), die einen Aufnahmeraum (6) begrenzt; die Innenwandung (5) des als Hohlkörpers ausgebildeten Dielektrikums (4) ist mit einer elektrisch leitfähigen Beschichtung (7) beschichtet, die den Innenleiter (2) bildet; und/oder b) eine Außenwandung (8) des Dielektrikums (4) ist mit einer elektrisch leitfähigen Beschichtung (9) beschichtet, die den Außenleiter (3) bildet. Die elektrisch leitfähige Beschichtung (7) auf der Innenwandung des als Hohlkörper ausgebildeten Dielektrikums (4) ist als Kaltgasspritzschicht aus einem Metallpulver gebildet. Ergänzend oder alternativ gilt dies auch für die die elektrisch leitfähige Beschichtung (9) auf der Außenwandung des Dielektrikums (4).
Abstract:
A method in the manufacturing of an insulated electric high voltage DC termination or joint comprises the steps of providing (12) an insulated electric high voltage DC cable (20) comprising an inner conductor (21); a polymer based insulation system (22-24), the polymer based insulation system comprising an insulation layer (23) and a semiconducting layer (24); and an outer grounding layer (25); removing (13) the grounding layer and the semiconducting layer in at least one end portion (27) of the high voltage DC cable, thereby exposing the insulation layer in the at least one end portion of the high voltage DC cable; covering (14) the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable by a cover impermeable to at least one substance present in the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable in a non-homogenous distribution; subjecting (15) the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable for a heat treatment procedure, while being covered by the cover, thereby equalizing the concentration of the at least one substance in the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable; and removing (16) the cover. Instead of using a temporary cover, which is later removed, as the impermeable barrier, a field grading adapter or joint body mounted at the end of the DC cable during the manufacturing of the high voltage DC termination or joint may be used.
Abstract:
Thermal mass compensated foam support structures for coaxial cables such as inner conductors and or inner conductor support structures. The foam support structures provided with an adhesive solid or high density foam polymer or blend layer to increase the thermal mass of the support structure enough to allow the foam to surround the adhesive solid or high density foam polymer or blend layer without forming unacceptably large voids in the foam dielectric as the foam dielectric cures.
Abstract:
A method of making a coaxial cable includes forming a conductive tube and setting a settable material therein to define an inner conductor. Forming may include advancing a conductive strip and bending it into a tube having a longitudinal seam. The settable material may be dispensed onto the conductive strip continuously with the forming. Alternately, the settable material may be dispensed onto the conductive strip prior to advancing. The dispensing may use a puller cord as the settable material or carrying some or all of the settable material. The method may further include forming a dielectric layer surrounding the inner conductor, and forming an outer conductor surrounding the dielectric layer.