Abstract:
A forwarding flow table request sent by a host device when the host device fails to find a matching forwarding flow table entry for a data packet to be forwarded is received, when a destination MAC address of the data packet is the global virtual MAC address, a forwarding flow table entry is generated according to the global port table; the forwarding flow table entry includes an operation indication of replacing the destination MAC address of the data packet with the matching MAC address found in the global port table; and the forwarding flow table entry is sent to the host device, so that the host device may forward a data packet matching the forwarding flow table entry.
Abstract:
A novel algorithm for packet classification that is based on a novel search structure for packet classification rules is provided. Addresses from all the containers are merged and maintained in a single Trie. Each entry in the Trie has additional information that can be traced back to the container from where the address originated. This information is used to keep the Trie in sync with the containers when the container definition dynamically changes.
Abstract:
Techniques described herein may provide for device discovery of direct communication paths, to enable direct mode communication, between communication devices. The discovery of the communication paths may be based on identifiers that may be defined at the application level and included in device discovery requests. In one implementation, the identifiers may be SIP- URIs (session initiation protocol (SlP)-uniform resource identifiers (URIs)).
Abstract:
Technology for a user equipment (UE) to communicate in a device to device (D2D) network is described. A temporary identification (Temp ID) can be received from an enhanced node B (eNB). A D2D discovery resource allocation can be received within a physical uplink channel from the eNB. A UE D2D discovery resource can be selected from the D2D discovery resource allocation based on the Temp ID. A D2D discovery beacon can be transmitted from the UE D2D discovery resource to enable other UEs to detect the UE.
Abstract:
Technology for a user equipment (UE) to communicate in a device to device (D2D) network. A D2D discovery beacon can be listened for at the UE for a predetermined period of time. The UE can be self-assigned as a D2D cluster coordinator when the D2D discovery beacon has not been received by the UE for the predetermined period of time. A D2D cluster can be formed to enable D2D communication between D2D UEs in the D2D cluster. A D2D discovery beacon can be transmitted from the D2D cluster coordinator to the D2D UEs within the D2D cluster.
Abstract:
Session continuity may be maintained when communication devices transition from communicating through network infrastructure (e.g., through a cellular network) to direct mode communications (e.g., a communication path directly between two communication devices). For example, in switching from an infrastructure mode communication path to a direct mode communication path, a method may include: determining a public-facing address corresponding to the infrastructure path; replacing, for a packet that is to be transmitted over the direct mode communication path to a second communication device, a source address field of the packet with the determined public-facing address; and encapsulating the packet with source and destination address fields corresponding to the first and second communication device through the direct mode communication path respectively.
Abstract:
A user equipment (UE) power-cycles UE transmission modem components to reduce overall UE power consumption. For example, multiple HARQ ACK/NACK feedback bits are aggregated for a predetermined number of consecutive DL subframes, and then the feedback is transmitted in a single dedicated UL subframe so that a transmitter and power amplifier may be temporarily turned off (State 3) to reduce power consumption in the UE.
Abstract:
Methods, systems, and devices for network selection and traffic routing are disclosed herein. User equipment (UE) is configured to store an access network selection and detection function (ANDSF) management object (MO). The ANDSF MO may include network selection rules indicating relative priority based on a specific radio access technology (RAT) types of different access networks. The UE is configured to identify one or more available access networks. The UE is configured to establish a connection with an access network of the one or more available access networks. The UE establishes the connection with an access network having a RAT with a highest relative priority of the one or more available access networks based on the network selection rules.
Abstract:
A method of operating a communication system, comprising the steps of: receiving a first OSI layer two packet from a first network interface; determining transmission type of the first OSI layer two packet; determining whether to send a second OSI layer two packet according to the transmission type, origin and destination of the first OSI layer two packet; determining destination address and transmission type of the second OSI layer two packet when determined to send the second OSI layer two packet; and sending the second OSI layer two packet through a second network interface when determined to send the second OSI layer two packet; wherein when the first OSI layer two packet is encapsulated in at least one layer three packet, the second OSI layer two packet is not encapsulated in any OSI layer three packet; and wherein when the first OSI layer two packet is not encapsulated in any Open Systems Interconnection (OSI) layer three packet, the second OSI layer two packet is encapsulated in at least one OSI layer three packet.
Abstract:
In one embodiment, a machine type communication (MTC) device can receive registration associated with a new device upon the new device registration for a computer network. The MTC device can further determine a machine-to-machine (MTM) service class for the new device based on the registration data with the service class associated with at least one network route for messages destined for the new device. The MTC device can further receive a trigger message destined for the device and route the trigger message according to the network route associated with the determined MTM service class.