摘要:
The present disclosure provides apparatuses, systems, methods, and machine readable storage medium for physical uplink shared channel (PUSCH) transmission between a user equipment (UE) and a base station, based on a robust codebook. In an embodiment, a UE, including circuitry operable to: report a UE capability of the UE to a base station, wherein the UE capability comprises a number of phase tracking reference signal (PT-RS) antenna ports (N PT-RS ) supported by the UE; decode control signaling received from the base station, wherein the control signaling comprises at least one parameter to indicate a precoder selected from a codebook based on at least the N PT-RS ; and perform physical uplink shared channel (PUSCH) transmission according to the indicated precoder; wherein the codebook is predefined or configured based on different numbers of PT-RS antenna ports and different waveforms, in the UE and the base station.
摘要:
An apparatus of a base station, system and method. The apparatus includes a memory and processing circuitry configured to: determine a physical downlink control channel (PDCCH) on a first component carrier; encode a first signal to be transmitted on the PDCCH, the first signal including downlink control information (DCI) on resources for a second signal to be transmitted on a second component carrier, wherein the DCI is based on a predetermined numerology, and wherein respective numerologies of the first component carrier and the second component carrier are different from one another. The processing circuitry is further to cause transmission of the first signal on the PDCCH, wherein a receiver of the second signal is to process the second signal based on the control information in the first signal.
摘要:
Described is an apparatus of an Evolved Node-B (eNB) comprising a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to generate a reference signal transmission for an eNB Transmitting (Tx) beam corresponding with at least a first eNB antenna port having a first polarization and a second eNB antenna port having a second polarization. The second circuitry may be operable to process one or more reporting transmissions carrying at least one of a first signal reception indication for a first UE antenna port and a second signal reception indication for a second UE antenna port. The third circuitry may be operable to determine a transmission hypothesis based upon the one or more reporting transmissions.
摘要:
Described is an apparatus of an eNB comprising a first circuitry configurable to enable a Single User Superimposed Transmission (SUST) Transmission Mode (TM), and comprising one or more processors to generate a plurality of codewords for a downlink shared channel transmission to a multiple-directional UE antenna-panel structure, including a first codeword a first antenna panel of the multiple-directional UE antenna-panel structure and a second codeword for a second antenna panel of the multiple-directional UE antenna-panel structure. Also described is an apparatus of a UE comprising one or more processors to enable an SUST TM, and to process a plurality of codewords of a downlink shared channel transmission, including a first codeword a first antenna panel of the multiple-directional UE antenna-panel structure and a second codeword for a second antenna panel of the multiple-directional UE antenna-panel structure.
摘要:
Examples may include techniques for a identifying physical hybrid automatic request (HARQ) indicator channel (PHICH) resources. A PHICH resource along with one or more additional PHICH may be identified for use to enhance coverage for user equipment to receive positive acknowledgements (ACKs) or negative acknowledgement (NAKs) from an evolved Node B (eNB). An ACK/NAK may be sent to the UE by the eNB responsive to receiving data over a physical uplink shared channel (PUSCH) established with the UE. Both the UE and the eNB may operate in compliance with one or more 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards.
摘要:
In one embodiment, the present disclosure provides an evolved Node B (eNB) that includes a device-to-device (D2D) module configured to allocate at least one D2D discovery region including at least one periodic discovery zone, the at least one periodic discovery zone including a first plurality of resource blocks in frequency and a second plurality of subframes in time, the D2D module further configured to configure a User Equipment (UE) to utilize the at least one D2D discovery region for transmitting a discovery packet.
摘要:
An eNodeB (eNB) and user equipment (UE) are provided that detect whether the UE is in coverage enhancement mode and if so uses a modified version of the Radio Link Control (RLC) configuration in communications between the eNB and UE. Detection mechanisms may differ between the eNB and UE and may include direct signaling between the eNB and UE, the ability to receive control signaling only through particular modified signaling procedures, low power of certain received control signals or lack of response to certain control signals within various predetermined time periods. The modified RLC configuration permits a smaller amount of data than a standard RLC configuration to be transmitted by a transmitting device before a receiving device is able to be polled for information regarding reception by the receiving device of the transmitted data.
摘要:
Technology for transmitting physical broadcast channel (PBCH) contents is disclosed. An evolved node B (eNB) may configure one or more repetitions of PBCH content for transmission, to a user equipment (UE), from a cell at a selected time interval. The eNB may select a scrambling code for the one or more repetitions of PBCH content transmitted from the cell. The eNB may apply the scrambling code to one or more repetitions of PBCH content.
摘要:
Technology for a user equipment (UE) to communicate in a device to device (D2D) network is described. A temporary identification (Temp ID) can be received from an enhanced node B (eNB). A D2D discovery resource allocation can be received within a physical uplink channel from the eNB. A UE D2D discovery resource can be selected from the D2D discovery resource allocation based on the Temp ID. A D2D discovery beacon can be transmitted from the UE D2D discovery resource to enable other UEs to detect the UE.