Abstract:
A method for controlling the orientation of a virtual microphone, which is carried out on an electronic device, includes combining and processing signals from a microphone array to create a virtual microphone; receiving data from a sensor of the electronic device (SlOO); determining, based on the received data, a mode in which the electronic device (S104) is being used; and based on the determined mode, directionally orienting the virtual microphone. Possible use modes include a) a stowed use mode, in which the criterion is the electronic device being substantially enclosed by surrounding material; b) a handset or private use mode, in which the criterion is the electronic device being held proximate to a user; and c) a handheld or speakerphone use mode, in which the criterion is the electronic device being held away from a user.
Abstract:
An apparatus comprising: at least one input configured to provide at least one input signal; a mode determiner configured to determine at least one mode of condition based on the at least one input signal; a controller configured to control the reproduction of at least one audio signal based on the at least one mode of condition; and at least one actuator configured to reproduce the at least one audio signal within the apparatus by vibration of a surface.
Abstract:
Various arrangements for handling a call by a mobile device and/or selecting a function for execution by the mobile device are presented. A phone call may be commenced by a mobile device. During the phone call, the mobile device may collect proximity data that indicates the mobile device is not proximate to an ear of a user. The microphone of the mobile device may be muted in response to the proximity data that indicates the mobile device is not proximate to the ear of the user.
Abstract:
An electronic device includes a housing comprising a speaker configured to be positioned adjacent an ear of a user, and a position-sensitive region on the housing that is configured to sense a position of the ear of the user relative to the housing when the ear is positioned adjacent the speaker and to generate an acoustic leakage position signal responsive to the sensed position of the ear of the user. A control unit is in communication with the speaker and the position-sensitive region and is configured to provide an electrical input signal to the speaker. The control unit is further configured to receive the acoustic leakage position signal and to adapt the electrical input signal responsive to the acoustic leakage position signal.
Abstract:
Described is a system and method for monitoring a mobile device. The device comprises a plurality of sensors and a processor. The sensors detect first data including spatial orientation data and motion data of the device, and the processor compares the first data to second data to determine an occurrence of an event related to at least one of a communications functionality and a power setting of the device. The second data includes predetermined threshold ranges of changes in the spatial orientation data and the motion data. If the event is detected, the processor selects a predetermined procedure for execution as a function of the first data and executes the predetermined procedure.
Abstract:
A mechanism for switching a wireless device between normal operation and a lower-power mode is provided. A wireless device has a selection mechanism for reducing the power output of the wireless device. The wireless device then returns to a normal operation mode upon user release of the selection mechanism.