Abstract:
A closed cycle regenerative heat engine has a housing (12) defining a chamber (14). A displacer (18) is housed in the chamber. A shaft (24) is connected with the displacer and extends from the chamber. A power piston (30) is housed in the chamber. The displacer (18) is secured to the housing (12) and is resiliently deformable from a rest condition in response to movement of the shaft (24) to displace the working fluid in the chamber. The displacer may be a multi-start volute spring. The displacer (18) may be provided with a heat storage reservoir to store heat received from a working fluid as the working fluid is displaced from a heating location in the chamber (14) to a cooling location in the chamber and reject heat to the working fluid when the working fluid is displaced from the cooling location to the heating location.
Abstract:
Ein Verfahren zum Betreiben einer aufgeladenen, längsgespülten Zweitaktbrennkraftmaschine mit wenigstens einem in einem Zylinder (10) zwischen einem oberen Totpunkt (OT) und einem unteren Totpunkt (UT) hin und her beweglichen Kolben (12) enthält folgende Schritte: Zufuhren von Frischladung in einen unteren Bereich einer Arbeitskammer (20) des Zylinders (10) während des im Bereich seines UT befindlichen Kolbens (12), Ausschieben von verbrannter Ladung aus dem oberen Bereich der Arbeitskammer (20), Verdichten der Frischla dung durch Bewegung des Kolbens (12) vom UT zum OT, Zünden der verdichteten Frischladung bei im Bereich seines OT befindlichen Kolben (12) und Verbrennen der Frischladung zumindest während des Beginns der Bewegung des Kolbens vom OT zum UT ist dadurch gekennzeichnet, dass ein in der Arbeitskammer zwischen dem Kolben und einem Zylinderkopf (22) angeordneter Rekuperator (40) derart bewegt wird, dass die verbrannte Ladung, bevor sie aus der Arbeitskammer (20) ausgeschoben wird, den vom Zylinderkopf (22) entfernten Rekuperator (40) durchströmt, anschließend zumindest ein Teil der Frischladung den Rekuperator (40) während der Bewegung des Kolbens (12) aus einem UT durchströmt und anschließend, bevor der Kolben (12) seinen OT erreicht, durch Annäherung des Rekuperators (40) an den Zylinderkopf (12) den Rekuperator (40) von seiner vom Kolben (12) abgewandten Seite zu seiner dem Kolben zugewandten Seite erneut durchströmt.
Abstract:
1. Abstract A method for heat exchanging in and work exchanging with a working fluid in a heat engine, or a heat pump if the method and its sub-processes are substantially reversed, is described, wherein a thermodynamic cycle for the working fluid is approximately described through the polytropic relation PV n = constant, where P is the pressure, V is the volume and n is the polytropic index of the working fluid with adiabatic index gamma (?), and wherein the engine consists of at least one working mechanism (1) provided with a first (150) and at least a second volume change chamber (151, 151'), the method comprising in sequence at least the following steps: a) in a first volume change process, to carry out a first polytropic volume change of the working fluid in a first volume change chamber (150) where n
Abstract:
L'invention concerne une machine thermodynamique constituée d'au moins un ensemble de deux machines élémentaires à cycle de Stirling (M1, M2) formées symétriquement dans un ou plusieurs corps cylindriques de même axe (57), chaque machine élémentaire comprenant des première et seconde chambres (55, 63) de compression/détente, un régénérateur (59) séparant les première et seconde chambres et des première et seconde parois externes (67, 51) destinées à fermer le volume, respectivement, des première et seconde chambres, le régénérateur, les première et seconde parois externes d'une machine élémentaire étant liés de façon rigide aux mêmes éléments des autres machines élémentaires.
Abstract:
According to the invention, in each unit (such as 201) of the machine, a tank (212) contains a rotary displacer (220) defining chambers (222) containing a working gas. The rotation of the displacer consecutively places the gas in a thermal exchange relation with heat-carrying exchange surfaces, i.e. a hot one for cooling regeneration and heat insulation and a cold one for heating regeneration and thermal insulation. At each moment, the tank is at an equal pressure, all the chambers of a same housing are at a same stage of the thermodynamic cycle, with the machine carrying out two cycles per revolution of the displacer in the present embodiment. The pressure in the tank is applied to a power piston (230). A gear (425) synchronises the piston (230) and the displacer (220). The invention can be used for improving the yield and enabling operation at a relatively high speed and/or under small temperature differences.
Abstract:
Disclosed is a regenerator for the working gas of a Stirling-type heat engine. Said regenerator is designed as a cylindrical ring member, the structure of which has longitudinal ducts that extend from one face of the ring member to the other. The disclosed regenerator is characterized in that the inlets and outlets of a selected number of the longitudinal ducts are closed on the faces of the regenerator such that a cylinder-asymmetric distribution of the longitudinal ducts through which the working gas can flow is created relative to the longitudinal axis of the regenerator.
Abstract:
A combustor/recuperator assembly for use in an external combustion engine, such as a Stirling engine. The assembly comprised: a plurality of substantially hemispherical domed members positioned in nested uniaxial spaced relation, said plurality of substantially hemispherical domed members forming at least a first flow chamber and a second flow chamber, said first flow chamber for passing an incoming charge of air therethrough and said second flow chamber for passing an outgoing charge of combustion exhaust gases therethrough, wherein said second chamber is positioned to be effective to heat the incoming charge of air.
Abstract:
A closed cycle gas turbine system (40) comprising system comprising a compressor (52) for producing compressed gas, a gas turbine (42) for receiving the compressed gas, a heat storage means (44) having a first heat transfer means and adapted to receive the compressed gas from the compressor (52) and transmit the compressed gas to the gas turbine (42) and a second heat transfer means (46) for receiving exhaust gas from the gas turbine (42) and transmitting it to the compressor (52) and wherein the second heat transfer means (46) is adapted to transfer at least some heat from the exhaust gas prior to it being transferred to the compressor (52).
Abstract:
The invention relates to a method for operating a hot gas machine comprising at least two cylinders. The upper side of the hot piston is sealingly guided on the cylinder and defines the expansion chamber in a moveable manner. Said expansion chamber is connected to the heater. The lower side of the cold piston varies the compression chamber. The hot expansion chamber of a first cylinder is connected to the compression chamber of a second forward effective cylinder by means of an overflow channel. A heater, a regenerator and a cooler are introduced into said second cylinder. The flow of the gaseous medium is guided in alternating directions and is throttled in the regenerator over the entire flow cross-section and a partial amount of the hot or cold medium is stored. The aim of the invention is to accelerate temperature change and to improve flow conditions. The gaseous medium is throttled or stored in the regenerator (8) in sections which are separated from each other, in the throttle sections (81) and the storage sections (82, 83) which are provided with hollow spaces that are directed in the direction of flow for storing the gas. Said hollow spaces have small cross-sections and predominantly smooth walls.