Abstract:
Methods and apparatus for improving system acquisition performance in multi-SIM devices are provided. In one aspect, a method of acquiring a signal comprises defining a size of a frequency bin for a first radio access technology based on a frequency error for a second radio access technology. The method further includes determining that the signal is not acquirable using the defined size for a predetermined number of consecutive acquisition attempts. The method further includes adjusting the size of the frequency bin based on the determining. The method further includes determining whether the signal is not acquirable using the adjusted size. In one implementation, the method further includes identifying the frequency error for the second radio access technology. In one implementation, the adjusting the size of the frequency bin comprises disregarding the frequency error for the second radio access technology. In one implementation the adjusting the size of the frequency bin is based on a most recently received frequency error for the first radio access technology.
Abstract:
One or more aspects of the disclosure provide an efficient equalization scheme capable of mitigating multi-path interference on channels with large delay spread using short-length equalizers. That is, by dividing stored samples of a signal received on the multi-path channel by time into a plurality of clusters, a short-length equalizer can be utilized in an iterative fashion on each of the clusters, thus eliminating the need for a large length equalizer while still providing improved performance over that of a Rake receiver at large delay spreads. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatuses for wireless communication include determining whether to move a receive window by more than a change in an uplink transmit timing of a user equipment (UE). The methods and apparatuses further include moving the receive window by an amount larger than the change in the uplink transmit timing when a determination is made to move the receive window by more than the change in the uplink transmit timing. Moreover, the methods and apparatuses include identifying at least one cell with receive time within the receive window at the UE.
Abstract:
In a wireless communication system employing frequency division duplexing (FDD) that may be synchronous or asynchronous for transmitting data, in which the underlying Rx signals have different statistics, and where the hypothesis testing is degraded thereby, the improvement of generating a complementary searcher metric that is a noise metric (NM) comprising: projecting the Rx signals into the noise subspace of a pilot sequence.
Abstract:
Systems and techniques are disclosed wherein a gated pilot signal can be acquired by searching for a first gated pilot signal, deriving timing information from the search for the first gated pilot signal, and searching for a second gated pilot signal using the timing information. This can be implemented in a variety of fashions including a receiver with a searcher configured to generate a bit sequence, a correlator configured to correlate a received signal with the bit sequence, and a processor configured to detect a first gated pilot signal as a function of the correlation, derive timing information from the first gated pilot signal, and detect a second gated pilot signal by using the timing information to control the bit sequence generated by the searcher.
Abstract:
A method and apparatus for computing a convolution 109 between an input GPS signal 101 and a C/A code reference 1-32 by generating the convolution result in real time without storing unprocessed signal samples. The method and apparatus is capable of operating in multiple modes 104n of resolution so as to enhance the sensitivity of the convolution processing.
Abstract:
An example application of the invention is directed to a mobile receiver searching pilot signals in a CDMA-based radiotelephone communications system. The receiver processes received pilot signals by first decimating those pilot signals that have a search window length that is greater than a threshold number of chips, into a plurality of sub-windows. The other pilot signals and the sub-windows are then searched using a common prioritization criteria. More specific implementations of this approach permit each search of this type to take a fixed amount of time, thereby making scheduling calculations easy to implement. Moreover, such implementations provide for all pilots to be searched equally often irrespective of window sizes, and for less likely candidates for idle handoff (pilots with longer window sizes) not to be given precedence over more likely idle handoff candidates. Also, as search results are accumulated, the amount of unsearched PN space within a window decreases, thereby decreasing the probability of finding a strong pilot and increasing the ability for more intelligent scheduling.
Abstract:
An example application of the invention is directed to a mobile receiver searching pilot signals in a CDMA-based radiotelephone communications system. The receiver processes received pilot signals by first decimating those pilot signals that have a search window length that is greater than a threshold number of chips, into a plurality of sub-windows. The other pilot signals and the sub-windows are then searched using a common prioritization criteria. More specific implementations of this approach permit each search of this type to take a fixed amount of time, thereby making scheduling calculations easy to implement. Moreover, such implementations provide for all pilots to be searched equally often irrespective of window sizes, and for less likely candidates for idle handoff (pilots with longer window sizes) not to be given precedence over more likely idle handoff candidates. Also, as search results are accumulated, the amount of unsearched PN space within a window decreases, thereby decreasing the probability of finding a strong pilot and increasing the ability for more intelligent scheduling.