Abstract:
The present invention relates to a process for purifying a pyrolyzed plastic waste, the process comprising the steps of providing the pyrolyzed plastic waste, wherein the pyrolyzed plastic waste is a liquid or a wax at 20 °C and 1 atm, contacting the pyrolyzed plastic waste with activated carbon yielding a pretreated 5 plastic waste and hydrogenating the pretreated plastic waste using hydrogen and a metal-based catalyst yielding a hydrogenated plastic waste suitable for steam cracking.
Abstract:
Separation of asphaltenes from residual oil is carried out with naphtha as solvent. In particular, straight run naphtha obtained from the same crude oil source as the residual oil feed is used as the solvent. The mixture of deasphalted oil and solvent is passed to a hydroprocessing zone, without typical separation and recycle of the solvent back to the solvent deasphalting unit. Asphalt is separated from the residual oil (residue from atmospheric or vacuum distillation); the mixture of deasphalted oil and naphtha solvent is passed to the hydroprocessing unit.
Abstract:
A process for the treatment of a hydrocracking unit bottoms recycle stream, and preferably the fresh hydrocracker feed to remove heavy poly-nuclear aromatic (HPNA) compounds and HPNA precursors employs, in the alternative, an adsorption step which removes most of the HPNA compounds followed by an ionic liquid extraction step to remove the remaining HPNA compounds, or a first ionic liquid extraction step which removes most of the HPNA compounds followed by an adsorption step to remove the remaining HPNA compounds. Ionic liquids of the general formula Q + A - are identified for use in the process; organic polar solvents are identified for removal of the HPNA compounds in solution. Suitable adsorbents are identified for use in packed bed or slurry bed columns that operate within specified temperature and pressure ranges.
Abstract:
A process for the treatment of a hydrocracking unit bottoms recycle stream, and preferably the fresh hydrocracker feed to remove heavy poly-nuclear aromatic (HPNA) compounds and HPNA precursors employs, in the alternative, an adsorption step which removes most of the HPNA compounds followed by an ionic liquid extraction step to remove the remaining HPNA compounds, or a first ionic liquid extraction step which removes most of the HPNA compounds followed by an adsorption step to remove the remaining HPNA compounds. Ionic liquids of the general formula Q + A - are identified for use in the process; organic polar solvents are identified for removal of the HPNA compounds in solution. Suitable adsorbents are identified for use in packed bed or slurry bed columns that operate within specified temperature and pressure ranges.
Abstract:
A method comprises conducting hydrodeoxygenation and optionally isomerization of raw material, wherein the method further comprises one or more solvent extraction steps and optionally hydrogenation to remove aromatic and/or naphthenic hydrocarbons from the material. The original aromatic and/or naphthenic content of the raw material is less than 21 vol-%. In the method, the aromatic and/or naphthenic content is reduced by more than 45%, preferably by more than 60%. A composition contains hydrocarbons produced by said method, wherein the total aromatic and/or naphthenic hydrocarbon content of the composition is less than a predefined low value, and C15-C20 i-paraffins are the main fraction of the hydrocarbon content of the composition, weight basis.
Abstract:
The present invention related to a method for producing liquid fuel components from renewable oil. In this method a fresh feedstock comprising saturated fatty acids is subjected to dilution by an organic lipophilic solvent. The solvent has a low phosphorus and metal impurity content, less than 5 ppm and less than 10 ppm, respectively. Dilution is performed before and/or during purification by at least one pretreatment process for removal of phosphorus and metal impurities. Subsequently, the resulting purified feedstock is fed into at least one post- treatment process suitable for producing liquid fuel components.
Abstract:
The present invention relates to a novel process for desulfurization of diesel with reduced hydrogen consumption. More particularly the subject invention pertains to an integrated process comprising diesel hydro de-sulfurisation (DHDS) or diesel hydrotreatment (DHDT) with reduced severity to desulfurize high sulfur (1.0-2.0 wt%) diesel stream to a much lower level of sulfur content of 350 - 500 ppm in the depleted diesel stream, followed by a novel adsorption procedure for effecting deep desulfurization to reduce overall sulfur content to less than 10 ppm with reduced hydrogen consumption, as compared to high severity DHDS or DHDT procedures of the prior art.
Abstract:
One exemplary embodiment can be a process for removing one or more polynuclear aromatics from at least one reformate stream from a reforming zone. The PNAs may be removed using an adsorption zone. The adsorption zone can include first and second vessels. Generally, the process includes passing the at least a portion of an effluent of the reforming zone through the first vessel containing a first activated carbon. The adsorption zone is operated at a temperature of at least 370°C.
Abstract:
The invention relates to a method of removing contaminants from a hydroprocessing feed stream. More specifically, the invention relates to a method of removing contaminants from a hydroprocessing feed stream which originates in a Fischer-Tropsch reactor using a guard bed that employs a temperature profile.
Abstract:
This invention relates to a process for selectively desulfurizing naphtha. More particularly, a low sulfur naphtha feed containing less than 500 wppm sulfur is hydrodesulfurized using a hydrodesulfurization catalyst and a hydrogen treat gas containing at least 50 vppm hydrogen sulfide followed by mercaptan removal or conversion.