A thermosiphon system includes a condenser, an evaporator including a housing and a wick located in the housing, and a condensate line fluidically coupling the condenser to the evaporator. The condensate line includes an outer tube and an inner tube nested within the outer tube. A first passage defined by the inner tube is positioned to carry a liquid phase of a working fluid from the condenser to the evaporator, and a second passage defined by a volume between the inner tube and the outer tube is positioned to carry a vapor phase of the working fluid from the evaporator to the condenser.
An apparatus configured such that hardware components of a server can be accessed from the front of the server. The apparatus comprises a server tower having a front side, a rear side, and at least one chassis. The chassis comprises a motherboard and at least one hard drive housed in the chassis at the front side, the hard drive adapted to be spaced apart above the motherboard. A bracket can support the hard drive. The motherboard I/O and the hard drive are accessible from the front side. The hard drive can be configured in the apparatus such that the hard drive is removable and hot-swappable. The apparatus can comprise at least one coupling port used to couple peripheral devices located at the front side. The apparatus can comprise a front panel attached to the front side through which the at least one coupling port can be accessed.
A fabrication process of a stepped circuit board comprises A) cutting a circuit board substrate, printing patterns on an inner layer of the circuit board substrate, stepped groove milling of the inner layer, washer milling a washer between the inner layer and an outer layer, brownification and lamination processing on the inner layer, and then drilling holes on an outer layer of the circuit board substrate; B) electroplating the entire circuit board substrate by depositing copper on the outer layer of the circuit board substrate with drilled holes; C) performing pattern transfer by means of through-hole plating of the drilled holes on the circuit board substrate processed by the copper depositing and the electroplating; D) after pattern transferring, grinding a shape of a connecting piece (SET) on the circuit board substrate after the electroplating; E) plugging the drilled holes to form plug holes and printing a solder mask and texts in a silk-screen manner after forming the plug holes; F) depositing nickel immersion gold on the entire circuit board substrate, then printing characters in a silk-screen manner, thereby forming the stepped circuit board; and G) testing and inspecting an electric performance and appearance of the stepped circuit board to fabricate a finished product of the stepped circuit board.
An electrical circuit device that includes a circuit board with an integrated circuit chip in a cavity that extends from a surface of the circuit board to an embedded conductor, and an electrical connection between the integrated circuit chip and the embedded conductor.
A metal/ceramic bonding substrate includes: a ceramic substrate; a metal plate bonded directly to one side of the ceramic substrate; a metal base plate bonded directly to the other side of the ceramic substrate; and a reinforcing member having a higher strength than that of the metal base plate, the reinforcing member being arranged so as to extend from one of both end faces of the metal base plate to the other end face thereof without interrupting that the metal base plate extends between a bonded surface of the metal base plate to the ceramic substrate and the opposite surface thereof.
The present invention discloses a ceramic insulator for electronic packaging and a method for fabricating the same, and relates to a technical field of outer shell packaging of electronic devices. Under the circumstance of using neither a chemical coating nor any bonding wire connection circuit, through a design that builds a electroplated circuit into the ceramic insulator, the method accomplishes coating of a nickel alloy protection layer onto a porcelain by an electroplating method, so that not only quality of a coating layer but also requirement of a complete appearance can be ensured. All circuits of the ceramic insulator fabricated by the aforesaid method can conduct with external circuits, such that the electroplating method can be used to accomplish coating of the nickel alloy layer, after accomplishment of all metal coating, metallization parts on an end surface of the porcelain is removed.
A handle substrate having at least one metallization region is provided on a stressor layer that is located above a base substrate such that the at least one metallization region is in contact with a surface of the stressor layer. An upper portion of the base substrate is spalled, i.e., removed, to provide a structure comprising, from bottom to top, a spalled material portion of the base substrate, the stressor layer and the handle substrate containing the at least one metallization region in contact with the surface of the stressor layer.
A toroidal plasma is generated without voltage input. It can be produced using a pressurized water jet directed at a non-conductive, dielectric plate. Systems and methods employing the setup are described in which energy is generated and optionally harvested in addition to corona light.
A plasma treatment equipment includes: a plasma starting and stabilizing unit (A) having an insulating material such as a dielectric material having an elongated hole connecting to a plasma ejection portion, a triggering and discharge-stabilizing electrode, and an intense electric field electrode mounted thereon; and a plasma generating unit (B) including the insulating material having the elongated hole and a plasma generating electrode configured to perform main plasma generation at the time of operation, wherein the triggering and discharge-stabilizing electrode, the intense electric field electrode, and the plasma generating electrode are provided in such a manner that all the electrodes are not exposed and covered with the dielectric material for the entire space of one or more of the elongated hole which allows passage of gas from the upstream, starting of the plasma and generation of the plasma, and ejection of the plasma jet.
A method of determining a distance from a first luminaire (22) to a second luminaire (22) comprises causing a light source co-located with the second luminaire to emit light directed towards a reflecting surface (A). The method further comprises detecting a level of reflected light from the reflecting surface using a sensor co-located with the first luminaire (22), and accessing a reflectance value determined for the reflecting surface (A). The method further comprises modifying the level of reflected light to take into account the accessed reflectance value, and using the modified measure to provide a measure of a distance between the first and second luminaires.
A method for controlling a lamp, which has a plurality of controllable sub-units is disclosed. First control information concerning the light output of only some of the controllable sub-units is fed to a control unit of the lamp on the input side, wherein the control unit determines a second control information concerning the light output of all sub-units on the basis of the first control information and transmits the second control information to the sub-units connected on the output side.
A lighting control apparatus which controls dimming levels of lighting devices associated with a plurality of brightness sensors, so as to adjust brightnesses indicated by detection results detected by the plurality of brightness sensors to predetermined brightnesses, the lighting control apparatus including: a querier which periodically queries each of the plurality of brightness sensors for a detection result; and a controller which controls, for each of the lighting devices, the dimming level of the lighting device associated with a brightness sensor among the plurality of brightness sensors queried by the querier, according to the detection result detected by the brightness sensor, wherein the querier assigns priorities to the plurality of brightness sensors, and queries the plurality of brightness sensors for detection results, according to the priorities.
Illumination sources are turned ON and turned OFF in response to detected levels of illumination in an ambient environment reaching respective thresholds, which may be user set. The detection of these turn ON and turn OFF events is verified, for instance against expected events or conditions for the particular location, date and/or time. An alert or log entry may be generated if a detected event or condition appears to be invalid. For instance, if an amount of illumination in the environment is different than predicted by a threshold amount or if a time that the event occurs or is detected is different than expected or predicted by more than a threshold amount. A level of illumination may be decreased to some non-zero level after a specified time after turn ON, and increased at some specified time before turn OFF. Use of information from external sources (e.g., satellites, cell towers) may allow times to be using local time, including daylight savings if applicable.
A luminaire includes a light source and an electrical path for providing power to the light source. A switch is in the electrical path and is operable to interrupt and complete the electrical path. An infrared sensor detects an object in proximity to the light source for controlling operation of the switch.
Disclosed is a method of automatically calibrating a luminaire including at least one light emitting diode (LED) engine, the LED engine including a plurality of LEDs and a controller for driving the at least one LED engine. The method comprises acquiring an image of light emitted from each LED of the LED engine, first determining whether each LED has a predetermined intensity for a color of the LED, first adjusting each LED that does not have the predetermined intensity to have the predetermined intensity for the color of the LED, measuring, by a spectrometer, a color spectrum of a combined light of the LED engine, the color spectrum including a plurality of measured color spectrums, second determining whether a variation exists between each of the plurality of measured color spectrums and a predetermined color spectrum of a control data unit, and second adjusting at least one LED to correct variation.
The invention relates to a luminaire provided with a housing with light-emitting elements which are located near a light emission side of the housing and which are activated in that a user touches one or more sensors accommodated in a wall of the housing. Usually such luminaires are switched on and off by a user using a switch provided in or near the house. It is an object of the invention to provide a luminaire of which many variables, such as the intensity, the beam width, and the color of the light emitted during operation, can be adjusted by a user in a simple manner. According to the invention, a luminaire for this purpose is proposed wherein the sensors are arranged multidimensionally, and the number of activated light-emitting elements corresponds to the size of the wall surface including sensors that is touched by the user.
A lighting apparatus includes a string with a plurality of serially-connected light emitting device sets, each set comprising at least one light emitting device. The apparatus further includes at least one controllable bypass circuit configured to variably bypass current around at least one light emitting device of a set of the plurality of light emitting device sets responsive to a control input. The control input may include, for example, a temperature input, a string current sense input and/or an adjustment input. The control input may be varied, for example, to adjust a color point of the string.
A system for measuring temperatures of and controlling a multi-zone heating plate in a substrate support assembly used to support a semiconductor substrate in a semiconductor processing includes a current measurement device and switching arrangements. A first switching arrangement connects power return lines selectively to an electrical ground, a voltage supply or an electrically isolated terminal, independent of the other power return lines. A second switching arrangement connects power supply lines selectively to the electrical ground, a power supply, the current measurement device or an electrically isolated terminal, independent of the other power supply lines. The system can be used to maintain a desired temperature profile of the heater plate by taking current readings of reverse saturation currents of diodes serially connected to planar heating zones, calculating temperatures of the heating zones and powering each heater zone to achieve the desired temperature profile.
A fusion outcome quasiparticle may be trapped in a potential well of a topological segment. The fusion outcome quasiparticle may be the product of fusion of a first quasiparticle and a second quasiparticle, where the first and the second quasiparticles are localized at ends of a topological segment. The potential well having the fusion outcome quasiparticle trapped therein and a third quasiparticle may be moved relative to each other such that the potential well and the third quasiparticle are brought toward each other. The quasiparticles may be Majorana modes of a nanowire.
A mobile communication method based on a mobile communication terminal is provided, wherein a communication unit of the mobile communication terminal is adapted to working in at least two communication modes, and an antenna assembly of the mobile communication terminal is adapted to selectively working in different communication modes or in a combination of different communication modes. The method includes: selecting, based on a communication mode and a service type of the mobile communication terminal, a coupling relationship between the antenna assembly and the communication unit, so that the mobile communication terminal can work in various working modes; and if the communication mode and/or the service type of the mobile communication terminal changes, adjusting the coupling relationship between the antenna assembly and the communication unit based on the change. The mobile communication terminal using the method has characteristics of small size, low cost and less difficulty to design.
A method, system and device are provided for managing LIPA and/or SIPTO connection releases when UE moves out of residential/enterprise network coverage in case service continuity is not supported for the LIPA/SIPTO PDN connection(s). To address problems caused by not providing service continuity for LIPA/SIPTO PDN connections, the PDN connection/PDP context created in the HeNB/HNB by the MME/SGSN includes context information related to the UE indicating whether such connection is a LIPA PDN connection PDN connection or not. In addition, each UE may be configured to reconnect or not reconnect to the PDN corresponding to a certain APN or service, depending on how the PDN connection was disconnected by the network.
A Serving GPRS Support Node (SGSN) including a controller and a non-transitory computer readable storage medium is provided. The non-transitory computer readable storage medium stores instructions which, when executed by the controller, cause the controller to perform steps including: receiving a signaling request message from a mobile communication device via an access network, determining whether the mobile communication device operates in an idle mode with Extended Discontinuous Reception (EDRX) and whether there is any Mobile Terminated (MT) Short Message (SM) pending for the mobile communication device, in response to receiving the signaling request message, and transmitting a signaling response message indicating the pending of the MT SM to the mobile communication device via the access network in response to the mobile communication device being configured to operate in the idle mode with EDRX and there being at least one MT SM pending for the mobile communication device.
An electronic device may present a user interface for making selections related to connecting to a network or selecting a network from a plurality of available networks. Additionally, a user interface may give a user an opportunity to secure to an open, unsecure, connection, for example, an ad-hoc wireless connection, such as may be found at a coffee shop. A selection of security offerings may be made from a user interface screen including pre-populated service providers. A user may be allowed to save preferences for connecting to new networks, as well as preferences related to previously used networks. Further, the user may save preferences for invoking security services on a per-network or pan-network basis. The security service may a known tunneling protocol (i.e. VPN), such as L2TP or PPTP.
A terminal random access procedure is improved by allowing a mobile terminal to correctly map signature indexes onto cyclic shifted Zadoff-Chu (ZC) sequences when the deployed cells support a high-speed mobility by informing a mobile terminal whether a cell supports high-speed mobility.
The present invention relates to a method for scheduling an access point of a wireless local area network, including: receiving, by a first controller in a current scheduling period of a network running state, performance statistical data of a last scheduling period reported by a plurality of access points in a first access point cluster in the last scheduling period, where the first access point cluster includes the first controller and the plurality of access points connected to the first controller; generating a scheduling scheme for the plurality of access points for a next scheduling period according to the performance statistical information; and broadcasting the scheduling scheme to the plurality of access points. According to the method, impact on other access points due to communications between different access points and user equipments are reduced in a wireless local area network with a plurality of access points.
A communication terminal adjusts the transmission timing of data transmitted to a base station so that the base station can receive the data within a predetermined delay time. The communication terminal includes a reception section 701 for receiving priority of MAC control information transmitted from the base station, a priority control section 703 for defining the relationship between the priority of the MAC control information and priority assigned to DRB and SRB, and a transmission message generation section 704 for controlling so as to transmit information having a high priority early in accordance with the relationship between the priorities defined by the priority control section 703. According to the communication terminal, a comparison is made between the priority of the MAC control information and the priority assigned to the DRB and the SRB, whereby it is made possible to control what information is to be transmitted as desired.
Provided are a receiver, a transmitter and a radio communication method capable of using non-orthogonal multiple access while suppressing cost increase and processing delay. A mobile station 200A includes a physical channel segmentation unit 210 and data demodulating/decoding units 220. A radio resource block allocated to non-orthogonal signals is defined in a frequency domain, a time domain and a non-orthogonal multiplex domain. The non-orthogonal multiplex domain has multiple levels corresponding to the number of interference cancellations by the data demodulating/decoding units 220. Interference canceller of the mobile station 200A cancels a non-orthogonal signal whose allocated radio resource block is at a lower level than that of the mobile station 200A.
Provided are a method and device in which a terminal manages component carriers in a wireless communication system. The terminal receives activation pattern data indicating activation or inactivation of at least one serving cell from a base station, and activates or inactivates the at least one component carrier in accordance with the activation pattern data.
A first user equipment (UE) and a second UE communicate with a network element (e.g., an eNB) over a carrier (e.g., an uplink or downlink cellular carrier). The first and second UEs also engage in D2D communication using resources of the carrier that have been allocated to them by the network entity. Using the allocated resources, the first and second UEs communicate using a subframe that has a first set of symbols in during which the first UE transmits, a second set of symbols during which the second UE transmits, and a guard interval between the first and second UEs.
A method is provided for transmitting, by a base station, signals in a communication system. Carrier aggregation configuration information is transmitted to a mobile station via a primary carrier band of the mobile station. The carrier aggregation configuration information informs the mobile station of a subsidiary carrier band for the mobile station. Uplink control information for the subsidiary carrier band is received from the mobile station via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band.
Disclosed is a method for a base station to transmit a downlink control channel to a terminal in a time division duplex (TDD)-based wireless communication system. Specifically, the method comprises determining the number of basic resource allocation units for each resource block pair for a downlink control channel on the basis of the type of a sub-frame during which the downlink control channel is transmitted; mapping, by basic resource allocation unit, control information for the terminal to a transmission resource; and transmitting, to the terminal, the downlink control channel comprising the control information, wherein, if the type of the sub-frame is the type in which a downlink transmission interval and a uplink transmission interval coexist, then the number of basic resource allocation unit for each resource block pair is determined on the basis of the length of the downlink transmission interval.
Provided is a technique capable of reporting resource block allocation information with no waste when an allocated resource block is reported, because in the current LTE downlink, the waste of the amount of resource allocation information increases in some cases since a restriction is imposed such that 37-bit fixed scheduling information is transmitted. A resource block group consisting of at least one or more resource blocks continuous on the frequency axis is allocated to a terminal, and the number of controlling signals for reporting allocation information indicating the allocated resource blocks is determined.
A position estimation apparatus acquires, for base devices, the number of hops from a target sensor node to a base device. The position estimation apparatus calculates, for each base device, a distribution of estimated distances corresponding to the total hops, based on the number of hops and a distribution of estimated distances stored in a storage device. The position estimation apparatus calculates, for each base device, a distribution of estimated positions within a given region, based on the distribution of estimated distances, information concerning a range of the given region, and information concerning a position of the base device. The position estimation apparatus calculates an index that indicates a probability of a position of the target sensor node within the given region, based on the sum of distributions of estimated positions concerning the base stations.
The position of User Equipment (UE) may be determined based on information communicated through direct UE-to-UE communications to obtain additional measurements of position metrics that can be used to determine relative or absolute positions of the UE. In one implementation, a UE may receive, via a direct connection with a second UE, a positioning reference signal from which timing information, relating to distance between the UE and second UE, is derivable; determine, based on the positioning reference signal, a first position metric that relates to a position of the UE with respect to the second UE; and determine, based at least on position metric, a location of the UE.
Provided is a method for reporting positioning status by a terminal in a wireless communication system. The method comprises: confirming a positioning status related to whether location information of a terminal can be provided; and when the positioning status is confirmed, transmitting a positioning status reporting message via a network. The positioning status reporting message comprises positioning status information indicating the positioning status of the terminal.
A first message is sent by an MSC/VLR and it is determined that a user equipment is in an abnormal state according to the first message. A second message is sent to the user equipment. The second message is used to instruct the user equipment to initiate attachment to the MSC/VLR. An apparatus includes a receiving module, a first determining module and a sending module.
The present invention relates to communications methods, apparatus and systems for correlating registrations with subsequent requests for service, e.g., calling or other services or active calls. In one embodiment requests and corresponding registrations are determined through a method of operating a session border controller (SBC) which includes the assignment of a registration instance identifier by the SBC to each registration request, sending a first message including the registration instance identifier to each user device in response to each registration request, and determining if subsequent requests correspond to the registration instance based on the registration instance identifier being included in subsequent requests. In another embodiment, after a SBC switchover, the new SBC forks a mid-dialog request received for a first call to all active registered devices having the same address of record and determines based on the responses which device has an active dialog corresponding to the first call.
A method of fast synchronization for low coverage machine type communication (MTC) devices is proposed. A machine-specific synchronization signal “mSYNC” with higher density in time and frequency is transmitted from each base station for fast timing and frequency acquisition and tracking. The mSYNC has a relatively longer periodicity (i.e., >>5 ms) to reduce overhead and inter-cell interference. The higher time-frequency density of mSYNC is designed to improve latency and power consumption by allowing the machine to wake up just before the scheduled mSYNC transmission time and to re-synchronize or track synchronization with the network without the need for long averaging time.
A device is disclosed for determining a first geographical location of a customer premise, a second geographical location of a radio frequency transmitter and a third geographical location of network access equipment proximal to the customer premises, wherein the network access equipment provides access to media signals by way of a broadband communications link. The first, second and third geographical locations are mapped, and a distance between the second geographical location and one of the first geographical location or the third geographical location is determined. The distance is compared to a threshold distance based on a signal transmission power of the radio frequency transmitter, and a mitigation strategy is determined to limit interference of the radio frequency transmitter on the media signals provided to the first geographical location when the distance is less than the threshold distance.
Embodiments of the present application provide an access method and device. In the embodiments of the present application, a terminal obtains, according to reference signals sent by a first transmission point and a second transmission point and a first precoding matrix, quality information of the reference signals after a channel corresponding to each transmission point is precoded, so that the terminal is capable of obtaining quality information of precoded reference signals more accurately and the first transmission point switches the terminal to an appropriate second transmission point, thereby implementing flow distribution between all transmission points and improving access reliability of the terminal.
The method of the terminal transmitting the SRS on the basis of the aperiodic SRS triggering according to the present invention comprises the steps of: receiving a plurality of aperiodic SRS configuration information from the base station; receiving an aperiodic SRS transmission triggering indicator from the base station; selecting the specific aperiodic SRS configuration information among the plurality of aperiodic SRS configuration information on the basis of at least one among a sub-frame index for receiving the aperiodic SRS transmission triggering indicator, a time relation between the aperiodic SRS transmission sub-frames, and an uplink channel state; and transmitting an aperiodic SRS for the aperiodic SRS transmission triggering indicator on the basis of the selected aperiodic SRS configuration information, the plurality of aperiodic SRS configuration information including the information about a resource for transmitting the aperiodic SRS corresponding to the aperiodic SRS transmission triggering indicator. In addition, according to the present invention, the terminal can be used for receiving a power offset value for transmitting the aperiodic SRS from the base station and determining a transmission power value for transmitting the aperiodic SRS.
A user interface for power management of a mobile communications device is described. In an implementation, power consumption used in performance of a plurality of tasks is monitored by a mobile communications device. A determination is made as to an amount of power that remains in a battery of the mobile communications device. A user interface is displayed on a display device of the mobile communications device that describes an amount of time each of the plurality of tasks may be performed based on the determined amount of power that remains in the battery.
The present invention provides a method, an apparatus and computer program product relating to provisioning external identifiers. The present invention includes receiving a request including an interworking function address, a subscriber identifier, a device identifier and at least one application identifier, generating, by the interworking function or by a home subscriber server, at least one external identifier based on the received subscriber identifier, device identifier and at least one application identifier.
Implicit signalling method for bearer management in a communication network with transporting bearer resource request message of both the UE and RN via Base station to managing entity of RN within EPC, as a signalling message over uplink channel referred to as ‘Union of Resource Request (UR Request)’ message. The bearer resource response message referred to as ‘Implicit Admission Response (IA Response)’ from one of the management entity of UE or management entities of UE and RN within EPC are transported as a signalling message to Evolved Packet Edge (EPE) via Base station over the downlink channel. This manages bearer setup signalling as a single loop, by transportation of ‘UR Request’ signalling message and receiving one “IA Response” signalling message over uplink and downlink channels respectively. EPE is a conglomeration of network nodes made of UEs, RNs and all other network nodes that communicate over EPC via Base station.
A cellular telephone handover process, mediated by a mobile terminal or a base station, is controlled in accordance with Quality of service Control Indicators (QCIs) such that the base station to which handover is made (if any) is selected according to parameters which relate to the capability of each base station to handle the session or sessions currently is use. Handover may also be initiated if the user initiates an application not supported by the base station currently in use. If the session is running an application with a low latency threshold (e.g., conversational voice call), and a handover could only be achieved by interrupting the session by a “release with redirection” process, the handover is not proceeded with.
The present invention relates to a wireless communication system, and more particularly, to a method and an apparatus for processing a NAS signaling request. A method for performing a non-access stratum (NAS) signaling process by means of a terminal in a wireless communication system according to one embodiment of the present invention comprises: a step of receiving a first message that includes information indicating a network failure from a network node of a first network; a step of starting a timer relating to a network selection; and a step of selecting a second network from among network candidates excluding the first network during the operation of the timer relating to a network selection.
A method and devices for integrating a cellular radio network with a WiFi network are disclosed. According to one aspect, a method includes selecting, at a base station having a cellular radio subsystem and a WiFi radio subsystem, at least one of a cellular radio network carrier and a WiFi carrier to carry at least one data flow from the base station to a user equipment. The method further includes transmitting, from the base station to a user equipment, a control signal to cause the user equipment to select at least one of a cellular radio subsystem of the user equipment and a WiFi radio subsystem of the user equipment to receive the selected at least one of the cellular radio network carrier and the WiFi carrier. Data from the at least one data flow is transmitted on the at least one selected carrier.
Embodiments of UE and methods for measurement of Reference Signal Received Quality (RSRQ) are generally described herein. The UE may be configured to determine an RSRQ of a serving cell and an RSRQ of a target cell based on an indicated RSRQ measurement type. The measurement type may be received as part of a measurement configuration Information Element (IE) that indicates a first or second RSRQ measurement type. For the first RSRQ measurement type, the RSRQ may be determined based on a Received Signal Strength Indicator (RSSI) over common reference signals (CRS). For the second RSRQ measurement type, the RSRQ may be determined based on an RSSI that is based on a received power of one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols received at the UE.
A method and an apparatus in a base station of a cellular radio system for identifying whether user equipment, UE, is in a first UE group or a second UE group. A speed of any UE in the first UE group is higher than a speed of any UE in the second UE group. The method comprises: detecting one or more handover failure events of at least one of the first UE group and the second UE group; determining whether there is any UE misidentified in the first or second UE group based on the one or more handover failure events; and in response to determining that there is a UE misidentified in the first or second UE group, adjusting at least one of the criteria of identifying a UE as in the first UE group and the criteria of identifying a UE as in the second UE group.
Methods for LTE-WLAN interworking control and management are proposed. In one novel aspect, a mobile termination (MT) can use an AT command to report radio access network (RAN) assistance parameters of the current serving cell. A terminal equipment (TE) can use the AT command to query the specific RAN assistance parameters and the threshold value provided by the network for making LTE-WLAN interworking decisions. If reporting is enabled by TE, then an unsolicited result code (URC) is sent from MT to TE whenever changes in the current RAN assistance parameters occur.
A control element identifies the possibility that a station will transfer to a destination AP, and prepares that destination for a handoff. The control element repurposes messages from the station which indicate a possible near-term handoff, to prepare access points to receive that handoff. The control element treats a neighbor list request as a trigger to select which AP's to identify, to restrict the neighbor list to selected AP's, and to prepare each selected AP for a handoff. In selecting a destination AP, the control element also selects a particular set of related features for the combination of that AP and BSS. When an AP receives a repurposed message, it informs the control element, which selects destination AP's for transfer. The control element treats the repurposed message like a probe request. The control element prepares more than one AP for transfer if handoff is possible to more than one AP.
A method for receiving a radio resource control (RRC) message by a user equipment (UE) is described. The method includes receiving an RRC connection reconfiguration (RRCConnectionReconfiguration) message including secondary cell group (SCG) configuration parameters. The RRC connection reconfiguration message has a structure that the SCG configuration parameters do not include a data radio bearer (DRB) configuration.
A method of operating a first electronic device, the method including receiving an identifier of a second electronic device from the second electronic device via a communication link formed by a first communication carrier; checking whether the second electronic device is pre-registered based on the received identifier of the second electronic device; transmitting, when the second electronic device is not pre-registered according to a result of the checking, a first handover request message including alternative carriers to the second electronic device, wherein the alternative carriers are supported by the first electronic device and are listed by priority in the first handover request message; receiving a handover selection message including a second communication carrier, wherein the second communication carrier is supported by the second electronic device and is selected among the alternative carriers; forming a communication link with the second electronic device through the second communication carrier; and storing the second communication carrier matching with the second electronic device.
A data packet structure conveys data of service data units (SDU) using protocol data units (PDU). The data packet structure includes a data packet payload having at least one protocol data unit (PDU). A protocol data unit (PDU) includes a service data unit (SDU) or a fragment of a service data unit and a data packet header including an indicator indicating whether or not the data packet payload begins with a protocol data unit (PDU) being a fragment of a service data unit and whether or not the data packet payload ends with a protocol data unit (PDU) being a fragment of a service data unit.
Embodiments of the present invention provide a transmission data processing method and devices. The transmission data processing method includes: determining, by user equipment UE, processing indication information according to a type of buffered uplink data, and generating a buffer status report; and sending, by the UE, the buffer status report to a base station eNB, so that the eNB performs scheduling and uplink transmission resource allocation on the UE according to the processing indication information. The transmission data processing method and the devices provided in the embodiments of the present invention avoid a defect that air interface resources cannot be utilized appropriately and effectively when a granularity of a reported buffer status report is per logic channel group, thereby improving effects of scheduling and resource allocation that are performed on UE.
In some aspects, the disclosure is directed to methods and systems for dense small cell deployment. In one or more embodiments, a plurality of small cells is grouped into a first group of small cells having a first power level and a second group of small cells having a second power level. In one or more embodiments, each power level in the first set of power levels is greater than each power level in the second set of power levels. In one or more embodiments, the small cells of the first group performs frequency domain inter-cell interference coordination (ICIC) between the small cells of the first group. In one or more embodiments, the small cells of the second group performs time domain ICIC with the small cells in the first group. In one or more embodiments, the small cells of the first group use a same almost blank subframe (ABS) pattern.
A system stores first information, provided by a first user input via a mobile operating system, which enables access to a first restricted access website. The system stores a first screenshot and first data associated with the first restricted access website in response to a first user request, via the mobile operating system, to switch to a second restricted access website. The system stores second information, provided by a second user input via the mobile operating system, which enables access to the second restricted access website. The system stores a second screenshot and second data associated with the second restricted access website in response to a second user input, via the mobile operating system, to switch to the first restricted access website. The system outputs the first screenshot supported by the first data. The system enables access to the first restricted access website based on the stored first information.
Methods, systems and devices are provided for over-the-air activation of a mobile device that include provisioning the mobile device with an activation identifier linked to a particular home network, initiating over-the-air activation of the mobile device, forwarding the activation identifier to a network, and replacing the activation identifier with a different and unique identifier linked to the mobile device during over-the-air activation. The over-the-air activation may be performed when the mobile device is within the home network or when the device is outside the home network, and thus “roaming” in another service provider's network.
The present application is provided a system and a method of a trigger service, which is applied between an end equipment group and an application service terminal. The end equipment group includes a plurality of end equipment, and the end equipment of the mobile equipment group is configured to sequentially connect to mobile network. Each of the end equipment is configured to keep connection with mobile network in a waiting period and suspended to access mobile network after the waiting time period. The application service terminal is configured to transmit a trigger message to the end equipment group, and the trigger message is repeatedly transmitted in a transmission period of the message arrangement. During the transmission period, each of the end equipment of each end equipment group in mobile network is configured to execute the requested order of the trigger message when it receives the trigger message from the application service terminal.
Systems and methods are provided for determining in real-time geographic areas having a threshold level of content consumption and deploying dynamic geo-fences to contain these geographic areas. These dynamic geo-fences provide a means for timing message notifications in order to optimize the chances of delivering targeted content to a mobile device user based on the current geographic location of the user's device relative to a threshold level of content consumption area. As mobile device users may be more likely to launch a client application in a place where other users are currently consuming content, a general message notification sent to the user's device located in a dynamic geo-fence created based on real-time content consumption, may increase the likelihood that the user will launch the client application and thereby, allow targeted content to be delivered to the user's mobile device.
Systems and methods are provided for timing message notifications to be provided to mobile device users based on their respective geographic locations with respect to a targeted content area. The timing of message notifications may be controlled in order to optimize the chances of delivering targeted content to a mobile device user based on the current geographic location of the user's device relative to a targeted content area. As the particular client application may not be actively executing at a time when the user's device happen to be located within a targeted content area, a general message notification sent to the user's device, which may be displayed at any time, may increase the likelihood that the user will launch the client application when it is not already executing at the device and thereby, allow targeted content to be delivered to the user's mobile device at the appropriate time and location.
A method and system are provided providing electronic communications between users in a similar geographic location. Mobile devices determine geographic location information based on signals received from external devices, such as GPS satellites or cell sites, and web browsers determine geographic location using external devices or third party software, such as Google Loader, or based on the IP address of the computer running the web browser. The system receives geographic location information from a mobile device or web browser in addition to a user-input message. The system distributes the message to users of the system with geographic locations within a predetermined distance from the geographic location that the message was input.
A communication device may include a processor, a memory storing computer-readable instructions, and a Near Field Communication (NFC) interface. The computer-readable instructions may instruct of otherwise cause the communication device to perform determining whether a state of the communication device is a first state. In a case where the state of the communication device is determined to be the first state, the NFC interface may establish a first type of communication link and transmit first data to the first external device via the first type of communication link. Additionally or alternatively, in a case where the state of the communication device is determined not to be the first state, the NFC interface may establish a second type of communication link, the second type of communication link and communicate second data with the second external device via the second type of communication link.
One or more Bluetooth assets having a Bluetooth radio are associated with a specific set of business rules by enterprise users. Scan event data is received from at least one of a plurality of Bluetooth sensors having Bluetooth radios, wirelessly distributed around a communication network. The scan event data results from a scan event wherein the Bluetooth asset was within range of the at least one Bluetooth sensor. The scan event is analyzed against the business rules. Responsive to determining that at scan event meets at least one condition of at least one of the specific set of business rules, a notification can be sent. One specific implementation in a smart car seat safety system notifies a parent when a child is unintentionally left in a smart car seat.
Embodiments of the present invention disclose a network access method and device. The method includes: establishing a Bluetooth connection to a Bluetooth terminal; receiving, by using the Bluetooth connection, a network access request sent by the Bluetooth terminal; and if the Bluetooth terminal is an authorized device, activating a Bluetooth network sharing function automatically and forwarding the network access request to a wide area network. In the network access method and device provided in the present invention, a simple process and low time consumption are achieved for network access.
In certain embodiments, a system includes a master node device. The master node device includes communication circuitry configured to facilitate communication with a welding power supply unit via a long-range communication link, and to facilitate wireless communication with one or more welding-related devices via a short-range wireless communication network. The master node device also includes control circuitry configured to continuously improve reliability of wireless communications between the communication circuitry and the one or more welding-related devices via the short-range wireless communication network.
An apparatus of this invention stably separates a sound source even when the relative positional relationship between the sound source and a sound pickup device has changed. This apparatus includes a sound pickup unit configured to pick up sound signals of a plurality of channels, a detector configured to detect a change in a relative positional relationship between a sound source and the sound pickup unit, a phase regulator configured to regulate a phase of the sound signal in accordance with the relative position change amount detected by the detector, a parameter estimator configured to estimate a variance and spatial correlation matrix of a sound source signal as sound source separation parameters with respect to the phase-regulated sound signal, and a sound source separator configured to generate a separation filter from the estimated parameters, and perform sound source separation.
A device for a hearing impaired person being subjected to a tinnitus is disclosed. The device includes an input transducer for providing an electric input signal comprising audio, a controllable filter for filtering the electric input signal and configured to output a filtered electric input signal such that signal energy of the electric input signal is reduced in at least a part of a frequency range, a signal processor, connected to the controllable filter, for processing the filtered electrical input signal according to a processing algorithm and to output a processed electric signal, an output transducer, connected to the signal processor, for converting the processed electric signal to an acoustic output signal to be presented to the hearing impaired person wearing the listening device, and an activator, coupled to the controllable filter, for activating and deactivating the controllable filter in dependence on a detection signal and a timer signal.
A hearing assistance system includes a pair of left and right hearing assistance devices to be worn by a wearer and uses both of the left and right hearing assistance devices to detect the voice of the wearer. The left and right hearing assistance devices each include first and second microphones at different locations. Various embodiments detect the voice of the wearer using signals produced by the first and second microphones of the left hearing assistance device and the first and second microphones of the right hearing assistance device. Various embodiments use outcome of detection of the voice of the wearer performed by the left hearing assistance device and the outcome of detection of the voice of the wearer performed the right hearing assistance device to determine whether to declare a detection of the voice of the wearer.
A microspeaker includes a frame and a diaphragm having length sides that are longer than its width sides. A magnet is positioned below the diaphragm. A yoke includes a base portion positioned below the magnet and sidewalls which extend from the base portion, the yoke sidewalls positioned only along a length dimension of the magnet. A voice coil includes an upper end attached to a bottom face of the diaphragm and a lower end positioned within a gap formed between the length dimension of the magnet and the yoke sidewalls. A first suspension member is attached to the length sides and the width sides of the diaphragm and the frame. The first suspension member is within a first plane. A second suspension member is attached to the lower end of the voice coil and the frame. The second suspension member is in a second plane different from the first plane.
A far end signal from a far end user and broadcasting the far end signal at a loudspeaker is received. A signal for use in an echo transfer function is determined, and the signal selected from between: the far end signal or an echo reference signal received from a near field microphone disposed in close proximity to the speaker. The near field microphone sensing the far end signal that is broadcast from the speaker while sensing the near-end speech and ambient noise at insignificant energy levels compared to the speaker signal. An echo transfer function is determined based at least in part upon the selected signal, and the echo transfer function represents characteristics of an acoustic path between the loudspeaker and a far field microphone that is disposed at a greater distance from the speaker than the near field microphone. An estimated echo is determined based at least in part upon the echo transfer function. The estimated echo is subtracted from a signal received from the far field microphone, the subtracting effective to cancel an echo present in the signal received from the far end microphone.
An acoustic filter includes holes and is configured to receive sound waves generated by an audio driver of a playback device. The sound waves comprise sound waves of a first frequency that radiate according to a first radiation pattern and sound waves of a second frequency that radiate according to a second radiation pattern that is less directed along an axis of the audio driver than the first radiation pattern. The second frequency is lower than the first frequency. The acoustic filter is configured to attenuate the sound waves of the first frequency so that the attenuated sound waves of the first frequency are emitted from the acoustic filter according to an effective radiation pattern that is less directed along the axis of the audio driver than the first radiation pattern and pass the sound waves of the second frequency in substantial accordance with the second radiation pattern.
The technology described in the document can be embodied in a speaker that includes one or more drivers, and an acoustic horn that includes a first side panel and a second side panel. Edges of the first and second side panels defines an opening for receiving acoustic outputs from one or more drivers. The speaker also includes a manifold disposed between the opening and the one or more drivers, the manifold including a plurality of acoustic passages for connecting the opening to each of the one or more drivers, and an adaptor. The adaptor is disposed between the manifold and the acoustic horn, and includes multiple apertures for the plurality of acoustic passages. The adaptor is configured to conform to a profile of the opening while maintaining a seal between the acoustic horn and the plurality of acoustic passages.
A method and system is disclosed for a headset with force isolation, where the headset comprises a headband having two upper headband sections coupled by a center block and two ear cups, where each ear cup is coupled to one of the two upper headband sections. The two upper headband sections may include side support strips between which a movable strip may be placed utilizing a slider knob, thereby increasing the rigidness of the headband when fully extended between the side support strips utilizing the slider knob. The rigidness of the headband may decrease when the movable strips are retracted from between the side support strips and into the center block utilizing the slider knob. The side support strips may be plastic and the movable strip may be metal. The center block may be more rigid than the side support strips. The center block may be plastic. The headband may include headband endcaps at lower ends of the headband.
A hearing aid includes: an input transducer for generating an audio signal; a feedback suppression circuit configured for modelling a feedback path of the hearing aid; a subtractor for subtracting an output signal of the feedback suppression circuit from the audio signal to form a feedback compensated audio signal; a signal processor that is coupled to an output of the subtractor for processing the feedback compensated audio signal to perform hearing loss compensation; and a receiver that is coupled to an output of the signal processor for converting the processed feedback compensated audio signal into a sound signal; wherein the hearing aid further comprises a gain processor for performing gain adjustment of the feedback compensated audio signal based at least on an estimate of a residual feedback signal of the feedback compensated audio signal, wherein the estimate of the residual feedback signal is based at least on the audio signal.
A microphone holder holds a microphone in which an upper surface and a lower surface of a step portion are formed on an outer surface of a housing, and the microphone holder includes: a holder which is formed in a cylindrical shape having openings on upper and lower sides and in which a plurality of through passages penetrating a wall of the cylindrical shaped body is provided; a sliding portion provided movably in a circumferential direction along the openings of the holder; a lock ring configured to cover the through passage formed to the holder, from an outer side by a lock plate extending from the sliding portion; and a contact member which is movably held in the through passage and can contact on an upper surface side of the step portion of the microphone.
We disclose a hybrid optical switch configured to switch optical channels based on their respective utilization factors. In an example embodiment, optical channels having relatively low utilization factors are unwrapped down to payload units, which are then switched electrically, e.g., using an Optical-Transport-Network (OTN) switch, in a manner that tends to increase the utilization factors of the optical channels that carry the switched payload units. In contrast, optical channels having relatively high utilization factors are switched optically, e.g., using a reconfigurable optical add/drop multiplexer, without being unwrapped. The hybrid optical switch may advantageously be deployed in a network node subjected to relatively high traffic-volume fluctuations because the switch tends to improve optical-channel utilization when the traffic volume is relatively low and to decrease the workload of the corresponding OTN switch when the traffic volume is relatively high.
Embodiments of the present disclosure provide arrangements for aggregating network traffic of compute nodes of various computing sleds of computing trays of a computing rack assembly in a data center. In one embodiment, a computing rack assembly may include a plurality of computing trays. A computing tray may removably include a number of sleds. Each sled may include a number of compute nodes. The computing tray may further include an optical network aggregation component to aggregate network traffic of the compute nodes of various sleds of a computing tray. Other embodiments may be described and/or claimed.
A communication device is included in a daisy chain connection. A receiver receives a first signal from a preceding device in the daisy chain connection. A transmitter transmits the first signal received in the receiver to a succeeding device in the daisy chain connection. An acceptor accepts a second signal starting from the communication device. The transmitter transmits the second signal accepted in the acceptor to the succeeding device at a transmission rate higher than a transmission rate of the first signal received in the receiver.
Network services encode multimedia content, such as video, into multiple adaptive bitrate streams of encoded video and a separate trick play stream of encoded video to support trick play features. The trick play stream is encoded at a lower encoding bitrate and frame rate than each of the adaptive bitrate streams. The adaptive bitrate streams and the trick play stream are stored in the network services. During normal content streaming and playback, a client device downloads a selected one of the adaptive bitrate streams from network serviced for playback at the client device. To implement a trick play feature, the client device downloads the trick play stream from the network services for trick play playback.
This disclosure relates generally to communication networks, and more particularly to a system and method for dynamically optimizing a quality of a video being transmitted over a communication network. In one embodiment, the method comprises acquiring a plurality of video transmission parameters for the video being transmitted. The method further comprises deriving an optimum value for each of the plurality of video transmission parameters based on a predefined indicator of an acceptable quality of the video using meta-heuristic harmony search algorithm. The method further comprises dynamically optimizing the quality of the video based on the optimum value for each of the plurality of video transmission parameters.
An apparatus to decode closed captioning data from video data and receive advertisement according to the decode closed captioning data includes a processor circuit; and a video display component for execution on the processor circuit to receive video data from a media server, the video data including closed captioning (CC) data. The apparatus further includes a CC decoder component for execution on the processor circuit to decode the CC data to obtain text; and an ad requesting component for execution on the processor circuit to: parse the text to obtain words; provide the words to the media server; receive an advertisement from the media server; and display the advertisement.
A content selection menu is generated and provided to a user. The content selection menu includes a plurality of audiovisual (AV) programs that are provided for user selection. The AV programs may be positioned in the content selection menu in accordance with their associated score for content attributes. Upon providing the content selection to a user, the user may select a program for viewing or the user may indicate interest in a program. If the user indicates interest in a program a second content selection menu is generated based at least in part on the attributes of the program of interest.
Techniques provide for converged wireline and wireless services in part by employing a set-top box (STB) with machine-to-machine (M2M) communication. The STB, associated with an access point, such as a femtocell, can be used to send/receive messages, including video, to/from user equipment (UE) via a core network. A monitoring system includes a sensor component that is triggered under specified conditions, and the STB records events in response to the trigger, where a recorded event can be sent as a message to the UE. The STB or associated remote control can indicate a received message to a user, who can view the message on the STB, remote control, or associated television. A meter component is associated with the STB via the femtocell or other desired connection. The STB can receive and store utility meter readings for validation or dispute by the user.
An information processing apparatus obtains the moving image identification information of a moving image, the time at which a specifying operation was performed, and a position specified on a display unit. When an object was specified, the information processing apparatus further obtains object information. The information processing apparatus obtains, from storage means, object information corresponding to all of the following: the obtained moving image identification information; a time being within a predetermined period of time ending at the obtained time; and a position being within a predetermined distance from the obtained position. The information processing apparatus causes information about an object indicated by the obtained object information to be presented to a user.
The present disclosure relates to a contents playback system based on a dynamic layer, which is implemented in a mobile device for playing contents on the basis of a dynamic layer, the contents playback system including at least: a first display unit for outputting a first content list; and a second display unit which is disposed while overlapping the first display unit and displays information on currently played playback contents, wherein the second display unit comprises a progress unit for representing a progress state and a display unit for displaying a screen of the playback contents, and the mode of the second display unit varies to one of a first mode corresponding to a deactivated state and a second mode corresponding to an activated state.
Provided is a media content receiving method of a media content receiving device. The method includes: receiving information on a content location information file; receiving the content location information file by using the information on the content location information file; measuring a current bandwidth; requesting a first media content through a first network on the basis of the current bandwidth and the content location information file; receiving the first media content through the first network; and consuming the first media content.
A system for detecting how many users are watching a given media device, including audio/visual output means such as a television or computer monitor, a monitoring device such as a television or computer monitor, a video capturing device, server means, and a programmable database that registers the users watching a given media content during a predetermined time in a given space. Monitoring means continuously scans the given space for new, unregistered users to charge them for viewing the media content. Once users have registered and paid for the media content, the content is released from the system's servers or a third party's servers and displayed on the audio/visual output means.
A system for presentation timing based audio video (AV) stream processing may include a switch device, a first processor, and a second processor. The switch device may be configured to route AV traffic to the first processor for processing and non-AV traffic to the second processor for processing. The first processor may receive transport stream packets that include an audio stream and/or a video stream. The first processor may receive a request to modify presentation timing of the audio stream and/or video stream. The first processor may modify the transport stream packets and/or presentation timing parameters of the transport stream packets based at least in part on the received request. The first processor may provide the transport stream packets to an electronic device. In some implementations, the second processor may be unable to access the content of the transport stream packets in the clear, e.g. due to security considerations.
Provided is a broadcast service receiving method of a broadcast receiving device. The method includes: receiving an video stream among a content transmitted as a broadcast service; generating a request message for at least one of signalling information on the broadcast service and signalling information on an adjunct service of the broadcast service on the basis of part of the received video stream; transmitting the generated request message to a server through an internet network; receiving a response message corresponding to the request message from the server; obtaining at least one of the broadcast service corresponding to the video stream and the adjunct service of the broadcast service on the basis of the received response message; and providing the obtained broadcast service and adjunct service, wherein the request message comprises first query information for specifying a request time interval and second query information for specifying at least one signalling table to be requested.
Techniques for delivering content are described that vary the bit rate with which the content is delivered to achieve a consistent level of quality from the user's perspective. This is achieved through the use of quality metrics associated with content fragments that guide decision making in selecting from among the different size fragments that are available for a given segment of the content. Fragment selection attempts to optimize quality within one or more constraints.
A device may receive a segment of media content, and may store the segment in a first location local to the device. The device may generate a playlist, for accessing the media content, that includes a first segment identifier that identifies the first location local to the device. The device may determine that the first segment identifier is to be replaced with a second segment identifier that identifies a second location, remote from the device, from which the segment is accessible. The device may replace, in the playlist, the first segment identifier with the second segment identifier based on determining that the first segment identifier is to be replaced with the second segment identifier. The device may delete the segment from the first location.
Systems and methods are provided to make content items, already available on one resource, also available through another, such as through a new location or resource. The content items may be, e.g., videos uploaded by a user or other content. The systems and methods employ a streamlined interface for convenience to the user. In one example, a user of a computer system views a video segment through a first website and re-posts the video segment to a second website by entering a single command or clicking a single button. The websites coordinate the re-posting using credentials previously or contemporaneously entered by the user. Moreover, a content item may be automatically prepared for re-posting on the target website using previously-entered user selections. Playback software from a source website may be posted to a target website to allow access of the content item at the source website.
A device is configured to perform a method that detects a trigger marker for an action corresponding to a segment of a multimedia signal. A fingerprint is generated based on the segment of the multimedia signal at a trigger time point. The generated fingerprint is stored in a database and communicated to the device. During playback of the multimedia signal, fingerprints of segments of the multimedia signal are generated and matched against fingerprints in the database. When a match is found, one or more associated actions for the segment are retrieved by the device. The trigger time point may be determined as a time point near or at the segment of the multimedia signal with the matched fingerprint. In this way, trigger markers for actions may be enabled without modifying the multimedia signal.
In one embodiment, a method maintains files of an asset of video content at a plurality of content delivery networks (CDNs) for delivery to users. The method determines that the asset of video content has been distributed based on a first delivery classification that is used to determine a first combination of file sizes and CDNs. A set of asset characteristics is monitored and analyzed to determine whether the first delivery classification is changed to a second delivery classification. Different values for the set of asset characteristics result in different delivery classifications. When the first delivery classification of the asset of video content is changed to the second delivery classification, a distribution of the asset of video content is automatically changed where the second delivery classification is used to determine a second combination of file sizes and CDNs and the second combination is different from the first combination.
The present invention relates to a method for encoding and decoding an image signal and to corresponding apparatuses therefor. In particular, during the encoding and/or decoding of an image signal filtering with at least two filters is performed. The sequence of the filter application and possibly the filters are selected and the filtering is applied in the selected filtering order and with the selected filters. The determination of the sequence of applying the filters may be performed either separately in the same way at the encoder and at the decoder, or, it may be determined at the encoder and signaled to the decoder.
Methods for defining decoder capability for decoding multi-layer bitstreams containing video information, in which the decoder is implemented based on multiple single-layer decoder cores, are disclosed. In one aspect, the method may include identifying at least one allocation of layers of the bitstream into at least one set of layers. The method may further include detecting whether each set of layers is capable of being exclusively assigned to one of the decoder cores for the decoding of the bitstream. The method may also include determining whether the decoder is capable of decoding the bitstream based at least in part on detecting whether each set of layers is capable of being exclusively assigned to one of the decoder cores.
A video encoding system is disclosed to process a video file into one or more desired formats. The video file may have portions processed in parallel. The video encoding system may include a scalable computing resource. The scalable computing resource may be provided by a cloud computing platform.
In one example, the disclosure is directed to techniques that include receiving a bitstream comprising at least a syntax element, a first network abstraction layer unit type, and a coded access unit comprising a plurality of pictures. The techniques further include determining a value of the syntax element which indicates whether the access unit was coded using cross-layer alignment. The techniques further include determining the first network abstraction layer unit type for a picture in the access unit and determining whether the first network abstraction layer unit type equals a value in a range of type values. The techniques further include setting a network abstraction layer unit type for all other pictures in the coded access unit to equal the value of the first network abstraction layer unit type if the first network abstraction layer unit type is equal to a value in the range of type values.
In one example, the disclosure is directed to techniques that include receiving a bitstream comprising at least a syntax element, a first network abstraction layer unit type, and a coded access unit comprising a plurality of pictures. The techniques further include determining a value of the syntax element which indicates whether the access unit was coded using cross-layer alignment. The techniques further include determining the first network abstraction layer unit type for a picture in the access unit and determining whether the first network abstraction layer unit type equals a value in a range of type values. The techniques further include setting a network abstraction layer unit type for all other pictures in the coded access unit to equal the value of the first network abstraction layer unit type if the first network abstraction layer unit type is equal to a value in the range of type values.
Technologies are generally described to identify foreground motion detection in compressed video data. In some examples, a foreground motion detection module may determine transform-coefficient-magnitude sums and motion-vector-magnitude sums associated with block coding units (BCUs) in compressed video data without decompressing the video data. The foreground motion detection module may also determine a background mean and a background co-variance associated with the compressed video data. To determine whether the BCU(s) contain foreground motion, the foreground motion detection module may determine a statistic based on the transform-coefficient-magnitude sums, the motion-vector magnitude sums, the background mean, and the background co-variance and compare the statistic to a threshold.
A video decoding device for decoding video using inter prediction comprises decoding control unit setting partition type of CU to be decoded to a type other than N×N which indicates a size of PU obtained by dividing a CU to be decoded is a minimum size, when a prediction mode of the CU to be decoded is an inter prediction and a size of the CU to be decoded is equal to a minimum CU size.
A method of inversely quantizing a quantized block is discussed. The method according to an embodiment includes restoring a differential quantization parameter, generating a quantization parameter predictor, generating a quantization parameter using the differential quantization parameter and the quantization parameter predictor, and inversely quantizing the quantized block using the quantization parameter and a quantization matrix.
The present invention relates to an image encoding method and an image decoding method. An image encoding method according to the present invention comprises: a step of determining motion information of a current block; and a step of transmitting information for inducing the motion information, wherein the step of determining motion information of the current block determines the motion information of the current block by reusing motion information of a reference block.
A method for stabilizing a first sequence of digital image frames is provided including determining a dominant motion vector of a dominant motion layer of said sequence; determining a first part of the dominant motion vector representative of an intended motion in said sequence; determining a second part of the dominant motion vector representative of an unintended motion in said sequence; and generating a second sequence from the first sequence based on the second part. A corresponding image stabilization unit is provided as well.
In some embodiments, a lossless 2D video decoder includes multiple parallel speculative decoding engines, each performing a sample-determination calculation according to one of several possible context values for the current pixel to be decoded. The actual context depends on a quantized value of a local inter-pixel gradient, which may become available only when an immediately-neighboring pixel has been decoded. A multiplexer selects one of the decoding engine outputs when the immediately-neighboring pixel has been decoded and the actual context becomes available. A sample (e.g. luma and/or chroma) value for the current pixel may be determined according to: a baseline prediction generated by applying a median filter to immediately-neighboring pixels; a context-dependent adjustment dependent on local context statistics; and a delta (difference) value read from a video bitstream. Determining multiple context-dependent adjustments in parallel before the actual context is determined allows decoding one pixel per clock cycle.
An apparatus for displaying three dimensional (3D) images to a viewer without the need for 3D glasses. The apparatus includes a display element with a lenticular display surface that is supported to be horizontal and face upward into a viewing space. The apparatus includes a location tracking element tracking a location of a viewer in the viewing space relative to the lenticular display surface. The apparatus includes a display controller generating reprojected content for operating the display element to display 3D images via the lenticular display surface. The reprojected content is generated by determining for each pixel of the display element the content or images passing through tracked and/or determined eye locations and then remapping content delivered to each of the pixels of the display element to achieve a predefined pattern of content in viewpoints of fixed camera positions for the display element.
A system and method for identifying one or more notable moments from video data are disclosed. In one embodiment, the system includes a video receiving module, an identification criteria module, a moment identification module and a presentation module. The video receiving module receives video data. The identification criteria module determines one or more criteria for identifying a notable moment. The one or more criteria are based at least in part on one or more of an audio indicator and a facial indicator. The moment identification module automatically identifies at least one notable moment in the video data based at least in part on the one or more criteria. The at least one notable moment is based on a subset of the video data. The presentation module sends the identified at least one notable moment for presentation to at least one user.
A method and apparatus for applying a variable compression factor to an incoming video stream in an STB. An increased amount of video may be stored within a PVR or disk on a STB by reducing the data storage requirements of incoming video based on available storage space and the type and size of the incoming video bit stream. Included are real time compression, or reduction in storage space requirements, by various data reduction methodologies including removing bits from the incoming video stream to reduce the amount of storage required to store the video stream. A background data reduction or compression technique is also provided wherein the incoming video stream is stored and data is reduced or further compressed at a later time to reduce data storage requirements.
Methods and systems for color grading video content are presented. A component (e.g. a frame, a shot and/or a scene) of the video content is designated to be a master component and one or more other components of the video content are designated to be slave components, each slave component associated with the master component. A master component color grading operation is performed to the master component. For each one of the slave components, the master component color grading operation is performed to the slave component and a slave color grading operation that is specific to the one of the slave components is also performed. Metadata, which form part of the video content, are created to provide indicators on to whether components of the video are designated as master or slave components.
In one embodiment a system and method is described, the system and method including a first camera, which, when activated, captures a first video of a first field of view (FOV) a first display spatially associated with the first camera, the first display for displaying video received from a remote site when the first camera is activated, a second camera, which, when activated, captures a second video of a second FOV, a second display spatially associated with the second camera, the second display for displaying video received from the remote site when the second camera is activated, and a processor which controls the first camera, the second camera, the first display, the second display, and a triggering mechanism, wherein the triggering mechanism activates the first camera to capture video in the first FOV, identifies over time if a mode change occurs and upon identifying the mode change, deactivates the first camera and the first display and activates the second camera and the second display. Related apparatus, systems and methods are also described.
The present invention relates to a method and an apparatus for transmitting and receiving an ultra-high definition broadcasting signal for high dynamic range representation in a digital broadcasting system. An apparatus for receiving an ultra-high definition broadcasting signal according to an embodiment of the present invention comprises: a receiving unit for receiving the ultra-high definition broadcasting signal including ultra-high definition broadcasting contents and high dynamic range metadata, the high dynamic range metadata indicating brightness information represented in the ultra-high definition broadcasting contents and information on a method for converting the ultra-high definition broadcast contents to be adapted to a display environment of the receiving apparatus; a decoder for decoding the received ultra-high definition broadcasting contents; and a reproduction unit for reproducing the decoded ultra-high definition broadcasting contents.
A system and method for interfacing a television with a second device is provided. The system includes an interfacing unit to enter an interfacing mode between the television mode and the second device; a card storage unit to store a first card and a second card, the first card being presently displayed on the television and the second card being previously displayed on the television; a current card display register to store the first card; an interactive retrieval unit to retrieve a plurality of interactive functions associated with the first card, the plurality of interactive functions configured to instigate an action via the second device; and a display unit to display the first card and the plurality of interactive functions in response to being in the interfacing mode.
As a control signal used for resetting a photodiode, a control signal for selecting an adjacent pixel row is used. Accordingly, the number of kinds of used control signals decreases, and a decrease in the area of the photodiode is prevented. In addition, a period in which all of a plurality of control signals selecting an adjacent pixel row are active is provided by setting an active period of a control signal selecting a pixel row to a period longer than a period in which a signal of one pixel row is read. Therefore, a CDS operation is realized.
A solid-state imaging device includes a pixel unit in which a plurality of pixels converting physical quantities into electric signals are arranged in a two-dimensional shape, a vertical signal line for reading signals from the pixels, and column circuits arranged corresponding to columns of the pixel unit and collecting the signals from the vertical signal line at the inside of the pixel unit.
Spatio-temporal light field cameras that can be used to capture the light field within its spatio temporally extended angular extent. Such cameras can be used to record 3D images, 2D images that can be computationally focused, or wide angle panoramic 2D images with relatively high spatial and directional resolutions. The light field cameras can be also be used as 2D/3D switchable cameras with extended angular extent. The spatio-temporal aspects of the novel light field cameras allow them to capture and digitally record the intensity and color from multiple directional views within a wide angle. The inherent volumetric compactness of the light field cameras make it possible to embed in small mobile devices to capture either 3D images or computationally focusable 2D images. The inherent versatility of these light field cameras makes them suitable for multiple perspective light field capture for 3D movies and video recording applications.
A method is provided for detecting a target not emitting in the wavelength region lying between 1 μm and 1.9 μm. The target is situated in a night sky luminous environment of level less than or equal to 4. Use is made of an imaging device of focal length f and of pupil diameter D, comprising at least one detector comprising types of pixels configured to operate in the wavelength region lying between 1 μm and 1.9 μm, the detectors exhibiting a noise level of less than 0.6×1015/(f/D)2, and from the image obtained by this device is extracted at least one negative-contrast zone, that is to say a black zone on a bright background corresponding to the presence of the target in the night sky of level less than or equal to 4.
An imaging apparatus, comprising a lens unit having a photographing optical system, and a body having an image sensor for generating a pixel signal by imaging subject light that has passed through the photographing optical system, comprising an exposure control section for adjusting exposure amount for image data based on a pixel signal generated by the image sensor, by transmitting an aperture control signal to the aperture control section and changing opening of the aperture, and a determination section for determining whether or not the aperture control section is able to control opening of the aperture based on information from the lens unit, wherein the exposure control section does not transmit aperture control signals to the aperture control section when it is determined by the determination section that the aperture control section is able to control opening of the aperture.
An image capturing apparatus comprises a light emitting unit which provides, by light emission, a notification of an operation status of a self-timer when performing self-timer shooting; a mode setting unit which sets one of a plurality of operation modes; and a control unit which controls the light emitting unit to provide the notification of the operation status of the self-timer in self-timer shooting if the mode setting unit has set a first operation mode, and controls the light emitting unit not to provide the notification of the operation status of the self-timer in self timer shooting if the mode setting unit has set a second operation mode.
An object of the present invention is to realize novel information processing which uses light field data. To attain the object, light field data which represents directions of light beams which are emitted from an object to an image pickup unit and intensity of the light beams is obtained, and the light field data is corrected on a coordinate of the light field data.
An exposure control apparatus comprises an acquisition unit including a plurality of pixels that are arranged two-dimensionally, and configured to acquire image data, a compression unit configured to compress the image data and generate compressed data, a calculation unit configured to calculate a first photometric value based on the compressed data, a conversion unit configured to convert the first photometric value into a second photometric value corresponding to the image data before the compression; and an exposure control unit configured to perform exposure control based on the second photometric value.
Processing for judging whether a face is included in a frame is performed, in a predetermined interval, on each of frames included in a moving image of a subject, displayed on a monitor, until the judgment becomes positive. If it is judged that a face is included in a frame, the facial position is detected in the frame, and stored. Then, judgment is made as to whether a face is included in the next frame after predetermined time. If the judgment is positive, the facial position is detected. The previously stored facial position is replaced by the newly detected facial position, and the newly detected facial position is stored. These processes are repeated until photographing operation is performed by operating a release unit.
There is provided an image processing apparatus for displaying a region in focus in a refocused image to be output in such a manner that a user can easily recognize this region compared to displaying the refocused image without any arrangement made thereto. The image processing apparatus includes a first generation unit configured to generate an image in which an image region corresponding to an in-focus position in the refocused image is emphasized as a display image, an input unit configured to input a user instruction, which is an image output instruction, input based on a display of the display image, and an output unit configured to output the refocused image according to the user instruction.
There is provided an optical system including: a first lens having negative refractive power and having a meniscus shape of which an object-side surface is convex; a second lens having positive refractive power; a third lens having refractive power; and a fourth lens having positive refractive power and having a meniscus shape of which an object-side surface is convex, wherein the first to fourth lenses are sequentially disposed from an object side, whereby an aberration improvement effect, a wide field of view and a high degree of resolution may be realized.
A nail information detection device includes: a placement surface on which a finger having a nail is placed; an imaging unit which images the nail from one direction and acquires a image data; a moving unit which moves the imaging unit while keeping a distance between a measurement plane which is in contact with a peak position of the nail and parallel to the placement surface and the imaging unit constant; and a control unit configured to detect nail information including a first edge position and a second edge position on a shape of the nail.The control unit aligns a reference point of an imaging range of the imaging unit at the peak position and detects a position on the measurement plane of the nail edge based on the image data as the first edge position; and aligns the reference point at the first edge position and detects a position on the measurement plane of the nail edge based on the image data as the second edge position.
An image processing device capable of easily reducing stripe pattern noise caused by e.g. variation in power supply voltage when addition processing is performed for adding a plurality of images obtained by photographing. An image processing device synthesizes a plurality of images continuously obtained from an image pickup device. In a case where noise is added from a noise source to each of the images when thy are continuously read out from the image pickup device, timing of driving the image pickup device is controlled, such that a phase of noise added from the noise source during read-out of an image and a phase of noise added from the noise source to an image read out immediately before the image being currently read out have a predetermined relationship.
An image processing apparatus includes an acquisition unit configured to acquire a plurality of points defining a plurality of line segments constituting an outline of an object, an identification unit configured to identify a first line segment constituting the outline and having a shorter distance to a second line segment constituting the outline in a predetermined direction than a threshold by calculating a distance in the predetermined direction between the first line segment and the second line segment based on coordinates of the plurality of points, a correction unit configured to perform correction relating to an end point of the identified first line segment which is included in the plurality of points, and a rasterization unit configured to rasterize the object based on the plurality of corrected points.
An image forming apparatus for performing image formation based on image data on a print job to output a printed matter includes a blank sheet detecting unit, a blank sheet processing unit and a blank sheet display unit. The blank sheet detecting unit determines whether the image data in the print job is blank sheet image data or non-blank sheet image data by each piece of image data. The blank sheet processing unit detects an order of the determined blank sheet image data and outputs a blank sheet corresponding to the blank sheet image data such that the blank sheet is displaced with respect to a printed matter corresponding to the non-blank sheet image data by a predetermined amount. The blank sheet display unit displays an order of blank sheet among the orders of the printed matters.
An imaging station includes at least one camera and at least one computing device, the at least one computing device being communicatively coupled to the at least one camera, wherein the at least one computing device is configured to receive raw image data of a physical document from the at least one camera.
An on-screen document management system and method includes a document processing device configured to receive touch commands on a touch capable display screen from a user. The user can select one or more portions of an existing document and place the desired selections into a new document. The portions can be resized and placed in the new document in accordance with the desires of the user. The new document is rendered with the selected portion or portions, and then displayed on the display screen as the new document would be output. The new document can be output using a document processing operation such as printing, faxing, emailing, or storing to an external server.
An information processing apparatus includes an obtaining unit that obtains configuration information about a screen to be displayed in a device connected to the information processing apparatus via a network; a display control unit that displays the screen in the information processing apparatus based on the configuration information; a changing unit that changes the configuration information in response to an operation on the screen displayed by the display control unit; and a transmission unit that transmits the changed configuration information to one or more devices connected to the information processing apparatus via the network.
An information processing system includes a first and second information processing systems respectively including first and second apparatuses, and a third information processing system storing history information of the first apparatus and implementing analyzing the history information to acquire a degree of influence for an item included in the history information corresponding to a fault in the first apparatus, and generating a fault prediction logic of predicting a fault in the first apparatus using the item having a relatively high degree of influence and a value of a case where the fault occurs in the first apparatus based on a result of the analysis, and building the generated fault prediction logic into the first and second apparatuses, the first and second information processing system monitoring the history information, and detecting a state of matching a content of the built-in fault prediction logic.
In various embodiments, advertising campaigns can be defined that incorporate technologies such as two-dimensional barcodes or embedded links in electronic material, for directing a user to communicate with a call center. For instance, in particular embodiments, the reading of a two-dimensional barcode by a user with a smart phone may cause various forms of communication requesting a return communication. The communication from the smart phone may be sent to, and received at, the call center, where a calling campaign associated with an advertising campaign is identified using information associated with the communication. A responding communication may be initiated from the call center to the user.
Techniques for benchmarking pairing strategies in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for techniques for benchmarking pairing strategies in a contact center system comprising: cycling, by at least one processor, among at least two pairing strategies; and determining, by the at least one processor, a difference in performance between the at least two pairing strategies.
Techniques, systems, apparatuses and methods to better interdict or screen calls without disturbing the callee. The phone user can implement a warning for unwanted human, i.e., live person callers, and a challenge or barrier for unwanted automated or robocalling, particularly the usage of a required response to a question. The warning and particularly the challenge would weed out undesired solicitations. The present invention also makes allowance for desired human, robotic or automated calling in addition to the proscripted calls.
The subject disclosure describes monitoring when a headset is in communication with a mobile communication device, detecting the headset, comparing a name of a caller and a telephone number of the caller against a list of names and telephone numbers previously stored in a memory, determining that the name of the caller or the telephone number of the caller matches one of the names and telephone numbers in the list, determining that the one of the names and telephone numbers is associated with a pre-recorded message that the user previously recorded and stored in the memory, retrieving the pre-recorded message, and performing a text-to-speech conversion on the name and telephone number of the caller to generate a synthesized speech signal spoken text message and sending the synthesized speech signal and the pre-recorded message to the headset. Other embodiments are disclosed.
A method and a system for identifying a network entity within a first communication network, using an entity identification data of the network entity in a second communication network. More particularly but not exclusively, identifying a network entity within a peer-to-peer communication network, using an entity identification data of the network entity in an underlying conventional communication network.
The invention relates to a communication system and a method of maintaining audio communication in a congested communication channel currently bearing the transmission of speech in audio communication between a sender side and a receiver side, the communication channel having at least one signaling channel and at least one payload channel having a quality of service. During the audio communication the quality of service of the payload channel is monitored. If the quality of service of the payload channel is below a threshold the speech at the respective sender side is converted to text; and transmitted over the retained communication channel to the respective receiver side. The text may be converted back to speech at the receiver side.
A system, method, and computer program for remotely managing a digital device is provided. One or more digital devices are monitored. At least one matter associated with the one or more digital devices is identified. A resolution to address the at least one matter is generated. The resolution is then distributed from a remote location.
The present invention relates to a method of extending an intercom communication range, comprising: a) during the pairing process between a first headset communication device and a second headset communication device, providing cellular related parameters, to be stored in a memory module of each headset communication device, in addition to the common Bluetooth required parameters, such that the cellular related parameters of the first headset includes a cellular phone number associated with the second headset and vice versa; b) establishing an intercom communication between both headsets via a Bluetooth channel; and c) upon detecting intercom communication loss at said Bluetooth channel or unavailable Bluetooth link during said intercom communication, temporarily routing the intercom communication to an alternate cellular communication channel by initiating a cellular call using the stored cellular phone number of the second headset.
Notifications for an accessory device are received at a mobile companion device. The notifications are directed to a notification processing application of the companion device that processes notifications intended for accessory device applications. The notification processing application determines an identifier of the accessory application for which the notification is intended, and provides the identifier to a notification display application at the accessory device, which determines user interface and display properties for the notification. The accessory device requests external (dynamic) user interface and display properties from the companion device, as needed, and upon receipt generates a notification display at the accessory device.
A cable including: a body having one or more elongated conductors and an electrically insulating sheathing covering the elongated conductor; and a connector disposed at at least one end for electrically connecting the elongated conductor to an electronic device; wherein at least a portion of the body has a rigidity such that the portion can be shaped into a predetermined configuration and maintained in the predetermined configuration when one or more of supporting the electronic device in a predetermined position or maintaining the body into a predetermined configuration.
A display unit includes: a display layer including a pixel electrode; a semiconductor layer provided in a layer below the display layer, the semiconductor layer including a wiring layer that includes a material removable by an etchant by which the pixel electrode is also removable; and a terminal section configured to electrically connect the semiconductor layer to an external circuit, the terminal section including a first electrically-conductive layer made of a material same as a material of the wiring layer.
In a method of managing a computing network, an expected behavior of a host is determined. The host is associated with a network resource, and is configured to be switched between active and inactive states. When the host is in the inactive state, a message is transmitted via the network on behalf of the host based on the expected behavior thereof such that the host appears to be in the active state. Related computer systems and computer program products are also discussed.
An operation (such as a relational query) may be processed on a processing engine (such as a relational database server) on behalf of a client. A conventional processing involves the delivery of the operation to the processing engine, which executes the entire operation to completion and returns a result data set. It may be more efficient to allocate part of the operation to be performed on the client, but a developer may be unable or unavailable to rewrite the operation in a distributed manner. Instead, the operation may be automatically partitioned into a pre-engine client portion, a processing engine portion, and a client portion, and the instructions of each portion may be automatically allocated respectively to the client, the server, and the client. The partitioning may be adjusted to conserve computing resources, such as bandwidth and storage, and the instructions may be reordered to improve the processing of the operation.
Techniques for embedded event processing are provided. In some examples, instructions for executing at least a subset of complex event processing features may be received. A stream of events received by the edge computing device may be identified. Additionally, the events of the stream utilizing the subset of complex event processing features may be processed. Further, in some aspects, the processed events may be provided to a complex event platform of a server.
The present disclosure relates to methods and devices for calling a taxi. A method may include determining whether a user should call a taxi, based on at least one of schedule data or schedule data. The method may further include, when it is determined that the user should call a taxi, generating and outputting a taxi calling order. In the present disclosure, a terminal device can automatically generate and output a taxi calling order when it determines that the user should call a taxi. The method or terminal can thereby initiate a taxi calling service as early as possible, and thus avoid delaying the user's schedule. Moreover, a process may require no user initiation and little or no intervention from the user. Thus, the method or terminal can simplify user operation and save the user's time.
A method, a device and a system for providing access to a mobile device for a session object to aggregated data associated with a session are provided. The method includes populating data records of a data repository of a data management system from an external data system; generating first information in the data records stored in the data repository; caching the first information on a caching server; creating an application link to be displayed in a mobile device, wherein the application link enables the access to the cached first information; providing an access authorization to the mobile device; retrieving the cached first information from the caching server; displaying the cached first information in a user interface of the mobile device; generating second information dynamically; displaying the second information in the user interface; providing an evaluation for the job candidate; and deactivating the application link after the session takes place.
A method for receiving data, a method for sending data, a mobile terminal, and a server are disclosed. The method includes: when an application program on a mobile terminal is switched to a background, sending, by the mobile terminal, a first message to a push server, so that the push server sends a second message to an application server, where the second message is used to instruct the application server to send, when there is data that needs to be sent to the mobile terminal, the data to the push server, and the application server serves the application program; and receiving, by the mobile terminal, the data sent by the push server. Through the present invention, the mobile terminal does not need not maintain a heartbeat connection to the application server, thereby reducing signaling overhead of the mobile terminal and reducing energy consumption.
The presently disclosed subject matter includes at least a method, system and a program storage device of estimating click through rate (CTR) of a pair of source and recommendation, the source comprising a plurality of slots, each slot configured to present a served recommendation. The CTR estimation is performed by first determining an estimated calibration CTR coefficient for each slot and then using this information for calculating an estimated CTR of a given slot when served with a given recommendation in a given source.
An information acquisition method whereby a management computer provided with a processor, a memory, and an interface acquires information of a plurality of computers via a network, the method including: a first step in which the management computer sets, in acquisition group information, a group of computers for acquiring information among the plurality of computers; a second step in which the management computer determines a sequence in which information is acquired for each group, then determines the sequence of computers for acquiring information in the group; a third step in which the management computer outputs an instruction for acquiring information of computers in the determined sequence; and a fourth step in which an information acquisition execution unit acquires the information of the computers of each group in the determined sequence on the basis of the instruction to acquire the information.
Method, computer program product, and system for identifying, responsive to a request for a network resource, at least one peer device, wherein the request is made by a first device on a mobile network, the at least one peer device on a local network with the first device, the local network different than the mobile network; partitioning, based on at least one content element of the requested network resource, the request into a plurality of subrequests, each subrequest specifying to retrieve one or more content elements of the requested network resource; assigning each subrequest to one of the peer devices and the first device, wherein each peer device and the first device retrieves the content elements specified by the subrequest assigned to the respective device, wherein each peer device transmits the retrieved portion of the network resource to the first device over the local network.
Provided is a virtual desktop service, and disclosed is a system for providing a server virtual machine, including: a client configured to receive allocation of a virtual machine for using a virtual desktop service; a connection broker configured to control a type of virtual machine to be allocated to be classified according to user terminal registration information of the client, any one operation server to be selected among a plurality of operation servers, and the virtual machine to be allocated; the plurality of operation servers configured to provide the client with a virtual machine under a control of the connection broker; and a shared storage configured to store data related to the client for providing the virtual machine, and provide the stored data to the operation servers, a method of providing a server virtual machine, and a server device supporting the same.
A cloud computing environment consists of a cloud deployment platform with an application management server executing thereon, and a cloud management server configured to manage a plurality of virtual machines deployed in a cloud infrastructure. When a cloud-based application is deployed to the cloud infrastructure, a deployment plan for the cloud-based application is read, where the deployment plan comprises a first plurality of tasks to be executed in the cloud infrastructure. A determination is made that one or more custom tasks are required to be executed in the cloud infrastructure. After the determination, the one or more custom tasks are inserted into the first plurality of tasks to generate a second plurality of tasks. The second plurality of tasks is then transmitted to the cloud management server for execution in the cloud infrastructure.
Systems and computer program products may provide peak load processing on a computer system. A first computer system may include a processor and a memory storage device operatively coupled to the processor. The memory storage device may store instructions that are executed by the processor to receive from a second computer system coupled to the first computer system by a network, a request to replicate at the first computer system a first instance of an application executing on the second computer system, replicate on the first computer system the first instance of the application and execute the first instance of the application on the first computer system, including processing user requests related to the application received from the second computer system.
A virtual process manager for use with a client application. Both the process manager and the client application are installed on a client computing device. In response to a user command to execute a virtual application at least partially implemented by a virtualized application file stored on a remote computing device, the client application sends a high priority command to the process manager to execute the virtual application. Before receiving the user command, the client application sends a low priority command to the process manager to download at least a portion of the virtualized application file. In response to the high priority command, and without additional user input, the process manager downloads any portion of the file not downloaded in response to the low priority command, and executes the virtual application on the client computing device. The client application may comprise a conventional web browser or operating system shell process.
A non-transitory computer readable medium and a method for session based classification. The method may include detecting an initialization of a certain TCP connection; defining the certain TCP connection as an active TCP connection; receiving, by a classifier, an incoming packet that belongs to a session that involves conveying a media asset using a HTTP as an application layer protocol; determining, by the classifier, whether the incoming packet belongs to the certain active TCP connection or not; and if it is determined that the incoming packet belongs to the certain active TCP connection then classifying the incoming to a session that is associated with the certain active TCP connection based upon a mapping between sessions and active TCP connections.
A device with a display and, optionally, a touch-sensitive surface detects a first input corresponding to a request to share first content from a first application while displaying the first application on the display. In response to detecting the first input, the device displays a sharing interface that includes a plurality of options for sharing the first content. While displaying the sharing interface, the device detects selection of an affordance in the sharing interface. In accordance with a determination that the affordance is a respective user-first sharing option for a respective user, the device initiates a process for sharing the first content with the respective user. In accordance with a determination that the affordance is a protocol-first sharing option for a respective protocol, the device initiates a process for sharing the first content using the respective protocol.
A digital magazine server user interacts with a client device presenting one or more content items from the digital magazine server to access various content items identified by the digital magazine server. For example, the user interacts with a portion of a display device of the client device and traverses to an additional portion of the display device to view additional content items on the display device. Based on a rate at which the user traverses from the portion to the additional portion, a content update rate is determined and used to select an indication of modification that is presented. The indication of modification provides the user with a visual indication that the content items presented by the display device are modified, and may include a subset of content items from the digital magazine server if the content update rate does not exceed a threshold.
A server apparatus accesses a terminal apparatus connected via an IP network to a router from an externally provided terminal apparatus in a simple and firm manner without previously performing a complex setting operation. The server apparatus includes (1) a connection information transmitting unit, when specific information of a second terminal apparatus connected via a router to an IP (Internet Protocol) network is received from a first terminal apparatus connected via the IP network to the connection information transmitting unit, which transmits connection information to the first terminal apparatus, with the connection information being employed to access the second terminal apparatus from the first terminal apparatus, and (2) a relay unit, when the relay unit is accessed from the first terminal apparatus by employing the connection information transmitted by the connection information transmitting unit, which relays the first terminal apparatus to the second terminal apparatus having the specific information.
A method of managing a connection-specific policy for accessing a target system includes receiving a request from a user client for a connection with a target system. A unique identifier is determined for the requested connection. Connection settings for connecting to the target system are provided to the user client. The connection settings include the unique connection identifier. A corresponding access policy for the connection identifier is provided to the target system. The target system applies the corresponding access policy on the connection established with the connection settings.
A data processing system comprising: a sensor computer that is coupled to and co-located with a compromised computer, the compromised computer comprising at least one malware item that is configured to direct unauthorized network activity toward one or more enterprise networks or enterprise computers, wherein the compromised computer is coupled to a firewall that is configured to control ingress of packets to the compromised computer and is logically between one or more attacker computers and the one or more enterprise networks or enterprise computers; a security control computer that is coupled to the sensor computer; one or more non-transitory data storage media in the security control computer storing security logic comprising one or more sequences of instructions which when executed cause the security control computer to perform: obtaining, from the sensor computer, detection data relating to network messages that the compromised computer emits, as the compromised computer emits the network messages; using the detection data, identifying one or more security threats that are indicated by the network messages; determining a specified remediation measure to remediate one or more of the security threats; providing the specified remediation measure to one or more of the compromised computer, the sensor computer, the firewall, and an enterprise computer.
Systems, methods, and software described herein provide security actions to computing assets of a computing environment. In one example, a method of operating an advisement system to manage security actions for a computing environment includes identifying a security incident for an asset in the environment, and obtaining enrichment information about the security incident. The method further includes identifying a rule set based on the enrichment information, identifying an action response based on the rule set, and initiating implementation of the action response in the computing environment.
A cyber security system to detect attackers, including a data collector collecting data regarding a network, the data including network resources and users, a learning module analyzing data collected by the network data collector, determining therefrom groupings of the network resources into at least two groups, and assigning a customized decoy policy to each group of resources, wherein a decoy policy for a group of resources includes one or more decoy attack vectors, and one or more resources in the group in which the one or more decoy attack vectors are to be planted, and wherein an attack vector is an object of a first resource that may be used to access or discover a second resource, and a decoy deployer planting, for each group of resources, one or more decoy attack vectors in one or more resources in that group, in accordance with the decoy policy for that group.
A system can monitor the server for indications of an attack and adjusts server settings accordingly. In response, the system can increase server tolerance in a systematic way to deal with DDoS by adjusting server settings appropriately. Conversely, when the server is not under attack, the settings can be adjusted to those for standard operations (e.g., adjusted downward), as they are more optimal for normal, non-attack operations.
Permissions can be delegated to enable access to resources associated with one or more different accounts, which might be associated with one or more different entities. Accordingly, approaches for delegating security rights and privileges for services and resources in an electronic and/or multi-tenant environment are provided. In particular, various embodiments provide approaches for dynamically determining and authorizing delegation of permissions to perform actions in, on, or against one or more secured accounts, where those accounts may be associated with a number of different entities and/or resource providers.
A network communication system includes a plurality of computer systems each of which may operate in accordance with at least one protocol stack assigned to a security level of a multilevel security model. The computer system may perform address discovery or registration for network-layer address(es) with a network for an exchange of data between hosts provided by protocol stacks at respective security levels of the multilevel security model. And the computer system may exchange data between the hosts, with the data being accessible or inaccessible by the hosts according to the respective security levels and mandatory access control information flow policy/policies consistent with the multilevel security model. The address discovery or registration, on the other hand, may be performed using a network management protocol that is trusted and accessible by the hosts without regard to the respective security levels and mandatory access control information flow policy/policies.
A method of detecting, verifying, preventing and correcting or resolving unauthorized use of electronic media content. In one embodiment, the method comprises providing an electronic system that allows auditors to register to audit the use of electronic media content, providing the auditors with information through the electronic system regarding a unique identifier that identifies one or more items of electronic media content, owners of electronic media content or other intellectual property or users who have subscribed to the use of electronic media content, obtaining information from auditors through the electronic system regarding unauthorized use of the electronic media content and verifying that the information received from auditors is complete.
Multiple authentication procedures enhance security of Internet transactions. For example, a request is received from a customer to access a service. A first authentication request is sent to the customer for first authentication information. A second authentication request may be sent to the customer for second authentication information. The method then enables the customer to proceed with accessing the service if the second authentication information is received.
A system for monitoring resources transferred over a network includes a capture module that is configured to capture content transferred over a network between a requestor device and a server device. The content includes a resource, a digital signature associated with the resource and a digital certificate associated with the digital signature. The system includes a resource monitor module that is configured to receive the captured content from the capture module. The resource monitor module includes at least one memory, at least one processor and a resource analyzer module that is configured to use the at least one processor to inspect one or more attributes of the digital certificate and inspect the digital signature and verify the digital certificate using the attributes and verify the digital signature.
A system includes a gateway and a verification server. The gateway is configured to receive a first message from a client over a network; send a request to a verification server to generate a first credential based on the first message; and route the first message toward a remote device. The verification server is configured to receive the request from the gateway; generate the first credential in response to the request; store the first credential; receive a second message from the remote device, the message requesting the verification server to validate a second credential; determine whether the second credential is valid based on the first credential; and send a notification to the remote device indicating whether the second credential is valid.
Systems and processes of advanced identity management over multiple identity providers deployable through mobile applications are provided. The process, e.g., method, includes requesting a backend service from multiple backend services by a requesting device. The method further includes exposing the requested backend service though a call in by a gateway service using a token mapped to the requested backend service, without exposing any of the backend services directly to the requesting device.
Technology for migration of a computing instance is provided. In one example, a method may include receiving instructions to initiate migration of the computing instance from a first host to a second host. A first message for sending to the first host may be generated which includes instructions to send data representing the computing instance to the second host. The first message may further include encryption information for use in deriving at least one key for encrypting communications to the second host from the first host. A second message for sending to the second host may be generated which includes instructions to receive the data representing the computing instance from the first host. The second message may further include information for use in deriving at least one key for decrypting communications from the first host. The first and second messages may be sent to the respective first and second hosts.
The method and system enable secure forwarding of a message from a first computer to a second computer via an intermediate computer in a telecommunication network. A message is formed in the first computer or in a computer that is served by the first computer, and in the latter case, sending the message to the first computer. In the first computer, a secure message is then formed by giving the message a unique identity and a destination address. The message is sent from the first computer to the intermediate computer after which the destination address and the unique identity are used to find an address to the second computer. The current destination address is substituted with the found address to the second computer, and the unique identity is substituted with another unique identity. Then the message is forwarded to the second computer.
Techniques to provide syndicated device and application management are disclosed. In various embodiments, a request associated with accessing a third party service is received, for example, at a device management server or other management system. A third party service configuration data is used to configure the managed device to access the third party service directly from the third party service.
Methods and systems are described for assigning the proper internet protocol (IP) address to a client device following authentication of the client device on a network. In particular, at commencement of an authentication procedure of the client device, a role is associated with the client device that denies all DHCP renews/requests. By assigning a role to the client device 103 with a “deny DHCP renew/request” rule at the commencement of an authentication procedure, the systems and methods described herein ensure that a race condition does not allow the client device to renew an IP address in an old segment of the network. Accordingly, the client device may avoid a possibly improper IP address in a segment of the network system in which the client device is no longer associated with or operating on.
A first address set for a first communication interface is acquired from another apparatus. It is determined whether the first address duplicates a second address that has been set for a second communication interface. If it is determined that the first address duplicates the second address, a third address different from the first address is reacquired from the other apparatus.
A method, system, and computer program product for Internet of Things (IoT) network-connected devices. Embodiments include methods and systems for registering one or more listener devices (e.g., mobile phones or tablets, etc.) to receive messages from one or more notification devices (e.g., web cameras, etc.). A notification server is selected from among multiple notification servers to receive notification messages from the notification devices and then to forward (e.g., through a push service, etc.) portions of or variations of the notification messages to the listener devices. In some embodiments, the selection of the notification server is based on load balancing between the multiple notification servers and/or push servers. In some embodiments, the selection of a notification server and/or push server is based on a provisioning file.
An enterprise email governance system including an enterprise-wide email communication item events monitoring subsystem providing at least near real time indications of email communication item events and an enterprise-wide email communication item events storage subsystem receiving inputs from the monitoring subsystem and providing at least near real time user accessibility to the email communication item events.
A method of providing information to a prospective user is performed at a server having one or more processors and memory storing programs to be executed by the processors, the method including receiving audio feature information and location information from a client device, wherein the audio feature information is extracted from an audio signal received by the client device and the location information identifies a current location of the client device; comparing predefined audio feature information with the received audio feature information and comparing predefined location information with the received location information; and pushing predefined information to the client device from the server if there is a match of both comparisons made at the server.
A vehicle-mounted apparatus includes a mail receiving processing unit configured to receive an electronic mail, a received mail determination unit configured to determine, after a first electronic mail is received by the mail receiving processing unit, whether a second electronic mail associated with the first electronic mail is received by the mail receiving processing unit, and a notification processing unit configured to perform, when it is determined by the received mail determination unit that the first electronic mail and the second electronic mail are associated with each other, notification of these two electronic mails simultaneously.
A system and method are disclosed that enable an email service provider to implement an email forwarding service without losing associated page views. In one embodiment, rather than forwarding the entire email message, the email forwarding service generates a summary email message, and sends this summary email message to the forwarding email address pre-specified by the subscriber. This summary email message includes a link that is selectable by the user to view the original email message on a web site of the email service provider. Thus, even if the forwarding email address is hosted externally, the subscriber still views the full email message on a web site of the provider of the email forwarding service.
A multichannel gateway is provided such that a line manager detects the lines status and updates line information in a memory. A packet acquirer acquires a packet for transmission from a terminal, and a segmentation necessity determiner calculates a packet sizes (segment sizes) based on the line information so that if the packet is segmented and transmitted to each line, the transmission time will be the same. When the segmentation necessity determiner determines based on the segment sizes that segmentation of the packet is necessary, a packet divider segments the packet into the segments, attaches a header and generates transmission packets. A packet transmitter transmits the transmission packets by way of the corresponding lines to other terminals. A packet combiner removes the headers from the transmission packets received by a packet receiver and combines the packets in the received order.
In one embodiment, for each particular multicast flow of a plurality of multicast flows of packets a particular consolidation encoding of a plurality of consolidation encodings is selected based on the sparseness of bit positions within a bit string corresponding to designated receiving packet switching devices of the particular multicast flow. The packet switching device sends one or more packets corresponding to said particular packet, with each of these one or more packets including designated receiving packet switching devices of the particular multicast flow in the header of said particular packet according to the particular consolidation encoding. In one embodiment, different consolidation encodings of the plurality of consolidation encodings are used for at least two different multicast flows of the plurality of multicast flows of packets. In one embodiment, each of said receiving packet switching devices is Bit Index Explicit Replication (BIER) Bit-Forwarding Router (BFR).
A system for automated aggregation of search results provided in response to search queries/requests to multiple network resources is provided. The search requests are originated by client devices, at the direction of a server, to the various network resources. A user, using a client device, enters a search request that is provided to the server. The search request may include one or more search terms. The server identifies which network resources, out of a set of available network resources, are likely to provide relevant results to the user's query. The server may modify the search request to increase the likelihood that the search request will return relevant results. The identified list of resources is then provided back to the client device, along with the modified search request if applicable, which then originates and transmits the search request to each of the identified resources or subset thereof.
A method, computer-readable medium, and system for provisioning computing resources across multiple cloud providers and/or data centers are disclosed. A graphical user interface is used to select a plurality of computing resources and at least one cloud provider and/or at least one data center for providing the plurality of computing resources. Scripts associated with the at least one cloud provider and/or at least one data center are accessed, where each script is capable of automatically setting up a computing resource on an associated cloud provider or associated data center. The scripts are then used to automatically allocate and/or configure the computing resources on the at least one cloud provider and/or at least one data center. As such, computing resources can be automatically provisioned using a generic graphical user interface and without a user having skills or credentials specific to each cloud provider and/or data center.
A system for efficient memory bandwidth utilization may include a depacketizer, a packetizer, and a processor core. The depacketizer may generate header information items from received packets, where the header information items include sufficient information for the processor core to process the packets without accessing the payloads from off-chip memory. The depacketizer may accumulate multiple payloads and may write the multiple payloads to the off-chip memory in a single memory transaction when a threshold amount of the payloads have been accumulated. The processor core may receive the header information items and may generate a single descriptor for accessing multiple payloads corresponding to the header information items from the off-chip memory. The packetizer may generate a header for each payload based at least on on-chip information and without accessing off-chip memory. Thus, the subject system provides efficient memory bandwidth utilization, e.g. at least by reducing the number of off-chip memory accesses.
A plurality of network nodes, under the control of a network controller, are configured to perform a method to direct packets in a packet flow from a source to a destination. In one embodiment, the network controller transmits an instruction to a first node in a network instructing the first node to transmit a first packet in the packet flow along a first route from the source to the destination, the first route having a first delay. The network controller also transmits an instruction to a node in the network to transmit a second packet in the packet flow along a second route different from the first route, the second route having a second delay, the second delay having a duration less than a duration of the first delay. The network controller further transmits an instruction to a node in the second route to delay the second packet in order to delay arrival of the second packet at the destination.
Implied relationships between entities, such as network endpoints, are automatically discovered based on co-temporal events. Events involving pairs of endpoints, such as messaging events in which one endpoint acts as a source and another endpoint acts as a destination, may be detected. Edges between nodes representing those endpoints and other nodes representing other endpoints involved in other recent (co-temporal) events may be added to a progressively constructed graph. Over time, such edges may be progressively weighted in response to the detection of further co-temporal events involving the same endpoints. Relationships between endpoints may be implied based on the resulting accumulated weights of edges linking those endpoints' nodes in the graph even if there is no express relationship between those endpoints in any real-word context (e.g., even if those endpoints are not directly connected in any network, and even if no single event involves both of those endpoints together).
There is provided a method (100) for root cause analysis of service quality degradation in a communications network. The method comprises receiving (102) measurements from a plurality of nodes in the communication network, determining (104) identifiers for the received measurements, using (106) the identifiers for the received measurements to determine a network topology; and performing (108) root cause analysis based on the determined topology and the measurements linked with said topology.
A system, method, and computer program product are provided for maintaining quality of experience (QoE) for a client device on a network. In use, access points that are available to a client device are determined, based on a policy. Additionally, a current QoE provided to the client device by one of the access points utilized by the client device to access the network is determined. This QoE could be valued as a score computed by a function called QoE Metric taking QoS parameters as inputs. An expected QoE associated with each of the other access points is then determined. Further, the access point utilized by the client device to access the network is conditionally switched to one of the other access points, based on the current QoE and the expected QoEs. Additionally, any potential QoE downgrades on the current access point is detected using QoE Degradation Patterns that could be matched with current QoS measures and can encourage the client device to determine more accurately the current QoE.
A method for the exchange of data between nodes of a server cluster comprising a plurality of nodes interconnected together by a geographic interconnection network comprising a plurality of transmission segments linking the nodes together, including sending by a sending node, data intended for at least one other node, or receiving node, transmitting the data using the geographic interconnection network, receiving the data by each receive node, supplying the data to each receiving node with information relating to the transmission segments of the geographic interconnection network traversed between the sending node and this receiving node on the transmission thereof.
A sensor network system 1000 is provided with a plurality of sensor nodes 1100, . . . and configured to decide a parent node for each of the plurality of sensor nodes so as to form a network topology having a tree structure using each of the plurality of sensor nodes as a node. The sensor network system forms the network topology so that, with respect to each of the plurality of sensor nodes, the number of child nodes owned by the sensor node is close to a value obtained by multiplying a maximum containing number, which is a maximum number of sensor data that can be contained by one packet, by a natural number (1200).
A connectivity manager (CM) of a provider network establishes a plurality of ERGs (edge resource groups), each comprising at least an edge router and a network marker translation agent (NMTA). The CM selects a particular ERG to be used for network traffic between a first set of resources of a virtual computing service of the provider network and a second set of resources outside the provider network. To enable connectivity between the first and second set of resources, the CM initiate propagation of (a) routing metadata to an edge router of the particular ERG and/or (b) a network marker mapping entry to an NMTA of the particular ERG.
According to embodiments of the present disclosure, a managed network device assigns to itself an IP address, in absence of a DHCP service, in a link local address space within a wireless network. The system further responds to a network frame received from another device based on the assigned IP address in the link local address space. The network frame can be a network traffic frame, a control path frame, and/or a management frame. The control path frame comprises a source IP address and a destination IP address that correspond to internal IP addresses in the link local address space that are self-assigned by managed network devices. The management frame comprises the self-assigned internal IP address for the managed network device, and provides for management of managed network devices in the wireless network through a single IP address when a virtual controller is configured for the wireless network.
Systems and methods for locating network errors. The system includes a plurality of host nodes in a network of host nodes and intermediary nodes, and a database storing route data for each of a plurality of host node pairs. The system includes a controller configured to identify a subject intermediary node to investigate for network errors and select, using route data stored in the database, a set of target probe paths. Each target probe path includes a respective pair of host nodes separated by a network path including at least one target intermediary node, which is either the subject intermediary node or an intermediary node that is a next-hop neighbor of the subject intermediary node. The controller is configured to test each target probe path in the set of target probe paths and to determine, based on a result of the testing, an operational status of the subject intermediary node.
An example network device includes a processor configured to execute an Open Mobile Alliance (OMA) Device Management (DM) server, the OMA DM server to perform operations of: participating in mutual authentication with a second OMA DM server; sending a notification to the second OMA DM server for notifying the second OMA DM server to proceed with a delegation process; and sending, to a DM client, information for modifying an access control list (ACL).
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing.
A data receiving method and receiver are provided. A receiver determines the length of a pre-tail and the length of a post-tail of a frame by obtaining a start time and an end time of the main part of the signal of the frame at a fixed time, and determines a start time and an end time of a frame receiving window according to the start time and the end time of the main part of the signal of the frame and according to the length of the pre-tail and the length of the post-tail; and receiving a frame between the start time and the end time of the frame receiving window, so that the receiver can accurately and completely receive the main part of the signal and the pre-tail and post-tail of each frame to accurately and completely receive signals.
A method for generating a physical layer (PHY) data unit for transmission via a communication channel is described where the PHY data unit conforms to a first communication protocol. Orthogonal frequency division multiplexing (OFDM) symbols for a data field of the PHY data unit are generated according to a range extension coding scheme that corresponds to a range extension mode of the first communication protocol. A preamble of the PHY data unit is generated, the preamble having i) a first portion that indicates a duration of the PHY data unit and ii) a second portion that indicates whether at least some OFDM symbols of the data field are generated according to the range extension coding scheme. The first portion of the preamble is formatted such that the first portion of the preamble is decodable by a receiver device that conforms to a second communication protocol, but does not conform to the first communication protocol, to determine the duration of the PHY data unit based on the first portion of the preamble. The PHY data unit is generated to include the preamble and the data field.
Aspects of the subject disclosure may include, for example, a transmission device that includes at least one transceiver configured to modulate data to generate a plurality of first electromagnetic waves in accordance with channel control parameters. A plurality of couplers are configured to couple at least a portion of the plurality of first electromagnetic waves to a transmission medium, wherein the plurality of couplers generate a plurality of second electromagnetic waves that propagate along the outer surface of the transmission medium. A training controller is configured to generate the channel control parameters based on channel state information received from at least one remote transmission device. Other embodiments are disclosed.
A method of transmitting a frame is provided by a device in a WLAN. The device sets as additional data subcarriers some of subcarriers which are not set as data subcarriers in at least part of fields included in a frame of a legacy frame format, and allocates information to the additional data subcarriers.
The present disclosure relates to a system that uses a switch to convey wireless signals between a plurality of electronic devices interconnected by dielectric waveguides. In some embodiments, the system includes a plurality of electronic devices respectively having a transceiver element that generates a wireless signal that transmits a data packet. A switch receives the wireless signal from a first one of the plurality of electronic devices and re-transmits the wireless signal to a second one of the plurality of electronic devices. A plurality of dielectric waveguides convey the wireless signal between the plurality of electronic devices and the switch. Respective dielectric waveguides have a dielectric material disposed at a location between one of the plurality of electronic devices and the switch. Using the switch to convey wireless signals between the plurality of electronic devices provides a system that has a low wireless signal attenuation and reduced number of transceivers.
Systems and related methods include node directed management of multicast traffic within a wireless mesh network. A wireless mesh network may include a plurality of mesh nodes and a central server in communication with at least one of the mesh nodes of the plurality of mesh nodes. The central server may be configured to generate one or more rules for at least one of the mesh nodes to instruct a change in a pre-routing parameter in a packet header based on received channel state information. The central server may include a rules-based engine configured to generate and convey one or more traffic shaping rules in response to sensing traffic conditions. The position of received multicast packets in a packet order may be modified.
An escrow platform is described that can be used to enable access to devices. The escrow platform can be used to sign cryptographic network protocol challenges on behalf of clients so that the secrets used to sign cryptographic network protocol challenges do not have to be exposed to the clients. The escrow platform can store or control access to private keys, and the corresponding public keys can be stored on respective target platforms. A client can attempt to access a target platform and in response the target platform can issue a challenge. The client platform can send the challenge to the escrow platform, which can use the corresponding private key to sign the challenge. The signed challenge can be sent back to the client, which can forward it to the target platform. The target platform can verify the expected private key and grant access.
A computer network for data transmission between network nodes, the network nodes being authenticatable to one another by authentication information of a public key infrastructure, with a root certificate authority configured to generate the authentication information for the public key infrastructure. The root certificate authority is arranged separate from the computer network and is not linked to the computer network. A network node of the computer network comprises an authentication information storage, a processor, a network communication device and an initialization device having an initialization communication device and a temporary authentication information storage that can be read out by the processor.
A method for synchronizing data transmitted between at least one transmit terminal (TE) and a receive terminal (TR) via a transmission channel (CD) with unmanaged latency, comprising the steps: (a) in said or in each transmit terminal, generating at least one synchronization signal (SSYNC) having a known temporal relationship with the time of transmission of at least one data packet (SEEG) to be synchronized; (b) transmitting said or each data packet to be synchronized on said transmission channel with unmanaged latency, and said or each synchronization signal on an auxiliary transmission channel (CS) with managed latency; (c) in said receive terminal, receiving said or each data packet to be synchronized and said or each synchronization signal; and (d) synchronizing said or each data packet received by said receive terminal by means of said synchronization signal. Data acquisition device for carrying out such a method.
In a phase error corrector, a signal extractor extracts received reference signals from received signals, and an error vector calculator calculates the error vectors of phase errors by comparing the extracted received reference signals with a known reference signal that is to be transmitted. A representative vector calculator divides, according to frequency, the error vectors into two or more groups and calculates representative vectors for the respective groups. A correction value calculator calculates, on the basis of the representative vectors, phase correction values for the respective frequencies. A phase corrector uses the calculated phase correction values to correct the phase errors for the respective frequencies.
A method of analyzing a transient response of an electronic circuit includes forming a model of a retimer and receiving an analyzing the output signal of the retimer. The model includes: a signal input circuit that receives an input signal; a clock input circuit that receives a reference clock signal; a slicer that samples a signal produced by the signal input circuit based on the reference clock signal; and an output signal circuit that forms an output signal from a sample taken by the slicer and that is based on the reference clock signal.
A wireless communication system is presented in which subframe-specific link adaptation is performed. A mobile device can transmit a signal that informs a base station whether a particular subframe was received successfully. Additionally the mobile device can calculate channel state information (CSI) for a subframe and report the CSI to a base station. The reported CSI may or may not include an indicator for informing the base station about from which type of subframe the CSI was derived. The base station can receive the signal, the CSI and/or the indicator. Based on what information the base station has received, it performs subframe-specific BLER filtering and subframe-specific link adaptation scheduling and MCS adjustments.
A reference signal transmission scheme is presented. A first user equipment (UE) receives first information identifying which uplink subframe of a plurality of subframes is enabled to transmit an uplink reference signal, and receives second information identifying a sequence used for the uplink reference signal from a base station. The first information is used to identify a different uplink subframe to a first UE group including the first UE and a second UE group other than the first UE group. The second information is determined to assign different orthogonal sequences to each of UEs of the first UE group. The first UE transmits the uplink reference signal to the base station at the uplink subframe identified by the first information using the sequence identified by the second information.
A system and method utilizes a selected PRB configuration for a new carrier type for a 3GPP-type wireless network. A downlink signal is received that comprises a demodulation reference signal pattern in at least one predetermined subframe of the downlink signal. The subframe comprises a first predetermined number of the plurality of orthogonal frequency division multiplex (OFDM) symbols comprising synchronization signals for a legacy version of the downlink signal and the demodulation reference signal pattern comprising a second predetermined number of OFDM symbols that are different from the first predetermined number of the plurality of OFDM symbols. After receiving the downlink signal, the demodulation reference signal pattern in the downlink signal is demodulated.
Provided are a wireless communication system and method using distributed antennas. A physical channel and reference signal (RS) transmission/reception method for downlink and uplink communication using a plurality of points is provided for a case in which the plurality of points have different physical cell identities (PCIs), or in a wireless communication environment using distributed antennas in which the plurality of points belong to the same cell and have the same PCI. Also, a method of transmitting a physical channel and an RS in an uplink and a downlink by introducing a virtual cell identity (VCI) is provided. Further, a cooperative transmission method using a plurality of points is provided, so that communication efficiency of a wireless communication system using distributed antennas can be improved.
Communication methods of a base station and a terminal are provided. The communication method of the base station includes receiving feedback information including ray gain information from a terminal, configuring a Radio Frequency (RF) precoder to minimize a Frobenius norm of a total transmit precoder of the base station, and configuring a baseband precoder based on Zero-Forcing (ZF). The communication method of the terminal includes receiving a pilot signal from a base station; estimating a channel of the terminal using the pilot signal; configuring ray gain information based on information of the estimated channel; and feeding back a codebook index corresponding to the ray gain information to the base station.
A wireless communication system includes an infrastructure device for transmitting and receiving communications to and from a plurality of wireless user terminals. Each wireless user terminal includes a receiver and a controller that receives a plurality of orthogonal frequency division multiplexing (OFDM) signals on a first carrier frequency of a downlink. Each of the plurality of OFDM signals includes carrier frequency assignment information indicating a carrier frequency to transmit uplink data and spatial pattern information indicating a spatial pattern. In response to the carrier frequency assignment information of each of the plurality of OFDM signals, a transmitter and the controller of the wireless user terminal transmit a plurality of uplink signals. Each of the plurality of uplink signals are transmitted on the indicated carrier frequency and using the indicated spatial pattern.
The present invention relates to a method for transmit diversity of HARQ-ACK information feedback in a wireless communication system, said system being adapted to employ transmit diversity and non-transmit diversity transmissions of HARQ-ACK information feedback, said method comprising: assigning uplink control channel resources and modulation symbols to HARQ-ACK states for at least two antenna ports such that said HARQ-ACK states are abled to be transmitted when associated uplink control channel resources are implicitly reserved, wherein at least one of said uplink control channel resources is assigned to more than one of said at least two antenna ports, and wherein uplink control channel resources and modulation symbols assigned to HARQ-ACK states for one of said at least two antenna ports is the same as when non-transmit diversity of HARQ-ACK information feedback is employed; and transmitting HARQ-ACK states assigned according to said assignment step on said at least two antenna ports.
A receiver is configured to receive packets that correspond to at least a subset of a sequence of packets and that include error correction data. The error correction data of a first packet of the packets includes a partial copy of a second packet. A buffer is configured to store the packets. An analyzer is configured to determine whether a first particular packet of the sequence is missing from the buffer, to determine whether a partial copy of the first particular packet is stored in the buffer as error correction data in a second particular packet, to update a value based at least in part on whether the first particular packet is missing from the buffer and the partial copy of the first particular packet is stored in the buffer, and to adjust an error recovery parameter based at least in part on the value.
An interleaving method in a mobile communication system is provided. The interleaving method includes encoding a plurality of bits to output encoded bits in a sequence, interleaving the encoded bits based on a modulation order to generate interleaved encoded bits comprising consecutive bits having a size based on the modulation order, the consecutive bits corresponding to consecutive bits of the encoded bits, scrambling the interleaved encoded bits with a scrambling code to generate scrambled bits, and modulating the scrambled bits based on the modulation order to output at least one symbol.
A method of determining a filter of a relay and the relay for performing the same are disclosed. The method of determining a filter of a relay to minimize data estimation error in a relay environment considering a direct link includes (a) setting a power constraint condition of the relay so that maximum value of eigenvalue of a transmission covariance matrix of the relay is less than maximum transmission power usable at respective antenna; and (b) determining a transmission filter of the relay using the maximum transmission power usable at respective antenna according to the set power constraint condition.
An example communications device may include a slicer that may generate a digital output signal by thresholding a received signal according to variably set timing and voltage parameters. Testing circuitry may determine expected bit error ratios for multiple time-voltage slices by performing test operations corresponding respectively to the multiple time-voltage slices. Each of the test operations may include setting the timing and voltage parameters of the slicer based on the corresponding time-voltage slice, periodically measuring a bit error ratio based on the digital output signal and determining a confidence level for the measured bit error ratio, and in response to the determined confidence level equaling or exceeding a specified value, designating a current value of the measured bit-error ratio as the expected bit error ratio for the corresponding time-voltage slice and ending the test operation.
A method and system for capturing media data using an Body Area Network, BAN, wherein the BAN comprises a BAN enabled media capturing device associated with a first user and at least one BAN enabled communication device associated with a second user, wherein a BAN link is established through the body of the second user between the capturing device and the communication device, when the second user touches the capturing device, settings, related to capturing media data and related to said second user, are downloaded to the capturing device by using the established BAN link and media data is captured with the capturing device by using the downloaded settings wherein the capturing is triggered by the second user.
An adaptive equalizer with coefficients determined by averaging an estimated filter coefficient over a number, N, of past and future symbols. Estimated filter coefficients may be optimized by optimization of the number N, an averaging window function and a scaling factor using a metric. The metric also allows estimation of the amount of noise that may be compensated by an adaptive equalizer consistent with the present disclosure.
A distortion compensation device includes: a signal processing unit to perform signal processing on a symbol; a storage unit to store a distortion compensation value for every pattern string including a symbol of interest and predetermined number of symbols ahead of the symbol of interest among a plurality of input symbols, a distortion in the signal processing unit being compensated for such that the symbol of interest is corrected to a target value based on the distortion compensation value; a first acquisition unit to acquire a pattern string of interest including the current input symbol and the predetermined number of input symbols ahead of the current input symbol; a second acquisition unit to acquire the distortion compensation value associated with the pattern string of interest from the storage unit; and a setting unit to set the distortion compensation value to a correction value of the signal processing unit.
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Provided is an inexpensive and compact optical transmission module having high coupling efficiency between an optical fiber and a light projecting element and/or a light receiving element. This optical transmission module includes a lead frame including an electric wiring pattern formed therein, a resin housing formed through insert-molding of the lead frame, and an electric device mounted on the lead frame and including a light projecting element for photoelectric conversion. The lead frame forms a slit positioning an optical fiber to be coupled and a reflection mirror reflecting and condensing light from the light projecting element to the optical fiber.
A method and apparatus for cancelling interference of an interfering transmit signal. The method includes the steps of (a) transmitting an RF transmit signal from a transceiver, (b) optically modulating the RF transmit signal, (c) optically modulating a RF receive signal; (d) demodulating an optical signal back to an RF signal using an optical-electrical balanced receiver and directing to the transceiver, and (e) demodulating the optical transmit signal back to RF transmit signal.
The present invention is directed to a system and related method for providing high bandwidth communication between nodes in an RF neighborhood. Each node may transmit via an omnidirectional antenna element while time differentially receiving via a directional antenna element. As each node receives signals from neighborhood nodes, it determines a neighborhood contingent as well as a desirability of the received signals and the direction from which the desirable signals originate. Based on this direction, each node focuses a directional antenna element on the node from which a signal is desired while eliminating interference from transmissions from undesired nodes. Based on the neighborhood contingent, the system adjusts the node's omnidirectional transmit rates to communicate via statistical priority multiple access protocols with the desirable neighborhood nodes. The system adjusts the node's statistical priority multiple access channel access to account for the eliminated interference.
Methods and systems for receiving radio frequency (RF) signals include adjusting a digital baseband signal from a first RF front-end to compensate for errors based on a correlation value from a first correlator. A set of digital baseband signals from a set of respective additional RF front-ends is adjusted to compensate for errors based on correlation values from a second correlator. The adjusted digital baseband signal from the first RF front-end and the adjusted set of digital baseband signals from the set of respective additional RF front-ends are combined.
A frame transmission method is provided for use in a multiuser MIMO system having a transmitter with a plurality of antennas and receivers that are respectively associated with users. The method includes: constructing a sounding frame in which a first portion has at least one symbol for synchronizing destination receivers and a second portion has at least as many pre-coded pilot symbols as there are destination receivers; transmitting the sounding frame in a broadcast mode for its first portion and in a directional mode for its second portion to each of the destination receivers; and constructing a respective data frame for sending to each of the destination receivers by taking account of feedback information coming from the destination receivers and, for each destination receiver, coding interference between destination receivers.
A distributed-antenna system is disclosed. The system has a least one leaky feeder, a plurality of RF signal sources, at least one data router providing IP addressing and data control to the RF signal sources (which may be data-controlled radios), and a plurality of RF filters connected between the respective RF signal sources and the leaky feeder and connecting the respective RF signal sources to the leaky feeder. The RF signal sources are distributed along the leaky feeder to optimize both spectrum use and coverage of predetermined areas in, for example, office or apartment buildings.
A planar spiral induction coil includes a strip-shaped coil having at least one turn. The at least one turn has a width that changes as a distance from a beginning of the strip-shaped coil increases in a length direction of the strip-shaped coil. Each turn of the at least one turn has a respective width that causes an equal current to flow through each turn of the at least one turn.
A receiver for signals. The receiver comprises, an amplifier arranged to receive and amplify the signals received by the receiver. The receiver also comprises a linearizer arranged to linearize the amplitude value of the output signals from the amplifier. In the receiver, the linearizer is arranged to perform the linearizing by means of determining actual and desired values of a statistical function for the amplitude values of the output signals from the amplifier and to replace the amplitude values of the output signals from the amplifier with amplitude values which have the same desired values of the statistical function. In embodiments of the receiver, the statistical function is the cumulative distribution function.
Aspects of this disclosure relate tuning an impedance presented to a common port of a multi-throw switch and a tunable notch filter coupled to the common port. The impedance presented to the common port can be tuned based on an impedance associated with a throw of the multi-throw switch that is activated. According to embodiments of this disclosure, a shunt inductor in parallel with a tunable capacitance circuit can tune the impedance presented to the common port of the multi-throw switch. In certain embodiments, the tunable notch filter includes a series LC circuit in parallel with a tunable impedance circuit.
An amplifier includes a gain transistor including a control terminal to receive an input signal. A degeneration inductor is coupled between the first terminal of the gain transistor and ground. A shunt inductor and a capacitor are coupled in series between the control terminal of the gain transistor and ground, and form a filter to attenuate frequencies of the input signal within a frequency range. The degeneration inductor and the shunt inductor form a transformer to provide impedance matching.
An example method for facilitating a high power efficient amplifier through digital pre-distortion (DPD) in cable network environments is provided and includes receiving a first signal and a second signal at a DPD coefficient finder in an amplifier module, the second signal including transformations of the first signal from distortions due to channel effects and amplifier nonlinearity, synchronizing the first signal and the second signal, thereby removing the channel effects, computing a first vector representing an inverse of the nonlinearity of the amplifier, computing a second vector representing an inverse of some of the channel effects and providing DPD coefficients to a DPD actuator in the amplifier module, the DPD coefficients including the first vector and the second vector, the DPD actuator predistorting an input signal to the amplifier module with the DPD coefficients, such that an output signal from the amplifier module retains linearity relative to the input signal.
A method, according to one embodiment, includes repeating the following sequence at least until a page stripe of a memory cache has at least a predetermined amount of data stored therein: receiving a compressed logical page of data, finding an open codeword having an amount of available space which is greater than or equal to a size of the compressed logical page, and storing the compressed logical page in the open codeword having the amount of available space which is greater than or equal to a size of the compressed logical page. The compressed logical page does not straddle out of the open codeword. Other systems, methods, and computer program products are described in additional embodiments.
A soft output detector is programmed with a first set of parameters. Soft information is generated according to the first set of parameters, including likelihood information that spans a maximum likelihood range. Error correction decoding is performed on the soft information generated according to the first set of parameters. In the event decoding is unsuccessful, the soft output detector is programmed with a second set of parameters, soft information according is generated to the second set of parameters (including likelihood information that is scaled down from the maximum likelihood range), and error correction decoding is performed on the soft information generated according to the second set of parameters.
A receiver, such as a mobile station or base station, includes a sliding window-decoder. An antenna in the receiver is configured to receive a protograph-based spatially coupled low density parity check (SC-LDPC) code from a transmitter. The sliding window-decoder is configured to perform a SC-LDPC decoding operation on the SC-LDPC code using a sliding window. The SC-LDPC code includes a parity check matrix. The sliding window includes a subset of protograph sections on which decoding calculations are iteratively performed. The sliding window-decoder performs a stopping rule configured to cease the decoding calculations as a function of a syndrome of one or more check nodes (CNs) in the sliding window.
During operation of a SAR ADC, several of the MSBs can be preloaded with predetermined bit decisions prior to carrying out bit trials. A system and method can be provided for incrementally preloading the predetermined bit decisions such as to maintain voltages present at comparator inputs within a limited range of acceptable input voltages.
The semiconductor device according to one embodiment includes a power transistor and a sense transistor connected in parallel with each other, a first operational amplifier having a non-inverting input terminal connected to an emitter of the sense transistor and an inverting input terminal connected to an emitter of the power transistor, a resistor element having one end connected to the emitter of the sense transistor and another end connected to a first node, and an adjustment transistor placed between the first node and a low-voltage power supply. The first operational amplifier adjusts a current flowing through the adjustment transistor so that an emitter voltage of the power transistor and an emitter voltage of the sense transistor are substantially the same.
An acoustic wave filter includes series resonators and parallel resonators that have a piezoelectric film on an identical substrate and have a lower electrode and an upper electrode, wherein: one of the series resonators and the parallel resonators have a temperature compensation film on a face of the lower electrode or the upper electrode that is opposite to the piezoelectric film in a resonance region, the compensation film having an elastic constant of a temperature coefficient of which sign is opposite to a sign of a temperature coefficient of an elastic constant of the piezoelectric film; and the other have an added film on the same side as the temperature compensation film on the lower electrode side or the upper electrode side compared to the piezoelectric film in the resonance region in the one of the series resonators and the parallel resonators.
A switchable signal routing circuit for routing a signal between at least one input port and at least one output port is provided. The ports are connected via variable resistors to a common node, wherein the switchable signal routing circuit is configured to set resistance values of the variable resistors in dependence on a number of active ports.
Disclosed is a tunable capacitor. The tunable capacitor according to a first embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; and a bypass switch which on/off controls a bypass connection between the first terminal and the second terminal, wherein the variable capacitor unit and the bypass switch are integrated on one semiconductor die or on one module. The tunable capacitor according to a second embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; an impedance tuner placed between aground terminal and either the first terminal or the second terminal; and a tuning switch which on/off controls the connection between the variable capacitor unit and an impedance tuner, wherein the variable capacitor unit, the impedance tuner and the tuning switch are integrated on one semiconductor die or on one module.
A method, and a corresponding apparatus, for processing an input signal comprise filtering the input signal to separate a passband frequency component of the input signal from a stopband frequency component of the input signal, and adjusting relative signal power values of the passband frequency component and the stopband frequency component of the input signal based at least in part on signal values of a number of samples associated with the input signal. In the case of audio signals, for example, such processing is used for spectral expansion of the input signal by enhancing the power of the stopband, or low and high frequencies, component with respect to the power of the passband component of the input signal. As a result, a better audio quality is achieved.
A power amplifier system is provided. The power amplifier system includes a power supply to generate a supply voltage based on an input signal, a power amplifier powered by the supply voltage to amplify the input signal and generate an output signal, a delay determiner to determine a delay mismatch between the input signal and the supply voltage, and a programmable delay block coupled to the delay determiner to compensate for the determined delay mismatch between the input signal and the supply voltage. The delay determiner determines the delay mismatch based on a first delay between the input and output signals when the input signal is below a threshold and a second delay between the input and output signals when the input signal is above the threshold.
An oscillator includes an input terminal, an oscillation circuit section configured to cause a resonator to resonate to output an oscillator signal, a digital input section to which a signal for controlling an oscillation frequency of the oscillation circuit section is input via the input terminal, and a first bias circuit section including a constant current source configured to supply a reference current to the digital input section.
A resonator element includes a quartz crystal substrate in which a plane including X and Z′ axes is set as a main plane and a direction oriented along a Y′ axis is a thickness direction. The quartz crystal substrate includes a first region in which thickness shear vibration is generated, a second region that has a thickness thinner than the first region, and first protrusions that are disposed between one pair of electrode pads disposed to be lined in a direction oriented along a Z′ axis on a mounted side of the second region. When Lx is a length of the first protrusions along the X axis and λ is a wavelength of flexural vibration of the quartz crystal substrate, a relation of “λ/2×(2n+1)−0.1λ≦Lx≦λ/2×(2n+1)+0.1λ” (where n is a positive integer) is satisfied.
A device, method and process of fabricating an interdigitated multicell thermo-photo-voltaic component that is particularly efficient for generating electrical energy from photons in the red and near-infrared spectrum received from a heat source in the near field. Where the absorbing region is germanium, the device is capable of generating electrical energy by absorbing photon energy in the greater than 0.67 electron volt range corresponding to radiation in the infrared and near-infrared spectrum. Use of germanium semiconductor material provides a good match for converting energy from a low temperature heat source. The side that is opposite the photon receiving side of the device includes metal interconnections and dielectric material which provide an excellent back surface reflector for recycling below band photons back to the emitter. Multiple cells may be fabricated and interconnected as a monolithic large scale array for improved performance.
When a rotating machine unit is under at least a predetermined operation condition in a motor mode or when the rotating machine unit is under at least a predetermined operation condition in an electric power generator mode, there is performed electric-power conversion control in which there are combined rectangular wave energization control where an armature winding is energized with a rectangular wave and duty energization control where the armature winding is energized with the rectangular wave at a predetermined duty ratio.
A device and a method for inhibiting vibration of a superconducting magnetic suspension rotor. The device comprises a rotor cavity housing, lateral coils, a superconducting rotor with a rotor top plane, a copper plate, pole shoes, a z-axial vibration measuring sensor, an x-axial vibration measuring sensor, a y-axial vibration measuring sensor, and a copper ring, the pole shoes having a spherical inner surface and being arranged symmetrically up and down so as to form a rotor cavity; the annular lateral coils being closely adjacent to an outside cylindrical surface of the rotor cavity housing and fixed to the same; the z-axial vibration measuring sensor being fixed to a central region of the copper plate; the x-axial vibration measuring sensor being mounted along an x-coordinate axis and the y-axial vibration measuring sensor mounted on a on the copper ring which is mounted along an equatorial plane of the rotor.
An actuation device (1) which includes an actuation element (3) with a fixed 10 portion (31) and a driving portion (32); wherein the fixed portion (31) includes a crawling surface (311). The driving portion (32) includes a flexible moveable blade (321) positioned in parallel and at a distance from the crawling surface (311). When a power supply voltage is applied between the moveable blade (321) and the crawling surface (311), the free end (3211) comes into contact with the crawling surface (311), and a contact area, between the moveable blade (321) and the crawling surface (311), increases by propagation of the crawling front (3213) along the moveable blade (321). The propagation of the crawling front displaces the moveable blade (321) according to a first orientation.
A method of compensating for reverse current leakage in an active rectifier may include advancing an output of a comparator by a predetermined period of time by applying a predetermined offset voltage to a reference voltage input to the comparator, and activating a switch based on the output of the comparator. The method may also include deactivating the switch when a predetermined time delay elapses from a point in time at which the switch was activated.
A power supply apparatus is provided. The power supply apparatus includes a first power pin, a second power pin, a DC output regulator, a current sensing circuit, and a compensation circuit. The first and second power pins are coupled to an external load through a first wire and a second wire respectively. The DC output regulator receives an input voltage and a feedback voltage and generates an output voltage and an output current. The current sensing circuit senses the output current and generates a sensing voltage. The compensation circuit generates a compensation voltage responding to the sensing voltage. The compensation voltage is a sum of a voltage drop on the first wire and a voltage drop on the second wire. The compensation circuit compensates the output voltage according to the compensation voltage, such that a load voltage of the external load is kept at a stable voltage value.
An apparatus for electric power conversion includes a converter having a regulating circuit and switching network. The regulating circuit has magnetic storage elements, and switches connected to the magnetic storage elements and controllable to switch between switching configurations. The regulating circuit maintains an average DC current through a magnetic storage element. The switching network includes charge storage elements connected to switches that are controllable to switch between plural switch configurations. In one configuration, the switches forms an arrangement of charge storage elements in which at least one charge storage element is charged using the magnetic storage element through the network input or output port. In another, the switches form an arrangement of charge storage elements in which an element discharges using the magnetic storage element through one of the input port and output port of the switching network.
An insulated power supply apparatus includes an upper arm transformer which has a primary side coil and a secondary side coil, a lower arm transformer which has a primary side coil and a secondary side coil, and a power supply control section which has a voltage control switching element and an integrated circuit which turns on or off the voltage control switching element. At least one of the upper arm transformer and the lower arm transformer is adjacent to the power supply control section when viewing a surface of the substrate from a front thereof. An electric path transfers output voltage of the secondary side coil of the transformer adjacent to the power supply control section, to the integrated circuit. The integrated circuit turns on or off the voltage control switching element to perform feedback control so that the output voltage detected via the electric path reaches a target voltage.
The application describes an electromechanical actuator for generating a mechanical force to be transferred to an apparatus. The electromechanical actuator comprises an electromagnetic coil, a connecting member, and a magnet. The connecting member is mechanically coupled between the electromagnetic coil and the apparatus and is configured to transfer the mechanical force from the electromagnetic coil to the apparatus. The magnet is disposed between the electromagnetic coil and the apparatus and includes a channel in which the electromagnetic coil is disposed, the channel having a channel opening that faces away from the apparatus, the magnet further having a central hole through which the connecting member extends.
A linear motor is capable of miniaturization of a device, sharing of effective magnetic fluxes between the magnetic poles adjacent to each other, and decreasing a magnetic attractive force acting between a mover and an armature, and a linear motor drive system. The linear motor includes a mover, formed by lining up a plurality of pieces of permanent magnets or magnetic materials while inversing a magnetization direction thereof, and an armature. First and second magnetic pole teeth are disposed in such a way as to vertically tuck the permanent magnet or the magnetic material. A magnetic material links the first magnetic pole tooth to the second magnetic pole tooth, thereby forming a path for a magnetic flux, and windings are disposed on the first magnetic pole tooth and the second magnetic pole tooth, respectively. At least two units of the armatures are lined to be linked to each other.
A system for propelling craft which is applicable in any environment. It employs an alternating magnetic field supplied by a coil. A parallel plate capacitor is situated so that the flux of the magnetic field flows between the plates of the capacitor. The capacitor is charged and discharged in synchronization with the alternating magnetic field. The changing magnetic field creates an electric field that applies a force to the charge in the plates which is then transferred to the body of the device. Any induced reactive electric force on the coil affects equally the protons and electrons in the wires of the coil creating the magnetic field, thus the force is non-reactive. At the same time, the changing electric field in the capacitor creates a magnetic field. The current in the coils and/or the surface current in the ferromagnetic material (if present) experiences a force from the magnetic field. The magnetic field created by these currents, however, has no free charge between the plates of the capacitor with which to react, thus this force is also non-reactive. The two forces are in opposite directions, but are not the same magnitude, thus the device is propelled in a single direction.
The present invention provides a shaft rotary type linear motor that enables a movable element to rotate and linearly move by using a simple structure, and can therefore support compact, space-saving and lightweight designs. The shaft rotary type linear motor includes: a shaft; an outer cylinder; a hollow movable element having a plurality of permanent magnets within the outer cylinder; an armature surrounding the hollow movable element and having a plurality of coils; and a frame containing the armature. The shaft is supported by a rotatable and linearly movable linear guide.
A holding element (68, 82) for attaching magnets (62) to a rotor (20) of an electrical machine (10). This electrical machine is, in particular, designed as an AC generator and comprises intermediate spaces (60) between the individual poles (24, 25). The holding element (68, 82) comprises a top side (72) and spring lugs (70) which axially fix the magnets (62). The holding element (68, 82) has claw-like projections (74) which bear against flanks (80) of the poles (24, 25) when the holding element (68, 82) is in the fitted state.
In a vertical through hole of a rotational shaft, a first protrusion portion and a second protrusion portion protruding from an inner peripheral surface of the vertical through hole are provided in an axial direction of the through hole to form a storage area for storing oil, and discharge holes for directly discharging oil flowing over the first protrusion portion into the transaxle casing are provided in parallel with cooling holes.
A rotor of an electric machine includes a rotor lamination stack connected to a rotor shaft for conjoint rotation therewith. The rotor lamination stack extends from a first axial face of the rotor lamination stack to a second axial face when viewed in the direction of an axis of rotation of the rotor lamination stack. The rotor lamination stack has bores distributed around the axis of rotation and extending from the first axial face to the second axial face. A tie rod which protrudes from the axial faces when viewed in the direction of the axis of rotation is inserted into each bore. Fastening elements are attached to the tied rods at both axial faces so that the rotor laminations of the rotor lamination stack are pressed together. A fan is attached to the tie rods on the first axial face of the rotor lamination stack.
An electric drive motor (4), in particular for a pump assembly, has a terminal box (8) arranged on the electric drive motor (4). The terminal box (8) includes a first section (10) arranged at an axial end (6) of the drive motor (4) and a second section (14) arranged radially to the first section (10). The second section (14) is radially spaced from the first section (10) and in the tangential direction has a width (b) which is larger than a diameter (d) of the first section in this direction. The second section (14) is connected to the first section (10) via a connection section (16) having two side walls which are away for one another. These two side walls extend from the second section (14) to the first section (10) and are angled to one another, such that they approach one another towards the first section (10).
An armature winding includes a plurality of distributed winding bodies that are each produced by winding a single conductor wire that is insulated, jointless, and continuous, and that has a constant cross-sectional area perpendicular to a longitudinal direction, the conductor wires include first through third coil end portions that link first through fourth rectilinear portions and first through fourth rectilinear portions, and are formed such that radial widths w′ of the first through fourth rectilinear portions are wider than radial widths w of the first through third coil end portions, and first gaps are formed between radially adjacent coil end portions to allow a cooling medium to pass through the first gaps.
A stator of an electrical machine includes a stator core having a plurality of stator teeth and stator slots, and a stator winding having a plurality of stator coils. The width of each stator coil is one stator slot pitch, and the stator teeth are shaped to allow each stator coil to be installed by pushing the stator coil to surround one of the stator teeth. The stator coils include tubular cooling channels for conducting cooling liquid in the stator slots.
To provide a motor in which a cage coil formed of a wave winding conductor wire wound in plural turns and with bent portions is inserted in an integral type stator core. The motor including a stator provided with a wave winding coil using a flat conductor and a stator core, and a rotor provided with a rotor shaft is configured such that the wave winding coil includes the cage coil formed of a first wave winding wire assembly wound in plural turns, this assembly being formed of a plurality of bent-end wave winding conductor wires formed in a meandering pattern and overlapped in sequence with displacements from each other, a coil end part of the cage coil at one end is bent toward the rotor with respect to in-slot portions of the stator core, and the coil end part at the one end is positioned closer to an axis of the rotor than an inner peripheral surface of the stator core is.
A first rotor core including a plurality of gaps penetrating through the first rotor core along an axial direction is provided. A second rotor core being in contact with an axial end of the first rotor core and having a plurality of magnet-housing slots facing the gaps is also provided. The gaps have a magnetic resistance lower than that of the magnet-housing slots.
A stator for an electric motor includes a yoke and a star disposed in the yoke. The star is configured to receive a rotor therein and has at least one wire coiled thereat. The yoke and the star are configured such that the star is axially insertable into the yoke with reduced interference and reduced insertion force. The star is axially inserted into the yoke in an unlocked position. When the star is inserted into the yoke, the star is rotatable to a locked position, whereby the star is retained at the yoke via an interference fit.
Disclosed is a resonance type power transmission device that transmits electric power by using a resonator for transmission 3 and a resonator for reception 4 whose resonance conditions are matched to each other, the resonance type power transmission device including a transmission power supply 1 to supply electric power, a transmission antenna 2 to transmit the electric power from the transmission power supply 1, a conductive substance 7 to establish an electrical single point connection between the resonator for transmission 3 and the resonator for reception 4, a reception antenna 5 to receive the electric power from the transmission antenna 2 via the resonator for transmission 3 and the resonator for reception 4, and a reception power supply 6 to receive the electric power received by the reception antenna 5.
Described herein are improved configurations for a wireless power converter that includes at least one receiving magnetic resonator configured to capture electrical energy received wirelessly through a first oscillating magnetic field characterized by a first plurality of parameters, and at least one transferring magnetic resonator configured to generate a second oscillating magnetic field characterized by a second plurality of parameters different from the first plurality of parameters, wherein the electrical energy from the at least one receiving magnetic resonator is used to energize the at least one transferring magnetic resonator to generate the second oscillating magnetic field.
The power regulation control circuit is implemented during two modes. A first mode is a sleep mode and a second mode is a wake-up mode. During the sleep mode, the power supply detects a no-load presence and artificially increases the output voltage Vout to its maximum allowable value. In some embodiments, this is accomplished by pulling up an output of a error amplifier that feeds a PWM module. During the wake-up mode when the power supply wakes up from the sleep mode under maximum load, the output voltage Vout sinks from the artificially higher voltage, but still stays above a minimum operational voltage level. A slew rate compensation can be implemented to control a rate at which the output voltage drops when a load is applied. The artificially high output voltage during no-load condition and the slew rate compensation provide open loop voltage adjustment.
A power consumption control apparatus and method, the power consumption control method including calculating a charging cost, which represents a cost of power in a case of charging power, and a discharging cost, which represents a cost of power in a case of discharging power, of a power storage unit where the charging and discharging of power is performed, comparing the charging cost with the discharging cost of the power storage unit, controlling a power conversion unit to perform a discharging mode of performing one of the discharging of power and a reselling of power if the discharging cost is lower than the charging cost, and controlling the power conversion unit to perform a charging mode of charging the power storage unit with at least one of a new renewable power and a grid power if the charging cost is equal to or lower than the discharging cost.
An information notifying device in accordance with the present disclosure includes a first communication circuit, a second communication circuit, a clock, and a controller. The first communication circuit receives first information regarding an estimated arrival time at which transportation equipment will arrive at a destination. The second communication circuit receives second information regarding a remaining battery capacity of a battery installed in an external device. The clock keeps a current time. The controller calculates a first charging time necessary to charge the external device to a fully charged state based on the second information, and outputs information prompting to charge the external device at a first timing based on the first information, the current time and the first charging time.
A charging device for one or more input modules for a touch-screen device is described. The charging device comprises a charging mechanism and portions which are shaped to receive an input module. The charging mechanism comprises a power input and a power output. The power input is configured to receive power from an external power source and the power input is configured to provide power to one or more input modules which are attached to the charging device.
A charging device is provided for communicating with one or more consumer devices for remotely charging at least one of them upon demand of the consumer. The charging device comprises a transmitter unit associated with an antenna unit comprising a power antenna for defining at least one charging zone for transmitting charging power toward it; a receiver for receiving signals from consumers located within the charging zone; and a controller unit configured to be responsive to a request signal from a consumer indicative of demand for charging, to initiate a charging process of the consumer by radiation from the power antenna toward the consumer to supply power required for operating a functional unit of the consumer. The power antenna may comprise an array of directional antenna elements, each defining the charging zone within a different angular segment of entire charging space defined by a radiation pattern of the antenna array.
Disclosed are a wireless power transmitting apparatus and a method thereof. The wireless power transmitting apparatus wirelessly transmits power to a wireless power receiving apparatus. The wireless power transmitting apparatus detects a wireless power transmission state between the wireless power transmitting apparatus and the wireless power receiving apparatus, and generates a control signal to control transmit power based on the detected wireless power transmission state. The wireless power transmitting apparatus generates the transmit power by using first DC power based on the control signal, and transmits the transmit power to a transmission resonance coil through a transmission induction coil unit based on an electromagnetic induction scheme.
A non-contact power supply system, in which a first transmission efficiency of supply power in the case of supplying power in a first power supply mode of directly supplying power from a power supply apparatus to a power receiving apparatus and also supplying power to the power receiving apparatus through a relay apparatus, and a second transmission efficiency in the case of supplying the power in a second power supply mode of directly supplying the power from the power supply apparatus to the power receiving apparatus and not supplying the power from the power supply apparatus to the power receiving apparatus through the relay apparatus are compared.
A method and apparatus are provided for transmitting wireless power in a wireless power network managed by a wireless power transmitter. The method includes transmitting first charging power to a first wireless power receiver; detecting a second wireless power receiver; and transmitting second charging power to the second wireless power receiver.
Various embodiments provide safety disconnect systems for a power system. In one aspect, a safety switch system and method for a power system, including a plurality of sequentially interlocked switches capable of being operated in a predetermined sequence to isolate one or more fuses, is provided. The described safety switch system is a convenient and sequential approach to safely remove power from a system and access associated fuses.
A vertical cavity surface emitting laser includes: a substrate; a laminated body which is provided over the substrate; and a resin layer which is provided on at least a side surface of the laminated body, wherein the laminated body at least includes a first mirror layer provided over the substrate, an active layer provided over the first mirror layer, and a second mirror layer provided over the active layer, in a plan view, a length of the laminated body in a first direction is greater than a length of the laminated body in a second direction orthogonal to the first direction, and in the plan view, a length of the resin layer in the first direction is greater than a length of the resin layer in the second direction.
A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.
In the field of narrow linewidth laser sources and a laser device that comprises a laser source and a waveguide of determined refractive index with which it is coupled, a waveguide is single-mode and includes at least four reflectors in the form of trenches etched into the waveguide and irregularly distributed along the waveguide, the distance separating two neighbouring reflectors being above 1 μm, and the waveguide and the laser source have respective lengths such that the length of waveguide over which the reflectors are located is greater than the length of the laser source itself.
The present invention relates to an optical semiconductor integrated element and manufacturing method for same solves difficulty in element manufacture, and reduces optical transmission loss. The present invention is provided with a stripe-shaped waveguide configured from a multilayer structure wherein at least a first conductivity-type lower cladding layer, a waveguide core layer, and an upper cladding layer are layered, and the upper cladding layer is formed using a second conductivity-type upper cladding layer, and an i-type upper cladding layer, which has a bent portion by being shifted in the perpendicular direction with respect to the main extending direction of the waveguide.
An apparatus comprising a case, an optical amplifier, and an optical transceiver is provided. The optical amplifier and the optical transceiver are included in the case. The case includes a top portion and a bottom portion. The top portion includes first to third sections arranged in a direction perpendicular to a direction extending from the top portion to the bottom portion. The first section has a larger area than the third section and the second section divides the first and third sections. The third section includes a first cavity including at least one portion of the optical amplifier. The optical amplifier is provided using at least one of an amplifying fiber, a pumping light source, an isolator, a wavelength-division multiplexer (WDM) coupler, a wavelength-variable optical filter, a monitoring-tap photo diode, and a driving control unit.
A busway assembly includes first and second busway sections and a joint assembly connecting the first and second sections. Each busway section includes a housing including first and second opposing side portions. Each busway section includes a first insulator held in the first side portion and a second insulator held in the second side portion. The first and second insulators each hold one or more bus bar conductors. The joint assembly includes first and second connected joint housings and plurality of joint conductors held in the first and second housings. A first exposed portion of each joint conductor extends out of the first housing and is electrically connected with one of the bus bar conductors of the first busway section. A second exposed portion of each joint conductor extends out of the second housing and is electrically connected with one of the bus bar conductors of the second busway section.
A connector for a coaxial cable includes a coupler configured to engage another coaxial cable connector. The connector further includes a body disposed at least partially within the coupler. The connector further includes an outer conductor engager made of a conductive material disposed within the body and the coupler. The connector further includes a biasing element on an interior of the body. During a coupling of the connector to the coaxial cable: a connector end of the outer conductor engager moves axially relative to the body, the outer conductor engager is compressed by the biasing element, and an interior of the outer conductor engager is inwardly compressed against an outer conductor of the coaxial cable.
A connector has a male housing (10) with a forwardly open receptacle (11) and a female housing (40) with a terminal accommodating portion (42) that fits into the receptacle (11). A front wall (70) is mounted on a front of the terminal accommodating portion (42) and provides terminal insertion holes (55). Fitting projections (20) are formed on an inner peripheral surface of the receptacle (11), and fitting grooves (60) are formed on an outer peripheral surface of the terminal accommodating portion (42) for receiving the fitting projections (20). Backlash preventing ribs (61) are formed on inner surfaces of the fitting grooves (60) and are squeezed between inner surfaces of the fitting grooves (60) and outer surfaces of the fitting projections (20). The front wall (70) has escaping grooves (80) configured to allow the fitting projections (20) to be passed therethrough with a clearance and inserted into the fitting grooves (60).
In one embodiment an electronic device comprises a housing, a socket in the housing to receive a connector, and an illumination source proximate the socket to illuminate the socket. Other embodiments may be described.
A cable connector assembly includes an insulative housing, a number of contacts retained in the insulative housing, a printed circuit board electrically connected with at least some of the contacts, a cable electrically connected with the contacts and the printed circuit board, an insulative member enclosing the printed circuit board, and a shielding case enclosing the insulative housing and the insulative member, wherein the insulative member includes a recess portion spaced from the shielding case.
A waterproof electrical connector assembly includes: an insulative housing; plural contacts retained to the housing; a metallic shield secured to the housing; an insulative cover enclosing the shield to define a rear chamber; a substrate connected to the contacts and having an edge portion, the edge portion extending forwardly into the rear chamber; and a sealing member filling the rear chamber. A method for manufacturing such a waterproof electrical connector assembly includes: mounting a metallic shield to a combined insulative housing and electrical contacts; connecting a substrate to the electrical contacts; enclosing an insulative cover over the shield and an edge portion of the substrate to define a chamber; and sealing the chamber.
An electrical connector, defining an insertion port, a mating direction, a transverse direction perpendicular to the mating direction, and a vertical direction perpendicular to the mating direction and the transverse direction, includes an insulative housing, a number of terminals retained in the insulative housing, and a metal shell attached to the insulative housing. Each terminal has a soldering portion. The terminals have a number of grounding contacts, power contacts, and signal contacts. A maximum width of the power contact and the grounding contact is larger than that of the signal contact along the transverse direction.
Reverse polarity protection for plug-in connectors comprising two intermateable plug-in connector parts (100, 200), wherein the one plug-in connector part (100) comprises a first coding element and the other plug-in connector part (200) comprises a second coding element and wherein the two coding elements are matched to each other in such a manner that when the plug-in connector parts (100, 200) are arranged correctly they make a plug-in connection possible and that when the plug-in connector parts (100, 200) are not arranged correctly prevents a plug-in connection, characterized in that the one coding element is a groove (110) extending in the mating direction and having a trapezoid-shaped cross-section, and that the other coding element is a coding rib (210) that is extending in the mating direction and that is formed in a U-shaped manner with elastically bendable walls (212, 213) that are arranged in a U-shaped configuration.
A connector is mateable with a mating connector along a predetermined direction. The connector comprises a mated-state detection member and a holding mechanism which includes a reference surface, insulating portions and an insulating external wall. Each of the insulating portions projects from the reference surface by a first predetermined length in the predetermined direction. The insulating external wall projects beyond the reference surface in the predetermined direction and surrounds the insulating portions in a plane perpendicular to the predetermined direction. The mated-state detection member is held by the holding mechanism and is movable between a projecting position and a receding position in the predetermined direction. The mated-state detection member at the projecting position projects from the reference surface by a second predetermined length which is shorter than the first predetermined length. The mated-state detection member is moved to the receding position by the mating connector mated with the connector.
The invention relates to an electrical connector system including a terminal, configured to be conductively connected to a printed circuit board and a cavity body element. The cavity body element has a cavity and a primary locking member. The cavity is configured to receive the terminal. The cavity extends from a front end to a rear end of the cavity body element. The front end is arranged opposite of the rear end. The primary locking member is configured to lock the terminal. The primary locking member includes a releasing arm protruding through a lateral surface of the cavity body element.
A fitting cylinder section 11 of a female terminal main body 10 includes a first side plate 11a from which a columnar body 15 for a rivet protrudes as one in a plurality of side wall plates forming a square cylinder shape, a leaf spring 20 fixed to the fitting cylinder section 11 has a rivet insertion hole 21a into which the columnar body 15 for the rivet can be inserted, and the fitting cylinder section 11 has a structure in which the leaf spring 20 is fixed to an inner section thereof by performing the press-molding in the square cylinder shape section after rivet-retaining the leaf spring 20 to the first side plate 11a in a deployment shape and before performing the press-molding in the square cylinder shape.
A terminal connection structure includes a male terminal; and a female terminal having an elasticity and configured to have the male terminal fitted therein such that the female terminal sandwiches the male terminal from opposite sides; wherein the male includes a base material, a first primary coat coated on the base material, a second primary coat coated on the first primary coat, and a surface layer coated on the second primary coat, and the first primary coat and the second primary coat have different hardnesses.
A cable connector includes a connection end portion of a flexible board, in which a rectangular reinforcing plate molded of a conductive resin material is fixed to part of an upper surface of a ground plate. The connection end portion of the flexible board is electrically connected to a printed circuit board through the cable connector.
An electrical terminal header assembly is configured for attachment to a substrate and includes a header body having a terminal mounting cavity formed therein and a first locking member. An electrical terminal has a terminal body and a terminal post extending outwardly from the terminal body, is disposed in the terminal mounting cavity, and is retained therein by the first locking member. The terminal post extends outwardly from the header body and is configured for attachment to the substrate.
A plug is disposed on a circuit board to be plug-connected to a socket, where the plug includes a metal housing and a spring pin, where the metal housing includes a first side plate and a second side plate that are oppositely disposed, and a first mating hole is formed on the second side plate; the spring pin is disposed on the second side plate along an insertion/removing direction of the plug, the spring pin includes a first connecting part and a bending part that is formed by bending and extending a first end of the first connecting part, a second end of the first connecting part is fastened inside the first mating hole, and the bending part is corresponding to the first mating hole and is separated from the second side plate.
A terminal (10) is to be connected to an electric wire (W) which includes a core wire made of a fiber conductor (1). In a state of inserting a bare part of the fiber conductor in a barrel portion (11) of the terminal, the barrel portion is swaged while a swage amount is gradually increased as progressing in an electric wire insertion direction, which gradually expands the barrel portion in a width direction (D).
A crimp terminal has a crimp barrel which is crimped onto a core wire of a cable. The crimp barrel has an inner surface in which a plurality of cavities which are independent from one another is formed. Each of the cavities has a predetermined shape in a plane orthogonal to a depth direction thereof before the crimp barrel is crimped onto a core wire. The predetermined shape has at least two straight portions and a concave curved portion connecting the straight portions. The concave curved portion is indented inward of the predetermined shape. A plurality of the concave curved portions which are close to each other and included respectively in the predetermined shapes distinct from each other is arranged on an identical imaginary circle or rounded rectangular.
A crimp terminal includes a wire connector that crimps a conductor crimping portion and a coating crimping portion in such a manner as to enclose a range continuous from the front end of the conductor crimping portion to the rear end of the coating crimping portion; and a wire holding portion that is formed integrally with the coating crimping portion on the side opposite to the conductor crimping portion via a junction portion and holds the electric wire from the outer circumference of the coating. The junction portion is integrally formed in a manner continuous with a bottom plate of the coating crimping portion. On the inner surface of the junction portion, a convex portion is provided in a protruding manner for crimping the wire connector to the electric wire and bending the electric wire.
A high-band radiator of an ultra-wideband dual-band basestation antenna is disclosed. The high-band radiator comprises at least one dipole, a feed stalk, and a tubular body made of conductive material and having an annular flange. Each dipole comprises two dipole arms made of conductive material. The feed stalk feeds the dipole and comprises a non-conductive dielectric substrate body and conductors formed on the substrate body to function as a balun transformer. The feed stalk is connected with the dipole at one end and has at least one feed connector at the other, with the conductors coupled there-between. The tubular body is adapted for electrical connection through the annular flange to the ground plane at the open end; the body is short-circuited at the other end to define an internal cavity of the tubular body. At least a portion of the feed stalk is disposed within the tubular body.
A dual polarization array antenna having a plurality of radiation units disposed in an array on a reflecting board of the dual polarization array antenna. Each radiation unit is provided with two pairs of radiation oscillators mounted in an orthogonal polarization position. This greatly improves the consistency of radiation performance between two polarizations of the array antenna, and improves the polarization isolation degree of the array antenna.
Embodiments of a wide band multi-polarization antenna system are described, which can be attached to the back or front of a soldier's vest or backpack. The antenna system can allow for release of pre-shaped integral radiating elements that spring into a geometric configuration suitable for circular polarization radiation or linear polarization over a desired band of frequencies. The antenna system can provide, when collapsed, linear polarized line-of sight capability over a wide band of frequencies. In a collapsed low-profile state, the antenna system can remain on the soldier, but out of the way for maneuvering.
An electronic device incorporated with a coil module that achieves favorable communication characteristics is provided. In an electronic device incorporated with a coil module, the coil module includes a loop coil wounded in a planar shape and a sheet-shaped magnetic sheet which is formed of a magnetic material and which overlaps with a part of the loop coil, and the magnetic sheet is arranged on at least one side extending from a center of the loop coil.
Systems and methods for an antenna conformal to a sphere are provided. In certain implementations, an apparatus comprises a sphere having a recessed portion formed therein, the sphere enclosing instrumentation that produces a transmittable electronic signal; central conductor placed within the recessed portion, wherein the central conductor is coupled to the instrumentation to receive the transmittable electronic signal, wherein the transmittable electronic signal is emitted outside of the sphere; and an insulator cap located over the recessed portion, wherein locations on the external surface of the insulator cap and an external facing surface of the central conductor are substantially equidistant from a center point of the sphere.
An antenna alignment device includes an enclosure. The enclosure has a top portion having a single radome and a bottom portion. The single radome has a one or more domes. The top portion and the bottom portion are attached to form a single mold. The single mold houses a global positioning system receiver and a plurality of antennas. Each of the plurality of antennas is covered by the single radome and a respective dome of the one or more domes. The single mold also houses an interconnect circuit board and a touch screen display.
An antenna structure and an electronic device using the same are provided. The antenna structure includes an antenna body and a washer body. The antenna body includes an annular metal sheet. The washer body is connected to one side of the annular metal sheet. The washer body has a screw hole. The annular metal sheet surrounds the washer body, and the annular metal sheet extends upward from the washer body.
The present disclosure is directed towards a frequency selective limiter having a first magnetic material disposed over a first dielectric material and a strip conductor disposed over the magnetic material. In some embodiments, the frequency selective limiter includes a second magnetic material disposed over the strip conductor and a second dielectric material disposed over the second magnetic material. The first and second dielectric material may have a lower relative permittivity than the first and second magnetic material. In an embodiment, the frequency selective limiter includes a slow wave structure disposed to magnetically couple a magnetic field, produced by electromagnetic energy propagating through the slow wave structure, into the magnetic material.
A multichannel dielectric wave guide includes a set of dielectric core members that have a length and a cross section shape that is approximately rectangular, The core members have a first dielectric constant value. A cladding surrounds the set of dielectric core members and has a second dielectric constant value that is lower than the first dielectric constant.
A cooling system for a battery cell includes at least one plate having at least one key, and a heat sink having at least one slot formed therein. The at least one key of the at least one plate is disposed in the at least one slot. The at least one plate and the heat sink form an interference fit joint securing the at least one plate to the heat sink.
A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10−4 Scm−1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1−a)LaxLi2-3xTiO3-aSrTiO3, (1−a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55≦x≦0.59, 0≦a≦0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 μm or more.
The stacked cell manufacturing method includes the steps of executing zigzag-folding of a band-like separator by the intermediary of a zigzag-folding mechanism, alternately feeding a positive-plate and a negative-plate onto the separator as folded back every time the separator is folded back by the zigzag-folding. A positive-plate transfer head and a negative-plate transfer head are set so as to alternately undergo a linearly reciprocating transfer in a horizontal direction at least on the table, the direction of a horizontal and reciprocating transfer made by the positive-plate transfer head and the negative-plate transfer head is set to coincide with a folding-back direction of the zigzag-folding of the separator, and a force caused by the horizontal and reciprocating transfer alternately made by each of these transfer heads is imparted to the separator guided onto the table, thereby executing the zigzag-folding while the separator is drawn onto the table.
A polymer electrolyte membrane which comprises a polymer electrolyte having sulfonic acid groups, and contains any one of the following (a) to (c): (a) cerium ions and an organic compound (X) capable of forming an inclusion compound with cerium ions; (b) an inclusion compound (Y) comprising the organic compound (X) including cerium ions; and (c) at least one of cerium ions and the organic compound (X), and the inclusion compound (Y).
The disclosure teaches controlling the fluid flow and pressure, including adjustable pressure regulators, pressure regulators with an inlet restrictor, semi-automatic valve and pressure regulator with a by-pass valve which use one or more of movable shuttle, shuttle housing, a high pressure diaphragm, a low pressure diaphragm and a fluidic conduit connecting the inlet to the outlet. One or more of these implementations adjust to modify the outlet pressure of the regulator. The inlet restrictor allows incoming fluid to enter the pressure regulators when the pressure of the incoming fluid is higher than a threshold level. The semi-automatic valve is opened manually but closes automatically when fluid flowing through the valve is insufficient to keep the valve open. The semi-automatic valve can also be a semi-automatic electrical switch. The by-pass valve directs the flow to bypass the pressure regulator, when the flow is slow or has low pressure.
A heating system for optimizing execution of heating tasks in a fuel cell vehicle is disclosed, the system including a stack coolant loop with a fuel cell stack, a primary pump, and a radiator module. A bypass coolant loop is disposed parallel with and is connected to the stack coolant loop between the fuel cell stack and the radiator module. The bypass loop including a cabin heat exchanger and a coolant heater, along with a secondary pump for pumping coolant through the heaters when desired.
A heat exchanger of a fuel cell module includes a plurality of heat exchange pipes connected to an oxygen-containing gas supply chamber at one end, and connected to an oxygen-containing gas discharge chamber at the other end. An end of an oxygen-containing gas inlet pipe for guiding the oxygen-containing gas to the oxygen-containing gas supply chamber is provided in the oxygen-containing gas supply chamber. A plurality of first inlet holes extend through the oxygen-containing gas inlet pipe in an axial direction, and a plurality of second inlet holes extend through the oxygen-containing gas inlet pipe radially. The total area of openings of the first inlet holes is smaller than the total area of openings of the second inlet holes.
Disclosed is a lithium secondary battery that includes an anode coated with an anode mixture including an anode active material, a cathode coated with a cathode mixture including a cathode active material, and a non-aqueous electrolyte, wherein the anode mixture includes, as aqueous binders, carboxymethyl cellulose (CMC) having a degree of substitution of a hydroxyl group (—OH) with a carboxymethyl group (—CH2CO2H) of 0.7 to 1.2, a molecular weight (Mn) of 500,000 to 900,000, and a pH of 6.5 to 8.0 and styrene-butadiene rubber (SBR) having a particle diameter of 90 nm to 150 nm and a tensile strength of 90 kgf to 160 kgf, and the anode has an electrode coating amount of 10 to 20 mg/cm2 and that enhances electrode processability and reduces a swelling phenomenon.
A primary lithium battery having an electrode body that is arranged with a sheet-like cathode and a sheet-like anode opposing each other via a separator and sealed inside a jacket body together with a non-aqueous organic electrolyte including the cathode being made by applying or compressively bonding to a surface of a sheet-like current collector cathode material including cathode active material allowing occlusion of lithium ions, and the anode being made by applying anode material including carbon active material allowing occlusion and separation of lithium ions on a one main side face side of a sheet-like current collector having formed holes penetrating from a front to a back, and an anode active material made of a lithium metal or a lithium alloy being affixed to another face side of the current collector.
Provided are an anode active material including carbon-based particles, silicon nanowires grown on the carbon-based particles, and a carbon coating layer on surfaces of the carbon-based particles and the silicon nanowires, and a method of preparing the anode active material. Since the anode active material of the present invention is used in a lithium secondary battery, physical bonding force between the carbon-based particles and the silicon nanowires may not only be increased but conductivity may also be improved. Thus, lifetime characteristics of the battery may be improved.
According to one embodiment, there is provided a positive electrode including a positive electrode active material-including layer including a positive electrode active material, which includes a lithium-manganese oxide LiMn2-xMxO4, and a conductive agent. In the positive electrode active material-including layer, an average particle diameter d50 is within 2 μm to 5 μm, a particle diameter d10 and a particle diameter d90, where a cumulative frequency from a smaller side is, respectively, 10% and 90%, is within 0.5 μm to 3 μm and within 4 μm to 10 μm, respectively, in a particle size distribution. X, represented by X=(d50−d10) /d50 is within 0.4 to 0.8. Y, represented by Y=(d90−d50)/d90 is within 0.2 to 0.6.
A method of manufacturing a battery module for use in a vehicle is presented. The method may include disposing battery cells into a lower housing and disposing a lid assembly over the battery cells. The lid assembly may include a lid and bus bar interconnects disposed on the lid. The method may also include disposing a printed circuit board (PCB) assembly onto the lid assembly and electrically coupling portions of the lid assembly, portions of the PCB assembly, and the battery cells to each other.
A laminated body of the present invention includes: a porous film containing a polyolefin as a main component; and a porous layer containing a resin, the laminated body satisfying (A)>(B), where (A) represents the amount of an increase in the dielectric strength with respect to the amount of an increase in the amount of the resin contained per unit area of the porous layer, and (B) represents the amount of an increase in the dielectric strength with respect to the amount of an increase in the amount of the polyolefin contained per unit area of the porous film. The laminated body is usable as a secondary battery separator having a higher dielectric strength.
Provided are a separator for a nonaqueous cell that has air permeability and is small in thickness while maintaining strength properties; and a nonaqueous cell having this separator. The separator includes a fiber sheet in which a polyvinyl alcohol fiber is incorporated in a proportion of 30% or more by mass (based on the fiber sheet). The fiber has a fiber breaking temperature in heated water of lower than 100° C. and higher than 85° C.
In various embodiments, a light-emitting device may be provided including an active structure including a halide perovskite layer. The light-emitting device may further include a first injection electrode and a second injection electrode electrically coupled to the active structure. The light-emitting device may additionally include a control electrode, and an insulator layer between the control electrode and the active structure. The first injection electrode may be configured to inject electrons into the active structure and the second injection electrode may be configured to inject holes into the active structure upon application of a potential difference between the first injection electrode and the second injection electrode. The control electrode may be configured to generate an electric field upon application of a voltage, thereby causing accumulation of the electrons and the holes in a region of the halide perovskite layer so that the electrons and the holes recombine, thereby emitting light.
An organic light-emitting display apparatus includes: a substrate; a pixel electrode disposed on the substrate; an intermediate layer that is disposed on the pixel electrode and includes an organic light-emitting layer; a facing electrode disposed on the intermediate layer; and a thin film encapsulating layer disposed on the facing electrode, wherein the thin film encapsulating layer includes: a first inorganic film and a second inorganic film, which are disposed on the facing electrode; a first organic film that is disposed between the first inorganic film and the second inorganic film and has a first thickness; and a second organic film that is disposed on the second inorganic film and has a second thickness greater than the first thickness.
An exemplary embodiment provides a manufacturing method of a display device, including: preparing a first panel and a second panel that are respectively provided with one or more pattern layers formed on a substrate; bonding the first panel and the second panel; cutting the bonded panel into division panels of a cell unit; chamfering the division panels; and chemical reinforcing the chamfered division panels.
An organic light emitting diode display includes: a substrate; and a plurality of red organic light emitting diodes, green organic light emitting diodes, and blue organic light emitting diodes on the substrate, each of the plurality of red organic light emitting diodes, green organic light emitting diodes, and blue organic light emitting diodes including: a first electrode on the substrate; an organic layer on the first electrode; and a second electrode on the organic layer, and the organic layer includes a light emission auxiliary layer on the first electrode and an organic light emitting layer on the light emission auxiliary layer, and the organic layer of each of the red organic light emitting diodes has a thickness of about 90 to 110 nm.
A high efficient white emission light emitting element having peak intensity in each wavelength region of red, green, and blue is provided. Specifically, a white emission light emitting element having an emission spectrum that is independent of current density is provided. A first light emitting layer 312 exhibiting blue emission and a second light emitting layer 313 containing a phosphorescent material that generates simultaneously phosphorescent emission and excimer emission are combined. In order to derive excimer emission from the phosphorescent material, it is effective to disperse a phosphorescent material 323 having a high planarity structure such as platinum complex at a high concentration of at least 10 wt % to a host material 322. Further, the first light emitting layer 312 is provided to be in contact with the second light emitting layer 313 at the side of an anode. Ionization potential of the second light emitting layer 313 is preferably larger by 0.4 eV than that of the first light emitting layer 312.
Platinum, palladium, and gold tetradentate metal complexes of Formulas I and II including indoloacridine. The complexes are suitable for use as phosphorescent or delayed fluorescent and phosphorescent emitters in display and lighting applications.
Provided is a photoelectric conversion element including a photoelectric conversion material layer that is constituted by an organic material having more excellent sensitivity and responsiveness than those of conventional ones.The photoelectric conversion element of the present invention includes: (a-1) a first electrode and a second electrode which are disposed apart from each other; and (a-2) a photoelectric conversion area which is disposed between the first electrode and the second electrode, wherein the photoelectric conversion area includes multiple layers and at least one of the multiple layers is formed of a dioxaanthanthrene-based compound represented by the structural formula (1).
Discussed is a delayed fluorescence compound of Formula 1: wherein n is 1 or 0, and A is selected from Formula 2: wherein D is selected from Formula 3: and each of “L1” and “L2” is independently selected from Formula 4: wherein R1 in the Formula 2 is selected from hydrogen or phenyl, and each of X, Y, and Z is independently selected from carbon and nitrogen, and wherein at least two selected from X, Y, and Z are nitrogen, and R2 in the Formula 4 is selected from one of hydrogen and C1 alkyl through C10 alkyl.
There is provided a compound having Formula I: In the formula: R1, R1a, R2, and R2a are the same or different and are H, D, F, CN, alkyl, fluoroalkyl, aryl, heteroaryl, silyl, deuterated alkyl, deuterated partially-fluorinated alkyl, deuterated aryl, deuterated heteroaryl, deuterated silyl, alkoxy, aryloxy, fluoroalkoxy, siloxane, siloxy, deuteroalkoxy, deuteroaryloxy, deuterofluoroalkoxy, deuterosiloxane, or deuterosiloxy, with the proviso that at least one of R1 and R1a is heteroaryl or deuterated heteroaryl; R3, R3a, R4, R4a, R5, and R6 are the same or different at each occurrence and are D, F, CN, alkyl, fluoroalkyl, aryl, heteroaryl, silyl, deuterated alkyl, deuterated partially-fluorinated alkyl, deuterated aryl, deuterated heteroaryl, deuterated silyl, alkoxy, aryloxy, fluoroalkoxy, siloxane, siloxy, deuteroalkoxy, deuteroaryloxy, deuterofluoroalkoxy, deuterosiloxane, or deuterosiloxy, where adjacent groups selected from R3, R3a, R4, and R4a can be joined together to form a fused ring; R7 is the same or different at each occurrence and is alkyl, aryl, or deuterated analogs thereof, where two alkyl R7 groups can be joined together to make a cycloalkyl spiro ring, and where two R7 phenyl groups can be joined to form a spiro fluorene group; a and b are the same or different and are 0 or 1, with the proviso that a+b≧1; x is an integer of 0-3; y is an integer of 0-4; and z is an integer of 0-5.
This invention discloses novel light-emitting materials. These materials comprise a side chain which contains at least two Si or Ge atoms, such as bis(trimethylsilyl)methyl, or a side chain that includes Si—F bond, or a side chain that includes a fluorine-containing alkyl chain. This new side chain could fine tune emission color, reduce the stacking of the light-emitting materials, maintain good lifetime, and result in high PLQY.
The present teachings relate to polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds generally include as repeating units at least one annulated thienyl-vinylene-thienyl (TVT) unit and at least one other pi-conjugated unit. The annulated TVT unit can be represented by the formula: where Cy1 and Cy2 can be a five- or six-membered carbocyclic ring. The annulated TVT unit can be optionally substituted at any available ring atom(s), and can be covalently linked to the other pi-conjugated unit via either the thiophene rings or the carbocyclic rings Cy1 and Cy2. The other pi-conjugated unit can be a conjugated linear linker including one or more unsaturated bonds, or a conjugated cyclic linker including one or more carbocyclic and/or heterocyclic rings.
The present invention provides a mask plate, a method for processing an organic layer and a method for fabricating an organic light-emitting diode display substrate. The mask plate comprises a light transmitting region and a light shading region. The light transmitting region corresponds to a region of an organic layer to be removed. The light transmitting region is provided with a photothermal conversion material for converting light energy into heat energy. The light shading region is provided with a light blocking layer for blocking transmission of light. The mask plate is suitable for processing an organic layer and particularly suitable for forming an auxiliary via hole in an organic light-emitting layer of an organic light-emitting diode display substrate.
A semiconductor structure includes an Nth metal layer, a diffusion barrier layer over the Nth metal layer, a first deposition of bottom electrode material over the diffusion barrier layer, a second deposition of bottom electrode material over the first deposition of bottom electrode material, a magnetic tunneling junction (MTJ) layer over the second deposition of bottom electrode material, a top electrode over the MTJ layer; and an (N+1)th metal layer over the top electrode; wherein the diffusion barrier layer and the first deposition of bottom electrode material are laterally in contact with a dielectric layer, the first deposition of bottom electrode material spacing the diffusion barrier layer and the second deposition of bottom electrode material apart, and N is an integer greater than or equal to 1. An associated electrode structure and method are also disclosed.
A light-emitting diode (LED) package, including: a substrate with front and back surfaces, including: at least two metal blocks; an insulation portion, wherein the metal blocks are disposed in the insulation portion and have at least portions of upper and lower surfaces exposed; and an electrical insulation region between the at least two metal blocks; an LED chip disposed over, and forming one or more electrical connections with, the at least two metal blocks; and a package encapsulant disposed over the LED chip surface and covering at least a portion of the substrate; wherein the at least two metal blocks have protrusion connection portions that extend to an edge of the substrate.
High-voltage solid-state transducer (SST) devices and associated systems and methods are disclosed herein. An SST device in accordance with a particular embodiment of the present technology includes a carrier substrate, a first terminal, a second terminal and a plurality of SST dies connected in series between the first and second terminals. The individual SST dies can include a transducer structure having a p-n junction, a first contact and a second contact. The transducer structure forms a boundary between a first region and a second region with the carrier substrate being in the first region. The first and second terminals can be configured to receive an output voltage and each SST die can have a forward junction voltage less than the output voltage.
A lighting device includes a body section; a substrate provided in the body section; a wiring pattern provided on a surface of the substrate and including wiring pads; and light emitting elements provided on the wiring pattern and including electrodes in the vicinity of a circumferential edge of a surface opposite to a side on which the wiring pattern is provided. The lighting device also includes wirings that respectively connect the wiring pads and a plurality of electrodes; a surrounding wall member provided to surround the light emitting elements and having an annular shape; and a sealing section provided to cover the inside of the surrounding wall member. At least a part of the light emitting elements is connected in series. The electrodes are respectively positioned on or inside a circumference passing through centers of the light emitting elements which are connected in series.
An optoelectronic device including an array of light-emitting diodes and photoluminescent blocks opposite at least part of the light-emitting diodes, each light-emitting diode having a lateral dimension smaller than 30 μm, each photoluminescent block including semiconductor crystals having an average size smaller than 1 μm, dispersed in a binding matrix.
A semiconductor device including a first lead electrode and a second lead electrode; a semiconductor stack structure disposed on the member, the semiconductor stack structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active region interposed between the first and second conductive semiconductor layers; a first electrode electrically connected to the first conductive semiconductor layer; a second electrode electrically connected to the second conductive semiconductor layer; a plating layer configured to bond the semiconductor stack structure to the member; and a first wavelength converter that covers at least side surfaces of the semiconductor stack structure.
A purpose of the present invention is to provide an optical unit that is capable of effectively sealing one or a plurality of optical devices even without a special material, a special structure, etc.In an optical unit of the present invention, the sealing section (50) includes: a circular seal section (51) surrounding one or a plurality of optical devices (40) on a wiring substrate from an in-plane direction of the wiring substrate; and an inside filling section (52) with which inside of the seal section (51) is filled and that seals the one or plurality of optical devices (40). The optical devices (40) are each a light emitting unit, a light receiving device, an image sensor, an X-ray sensor, or a power generating device. The seal section (51) and the inside filling section (52) are each configured of a cured thermosetting resin. The inside filling section (52) has light transmittance that is higher than light transmittance of the seal section (51). The inside filling section (52) has a modulus of elasticity that is smaller than a modulus of elasticity of the seal section (51).
The light emitting device includes a first conductive semiconductor layer; a second conductive semiconductor layer on the first conductive semiconductor layer; and an active layer between the first and second conductive semiconductor layers. The active layer includes a plurality of well layers and a plurality of barrier layers, wherein the well layers include a first well layer and a second well layer adjacent to the first well layer. The barrier layers include a first barrier layer disposed between the first and second well layers, and the first barrier layer includes a plurality of semiconductor layers having an energy bandgap wider than an energy bandgap of the first well layer. At least two layers of the plurality of semiconductor layers are adjacent to the first and second well layers, and have aluminum contents greater than that of the other layer.
A heating and power generating apparatus comprises: a frame installed on the roof of a building and having a predetermined area; a plurality of power generating units arranged inside the frame to collect sunlight and generate electricity; and a hot water supply unit buried inside of the frame to absorb sunlight and perform heating and hot water supply. According to the present invention, hot water can be generated by sunlight in the winter to supply hot water and heat a house, and power can be generated by sunlight in the summer to supply power for cooling a room and thus conserve the electrical energy used in a cooler, thus promoting energy saving and environmental protection.
A photovoltaic cell is provided that enables cost reduction and stable operation with a simple configuration and enhances conversion efficiency by a new technology of forming an energy level in a band gap. In the photovoltaic cell, a substrate, a conductive first electrode, an electromotive force layer, a p-type semiconductor layer, and a conductive second electrode are laminated, electromotive force is generated by photoexciting the electron in the band gap of the electromotive force layer by light irradiation, the electromotive force layer is filled with an n-type metal oxide semiconductor of fine particles coated by an insulating coat, a new energy level is formed in a band gap by photoexcited structural change caused by ultraviolet irradiation, and efficient and stable operation can be performed by providing a layer of an n-type metal oxide semiconductor between the first electrode and the electromotive force layer.
A semiconductor device comprising a first metal oxide film, an oxide semiconductor film, a second metal oxide film, a gate insulating film, and a gate electrode is provided. The oxide semiconductor film comprises an In—Ga—Zn—O-based metal oxide. The second metal oxide film comprises a Ga—Zn—O-based metal oxide. An amount of substance of zinc oxide with respect to gallium oxide is lower than 50% in the Ga—Zn—O-based metal oxide.
A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.
In one illustrative embodiment, the present disclosure is directed to a method involving fabricating an NMOS transistor device having a substrate and a gate structure disposed over the substrate, the substrate including a channel region underlying, at least partially, the gate structure, the fabricating including: forming a source and drain cavity in the substrate; with an in situ doped semiconductor material, epitaxially growing a source and drain region within the source and drain cavity; performing an amorphization ion implantation process by implanting an amorphization ion material into the source and drain region; forming a capping material layer above the NMOS transistor device; with the capping material layer in position, performing a stress forming anneal process to thereby form stacking faults in the source and drain region; and removing the capping material layer.
A method of forming a gate structure, including forming one or more vertical fins on a substrate; forming a bottom spacer on the substrate surface adjacent to the one or more vertical fins; forming a gate structure on at least a portion of the sidewalls of the one or more vertical fins; forming a gauge layer on at least a portion of the bottom spacer, wherein the gauge layer covers at least a portion of the gate structure on the sidewalls of the one or more vertical fins; and removing a portion of the gauge layer on the bottom spacer.
A III-nitride power switch that includes a III-nitride heterojunction, field dielectric bodies disposed over the heterojunction, and either gate conductive bodies that do not overlap the top surface of the field dielectric bodies or power contacts that do not overlap field dielectric bodies or both.
The manufacturing method of the thin film transistor includes the following steps. A gate, a first insulating layer, a second insulating layer, a metal oxide semiconductor layer, a first etching stop layer, a second etching stop layer and a photoresist structure are sequentially formed. The second etching stop layer, the first etching stop layer, and the metal oxide semiconductor layer are patterned using the photoresist structure as a mask to form a pre-second etching stop pattern, a pre-first etching stop pattern, and a metal oxide semiconductor pattern. The pre-second etching stop pattern and the pre-first etching stop pattern are patterned using the remaining thick portion of the photoresist structure as a mask to form a second etching stop pattern and a first etching stop pattern, and a portion of the second insulating layer is removed to form an insulating pattern. A source and a drain are formed.
An integrated circuit having an improved gate contact and a method of making the circuit are provided. In an exemplary embodiment, the method includes receiving a substrate. The substrate includes a gate stack disposed on the substrate and an interlayer dielectric disposed on the gate stack. The interlayer dielectric is first etched to expose a portion of the gate electrode, and then the exposed portion of the gate electrode is etched to form a cavity. The cavity is shaped such that a portion of the gate electrode overhangs the electrode. A conductive material is deposited within the cavity and in electrical contact with the gate electrode. In some such embodiments, the etching of the gate electrode forms a curvilinear surface of the gate electrode that defines the cavity.
A method for manufacturing a semiconductor device includes forming a conductive pattern on a substrate, forming a filling insulation layer covering the conductive pattern, forming a contact hole in the filling insulation layer and adjacent to the conductive pattern, forming an opening in the conductive pattern by removing a portion of the conductive pattern adjacent to the contact hole such that the opening is connected to the contact hole, and forming a contact plug filling the contact hole and the opening. A width of the opening is greater than a width of the contact hole.
The disclosed technology relates to a device including a diode. In one aspect, the device includes a lower group III metal nitride layer and an upper group III metal nitride layer and a heterojunction formed therebetween, where the heterojunction extends horizontally and is configured to form a two-dimensional electron gas (2DEG) that is substantially confined in a vertical direction and within the lower group III metal nitride layer. The device additionally includes a cathode forming an ohmic contact with the upper group III metal nitride layer. The device additionally includes an anode, which includes a first portion that forms a Schottky barrier contact with the upper group III metal nitride layer, and a second portion that is separated vertically from the upper group III metal nitride layer by a layer of dielectric material. The anode is configured such that the second portion is horizontally located between the anode and the cathode and the dielectric material is configured to pinch off the 2DEG layer in a reverse biased configuration of the device. The device further includes a passivation area formed between the anode and the cathode to horizontally separate the anode and the cathode from each other.
Techniques are disclosed for enabling multi-sided condensation of semiconductor fins The techniques can be employed, for instance, in fabricating fin-based transistors. In one example case, a strain layer is provided on a bulk substrate. The strain layer is associated with a critical thickness that is dependent on a component of the strain layer, and the strain layer has a thickness lower than or equal to the critical thickness. A fin is formed in the substrate and strain layer, such that the fin includes a substrate portion and a strain layer portion. The fin is oxidized to condense the strain layer portion of the fin, so that a concentration of the component in the strain layer changes from a pre-condensation concentration to a higher post-condensation concentration, thereby causing the critical thickness to be exceeded.
A diode includes: a p-type semiconductor substrate; an n-type semiconductor layer; a p-type isolation region formed to surround a predetermined region of the n-type semiconductor layer on the p-type semiconductor substrate; an n-type buried layer formed across the p-type semiconductor layer and the n-type semiconductor layer within the predetermined region; an n-type collector wall formed in the n-type semiconductor layer; a p-type anode region and a plurality of n-type cathode regions formed in a diode formation region; and a p-type guard ring formed to surround the diode formation region in a region between the diode formation region of the surface layer of the n-type semiconductor layer and the p-type isolation region. A transistor for reducing a leakage current is formed by the p-type anode region, the p-type guard ring, and an n-type semiconductor between the p-type anode region and the p-type guard ring.
Methods of forming hetero-layers with reduced surface roughness and bulk defect density on non-native surfaces and the devices formed thereby are described. In one embodiment, the method includes providing a substrate having a top surface with a lattice constant and depositing a first layer on the top surface of the substrate. The first layer has a top surface with a lattice constant that is different from the first lattice constant of the top surface of the substrate. The first layer is annealed and polished to form a polished surface. A second layer is then deposited above the polished surface.
A thin film transistor, an array substrate and manufacturing method thereof, and a display device are provided. The thin film transistor includes an active layer, a source electrode, a drain electrode, and a first gate electrode, the first gate electrode is shaped in a ring. The active layer includes a first portion, a second portion and a third portion for connecting the first portion and the second portion. The first portion and the second portion are disposed horizontally, and connected to the source electrode and the drain electrode, respectively. The third portion is disposed obliquely, and has a channel provided thereon. At least one part of the channel is located on an inner side of the first gate electrode. The thin film transistor can be used in a display device.
An image sensor and an operating method thereof are disclosed. The image sensor includes a first photoelectric conversion portion configured to receive plural lights, except for a light of first wavelength, to generate an electric charge; and a second photoelectric conversion portion configured to receive the light of the first wavelength to generate an electric charge, wherein at least a portion of the first photoelectric conversion portion and the second photoelectric conversion portion is spaced apart from each other in a vertical direction.
Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices.
A method of manufacturing a semiconductor device includes forming, over a semiconductor substrate comprising a first region and a second region, a patterned first film in which an upper face of a portion located over the first region is positioned at a lower height from the semiconductor substrate than an upper face of a portion located over the second region, forming, over the first film, a second film which is an insulating film, a portion of the second film penetrating the first film and being located inside a trench of the semiconductor substrate, and polishing the second film to remove a portion of the second film located over the first film. An occupancy of the trench in the first region is lower than an occupancy of the trench in the second region.
A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled.
A method of manufacturing a pinned photodiode, including: forming a region of photon conversion into electric charges of a first conductivity type on a substrate of the second conductivity type; coating said region with a layer of a heavily-doped insulator of the second conductivity type; and annealing to ensure a dopant diffusion from the heavily-doped insulator layer.
An image sensor pixel includes a first photodiode and a second photodiode disposed in a semiconductor material. The first photodiode has a first doped region, a first lightly doped region, and a first highly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode, and includes a second doped region, a second lightly doped region, and a second highly doped region. The image sensor pixel also includes a first microlens optically coupled to direct a first amount of image light to the first photodiode, and a second microlens optically coupled to direct a second amount of image light to the second photodiode. The first amount of image light is larger than the second amount of image light.
A fabrication process is provided for a 3D stacked non-volatile memory device which provides a source contact to a bottom of a memory hole in a stack without exposing a programmable material lining of an interior sidewall of the memory hole and without exposing a channel forming region also lining an interior of the memory hole to an energetic and potentially damaging etch environment. The stack includes alternating control gate layers and dielectric layers on a substrate, and the memory hole is etched through the stack before lining an interior sidewall thereof with the programmable material and then with the channel forming material. The process avoids a need to energetically etch down through the memory hole to open up a source contact hole near the bottom of the channel forming material by instead etching upwardly from beneath the memory hole.
Threshold voltage shift due to programming of a neighboring memory element can be reduced or suppressed by forming a compositionally modulated charge storage layer in a three-dimensional memory device. The compositionally modulated charge storage layer can be formed by providing an oxygen-containing dielectric silicon compound layer outside a tunneling dielectric layer, and subsequently nitriding portions of the oxygen-containing dielectric silicon compound layer only at levels of the control gate electrodes. An alternating stack of sacrificial material layers and insulating layers can be employed to form a memory stack structure therethrough. After removal of the sacrificial material layers, a nitridation process can be performed to convert physically exposed portions of the oxygen-containing dielectric silicon compound layer into silicon nitride portions, which are vertically spaced from one another by remaining oxygen-containing dielectric silicon compound portions that have inferior charge trapping property to the silicon nitride portions.
A method for forming a 3D NAND structure includes providing a semiconductor substrate; forming a control gate structure having a plurality of staircase-stacked layers, each layer has a first end and a second end; forming a dielectric layer covering the semiconductor substrate, and the control gate structure; forming a hard mask layer on the dielectric layer; patterning the hard mask layer to form a plurality of openings above corresponding second ends of the layers of the control gate structure; forming a photoresist layer on the hard mask layer; repeating a photoresist trimming process and a first etching process to sequentially expose the openings, and to form a plurality of holes with predetermined depths in the dielectric layer; performing a second etching process to etch the plurality of holes until surfaces of the second ends are exposed to form through holes; and forming metal vias in the through holes.
According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and at least one columnar member. The stacked body is provided on the substrate. In the stacked body, a plurality of insulating films and a plurality of electrode films are layered together alternately. The semiconductor pillar is provided in the stacked body and extends in a stacking direction of the stacked body. The charge storage film is provided between the semiconductor pillar and the stacked body. The columnar member is provided in the stacked body and extends in the stacking direction. A lower portion of the columnar member is provided in the substrate.
A stack of material layers includes first material layers, second material layers located between a respective pair of an overlying first material layer and an underlying first material layer, and at least one temporary material layer located between a respective pair of an overlying first material layer and an underlying first material layer. After formation of a memory opening and a memory stack structure, at least one first backside recess is formed by removing the at least one temporary material layer and adjoining portions of a memory film. A physically exposed portion of a semiconductor channel is doped with electrical dopants to form a doped semiconductor channel portion. Second backside cavities are formed by removal of the second material layers. The backside cavities are then filled with a dielectric liner and electrically conductive layers, such as select and control gate electrodes of a memory device.
Provided is a semiconductor device, including gate structures on a substrate, the gate structures extending parallel to a first direction and being spaced apart from each other by a separation trench interposed therebetween, each of the gate structures including insulating patterns stacked on the substrate and a gate electrode interposed therebetween; vertical pillars connected to the substrate through the gate structures; an insulating spacer in the separation trench covering a sidewall of each of the gate structures; and a diffusion barrier structure between the gate electrode and the insulating spacer.
The present disclosure relates to a semiconductor substrate including, a first silicon layer comprising an upper surface with protrusions extending vertically with respect to the upper surface. An isolation layer is arranged over the upper surface meeting the first silicon layer at an interface, and a second silicon layer is arranged over the isolation layer. A method of manufacturing the semiconductor substrate is also provided.
The semiconductor device may include a first sub-pipe gate having a pipe hole formed therein; a second sub-pipe gate disposed on the first sub-pipe gate and passed-through by vertical holes being coupled to the pipe hole, wherein a material of the second sub-pipe gate has a lower oxidation rate than that of a material of the first sub-pipe gate; a first oxidized layer formed within a portion of the first sub-pipe gate to conform to a contour of the pipe hole; and a second oxidized layer formed within a portion of the second sub-pipe gate to conform to a contour of the vertical holes and the contour of the pipe hole.
A semiconductor structure includes a nonvolatile memory cell including a source region, a channel region and a drain region that are provided in a semiconductor material. The channel region includes a first portion adjacent the source region and a second portion between the first portion of the channel region and the drain region. An electrically insulating floating gate is provided over the first portion of the channel region. The nonvolatile memory cell further includes a select gate and a control gate. The first portion of the select gate is provided over the second portion of the channel region. The second portion of the select gate is provided over a portion of the floating gate that is adjacent to the first portion of the select gate. The control gate is provided over the floating gate and adjacent to the second portion of the select gate.
A method for forming a semiconductor device includes blocking a first region of a wafer and forming a plurality of fins in a second region of the wafer. A protective conformal mask layer is deposited over the plurality of fins in the second region, the second region is blocked, and a plurality of fins are formed in the first region of the wafer using a variety of wet and/or dry etching procedures. The protective conformal mask layer protects the plurality of fins in the second region from the variety of wet and/or dry etching procedures that are used to form the plurality of fins in the first region.
A semiconductor device includes a gate structure on a substrate. The gate structure includes a first gate insulation pattern, a conductive pattern for controlling a threshold voltage, a first gate electrode and a first mask sequentially stacked. A dummy gate structure is spaced apart from the gate electrode. The dummy gate structure includes a first stressor pattern including titanium oxide. Source/drain regions are adjacent to the gate structure. The source/drain regions are doped with p-type impurities. The first stressor pattern may apply a stress onto the channel region of a transistor, and consequently the transistor having good electrical characteristics may be obtained.
A semiconductor device is provided. The semiconductor device includes a lower layer, an upper layer and an interlayer via. The lower layer includes a lower substrate, lower electronic devices, metallization elements and contact elements. One of the lower electronic devices includes a field effect transistor (FET), lower contacts and spacers interposed between the FET and the lower contacts. At least one of the contact elements is electrically coupled between a metallization element and one of the lower contacts to form a stack. The upper layer includes an upper substrate and upper electronic devices. One of the upper electronic devices includes an FET, upper contacts and spacers interposed between the FET and the upper contacts. The upper substrate and one of the upper contacts define a through-hole aligned with the stack. The interlayer via extends through the through-hole to electrically couple the stack and the one of the upper contacts.
An integrated optical sensor and methods for forming and using the same is provided. The integrated optical sensor comprising: a light source; a transparent substrate, having a first surface and a second surface opposite to each other; a first pixel cell array region, located on the first surface and adapted to receiving lights emitted from the light source and reflected by an external object; a second pixel cell array region, located on the first surface and adapted to receiving lights emitted from the light source and reflected by the fingerprint; and a third pixel cell array region, located on the first surface and adapted to receiving visible lights from outside. The integrated optical sensor has simplified structures, the forming method thereof has improved processes, and the using method thereof has more applications. Besides, production costs may be reduced.
An illumination device includes a supporting base, at least two supports and at least two semiconductor light emitting elements. The supports are disposed on the supporting base and coupled to each other. The semiconductor light emitting elements are respectively coupled to the supports. The semiconductor light emitting element includes a transparent substrate and a light emitting diode (LED) structure. The transparent substrate has a support surface and a second main surface disposed opposite to each other. The LED structure is disposed on the support surface. At least a part of the light emitted from the LED structure may pass through the transparent substrate and emerge from the second main surface.
A multi-chip package includes a first die having temperature sensors and a second die. The first die generates temperature deviation information of m (m
A semiconductor package may include first semiconductor chips disposed in a rotationally symmetrical structure. First bonding pads are arranged over the bottom surfaces of the first semiconductor chips. The semiconductor package may also include a first encapsulation member formed to surround at least side surfaces of the first semiconductor chips. The semiconductor package may also include via patterns formed in the first encapsulation member. The semiconductor package may also include second semiconductor chips stacked over top surfaces of the first semiconductor chips and the first encapsulation member including the via patterns in such a way as to form step shapes with the first semiconductor chips. Second bonding pads electrically connected to the via patterns are arranged over bottom surfaces of the second semiconductor chips. The semiconductor package may also include a second encapsulation member formed over the top surfaces of the first semiconductor chips and the first encapsulation member to surround at least side surfaces of the second semiconductor chips.
A die package having a plurality of connection pads, a plurality of wire leads having metal cores with a defined core diameter, and a dielectric layer surrounding the metal cores having a defined dielectric thickness, at least one first connection pad held in a mold compound covering the die and the plurality of leads connected to at least one metal core, and at least one second connection pad held in the mold compound covering the die and the plurality of leads connected to at least one metal core. Further, the present invention relates to a method for manufacturing a substrate less die package.
A device includes a metal pad over a substrate. A passivation layer includes a portion over the metal pad. A post-passivation interconnect (PPI) is electrically coupled to the metal pad, wherein the PPI comprises a portion over the metal pad and the passivation layer. A polymer layer is over the PPI. A dummy bump is over the polymer layer, wherein the dummy bump is electrically insulated from conductive features underlying the polymer layer.
A solder bump structure for a ball grid array (BGA) includes at least one under bump metal (UBM) layer and a solder bump formed over the at least one UBM layer. The solder bump has a bump width and a bump height and the ratio of the bump height over the bump width is less than 1.
A semiconductor substrate including one or more conductors is provided. A first layer and a second layer are deposited on the top surface of the conductors. A dielectric cap layer is formed over the semiconductor substrate and air gaps are etched into the dielectric layer. The result is a bilayer cap air gap structure with effective electrical performance.
A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
A semiconductor device has a substrate with a contact pad. A first insulation layer is formed over the substrate and contact pad. A first under bump metallization (UBM) is formed over the first insulating layer and is electrically connected to the contact pad. A second insulation layer is formed over the first UBM. A second UBM is formed over the second insulation layer after the second insulation layer is cured. The second UBM is electrically connected to the first UBM. The second insulation layer is between and separates portions of the first and second UBMs. A photoresist layer with an opening over the contact pad is formed over the second UBM. A conductive bump material is deposited within the opening in the photoresist layer. The photoresist layer is removed and the conductive bump material is reflowed to form a spherical bump.
A semiconductor device is provided. The semiconductor device may include a frame portion on which at least one semiconductor chip is arranged; a plurality of leads electrically connected to the semiconductor chip; and a mold portion formed on the frame portion to surround a part of the frame portion on which the semiconductor chip and the plurality of leads are arranged, wherein a gap between closest portions of the respective leads is at least 2.9 mm.
An electronic device comprising at least one electronic component mounted on a support and surrounded by a deformable casing containing a heat-conducting and electrically-insulating liquid, the device comprising a heat dissipation plate that is substantially parallel to the support and spaced apart therefrom, and heat exchange means for heat exchange by conduction between the casing and the plate, the heat-conducting and electrically-insulating liquid being selected and the casing being arranged so that thermal expansion of the oil leads to the casing applying force against the means for heat exchange by conduction.
A semiconductor device is fastened to a heat dissipation member such that a force directed downward acts from a metal substrate onto the heat dissipation member, with a rim portion of a storage region as a fulcrum with respect to the heat dissipation member. As a result, a heat conductive material can be spread into a thinner layer between the metal substrate and the heat dissipation member, improving the heat dissipation between the metal substrate and the heat dissipation member.
In a semiconductor device, an insulating substrate housed in an housing opening portion of a resin case includes an insulating board, a first metal layer formed on the upper surface of the insulating board, a second metal layer which is formed on an outer peripheral edge portion of the upper surface of the insulating board and is in contact with a level difference portion, and a third metal layer formed on the under surface of the insulating board and leveled with or protruding from the under surface of the resin case. The first and second metal layers are formed by etching copper foil formed on the insulating board so that these metal layers have the same thickness. The thickness of the second metal layer may be changed relatively freely according to the housing depth of the resin case. Thus, the semiconductor device may be made thin.
An apparatus including a die, a first side of the die including a first type of system level contact points and a second side including a second type of contact points; and a package substrate coupled to the die and the second side of the die. An apparatus including a die, a first side of the die including a plurality of system level logic contact points and a second side including a second plurality of system level power contact points. A method including coupling one of a first type of system level contact points on a first side of a die and a second type of system level contact points on a second side of the die to a package substrate.
A semiconductor device includes a first die including a first pad and a first passivation layer, a second die including a second pad and a second passivation layer, and an encapsulant surrounding the first die and the second die. Surfaces of the first die are not coplanar with corresponding surfaces of the second die. A dielectric layer covers at least portions of the first passivation layer and the second passivation layer, and further covers the encapsulant between the first die and the second die. The encapsulant has a first surface. The dielectric layer has a second surface adjacent to the first passivation layer, the second passivation layer and the encapsulant, and further has a third surface opposite the second surface. The semiconductor device further includes a redistribution layer electrically connected to the first pad and the second pad and disposed above the third surface of the dielectric layer.
A low thermal stress package for large area semiconductor dies. The package may include a substrate and at least one pedestal extending from the substrate, wherein the pedestal may have a mounting surface that is smaller than a mounting surface of a semiconductor die that is mounted to the pedestal. The bonded area between the die and the pedestal is therefore reduced relative to conventional semiconductor package substrates, as is the amount of thermal stress sustained by the die during thermal cycling.
A semiconductor device includes a gate, which comprises a gate electrode and a gate dielectric underlying the gate electrode, a spacer formed on a sidewall of the gate electrode and the gate dielectric, a buffer layer having a first portion underlying the gate dielectric and the spacer and a second portion adjacent the spacer wherein the top surface of the second portion of the buffer layer is recessed below the top surface of the first portion of the buffer layer, and a source/drain region substantially aligned with the spacer. The buffer layer preferably has a greater lattice constant than an underlying semiconductor substrate. The semiconductor device may further include a semiconductor-capping layer between the buffer layer and the gate dielectric, wherein the semiconductor-capping layer has a smaller lattice constant then the buffer layer.
An integrated circuit structure includes a semiconductor substrate including a first portion in a first device region, and a second portion in a second device region. A first semiconductor fin is over the semiconductor substrate and has a first fin height. A second semiconductor fin is over the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height.
A semiconductor device includes a first mono-crystallized layer including first transistors, and a first metal layer forming at least a portion of connections between the first transistors; and a second layer including second transistors, the second transistors including mono-crystalline material, the second layer overlying the first metal layer, wherein the first metal layer includes aluminum or copper, and wherein the second layer is less than one micron in thickness and includes logic cells.
Interconnect structures are provided that include an intermetallic compound as either a cap or liner material. The intermetallic compound is a thermal reaction product of a metal or metal alloy of an interconnect metallic region with a metal of either a metal cap or a metal layer. In some embodiments, the metal cap may include a metal nitride and thus a nitride-containing intermetallic compound can be formed. The formation of the intermetallic compound can improve the electromigration resistance of the interconnect structures and widen the process window for fabricating interconnect structures.
Methods of fabricating a semiconductor device are described. The method includes forming a patterned oxide layer having a plurality of openings over a substrate, depositing a metal layer in the openings to form metal plugs, depositing a global transformable (GT) layer on the oxide layer and the metal plugs, and depositing a capping layer directly on the GT layer without exposing the GT layer to ambient air. The GT layer on the oxide layer transforms into a dielectric oxide and the GT layer on the metal plugs remains conductive during deposition of the capping layer.
In some aspects, methods of forming a metal chalcogenide thin film are provided. According to some methods, a metal chalcogenide thin film is deposited on a substrate in a reaction space in a cyclical deposition process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase chalcogen reactant. In some aspects, methods of forming three-dimensional structure on a substrate surface are provided. In some embodiments, the method includes forming a metal chalcogenide dielectric layer between a substrate and a conductive layer. In some embodiments the method includes forming an MIS-type contact structure including a metal chalcogenide dielectric layer.
In a method of fabricating a semiconductor device, a substrate including a circuit area and an overlay mark area is provided. Conductive gate patterns are formed on the substrate in the circuit area such that the overlay mark area is free of the gate patterns, and conductive contact patterns are formed on the substrate between the gate patterns in the circuit area. A mirror pattern is formed on the substrate in the overlay mark area, where the mirror pattern and the contact patterns comprising a same reflective material. Related semiconductor devices, overlay marks, and fabrication methods are also discussed.
A substrate holder having a plate element for receiving a substrate includes at least one recess in a first side and spacers in the at least one recess. At least one opening is fluidly connected to the recess and is connectable to an external gas delivery/exhaust unit. At least one notch or channel radially surrounds the recess. At least one opening is fluidly connected to the notch or channel and is connectable to an external gas delivery/exhaust unit. A circumferential web radially surrounds the recess and is located between the recess and the notch or channel. A first circumferential contact surface is formed on the upper side of the web and radially surrounds the recess, such that a substrate abutting against the first contact surface forms an enclosed chamber with the recess. A second circumferential contact surface radially surrounds the notch or channel.
Disclosed are a liquid processing apparatus and a liquid processing method. The liquid processing apparatus includes an ejection port ejecting a first liquid to a wafer, a first liquid supply mechanism supplying sulphuric acid to the ejection port, and a second liquid supply mechanism supplying hydrogen peroxide solution to the ejection port. The first liquid supply mechanism includes a first temperature adjustment mechanism maintaining the first liquid heated to a first temperature, a second temperature adjustment mechanism connected to the first temperature adjustment mechanism, and an ejection line connecting the second temperature adjustment mechanism with the ejection port. The second temperature adjustment mechanism includes a second circulation line and a second heater. The ejection line connects the second circulation line through a switching valve at a location further downstream than the second heater.
A method and apparatus for fabricating a carrier having a top surface and a bottom surface, the method comprising combining a conductive portion at the top surface and a dielectric at the bottom surface, wherein the dielectric includes contact island cavities, filling one or more of the contact island cavities with solder metal to form solder islands, selectively metal plating the conductive portion, selectively etching a portion of the conductive portion, and applying solder resist to the selectively plated and etched top surface of said conductive portion.
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a substrate, forming an interfacial layer on the substrate by treating the substrate with radicals, and forming a high-k dielectric layer on the interfacial layer. The radicals are selected from the group consisting of hydrous radicals, nitrogen/hydrogen radicals, and sulfur/hydrogen radicals.
An organic film can be etched while suppressing damage on an underlying layer. A method of etching the organic film includes etching the organic film within a processing vessel of a plasma processing apparatus which accommodates a processing target object. A processing gas containing a hydrogen gas and a nitrogen gas is supplied into the processing vessel, and plasma of the processing gas is generated. Further, a flow rate ratio of the hydrogen gas to a flow rate of the processing gas is set to be in a range from 35% to 75%, and a high frequency bias power for ion attraction to the processing target object is set to be in a range from 50 W to 135 W, in the etching of the organic film.
The present disclosure provides a method for forming patterns in a semiconductor device. The method includes forming a main pattern on a substrate; forming a spacer on sidewalls of the main pattern; forming a cut pattern having an opening by a first lithography process; and performing a cut process to selectively remove portions of the spacer within the opening of the cut pattern while the main pattern remains unetched, thereby defining a circuit pattern by the main pattern and the spacer. The circuit pattern includes a sharp jog.
A sidewall image transfer (SIT) process is provided. First, a substrate is provided. A sacrificial layer having a pattern is formed on the substrate. A first measuring step is performed to measure a width of the pattern of the sacrificial layer. A material layer is formed conformally on the sacrificial layer, wherein a thickness of the material layer is adjusted according to the result of the first measuring step. Then, the material layer is removed anisotropically, so the material layer becomes a spacer on a sidewall of the sacrificial layer. Lastly, the sacrificial layer is removed.
Methods of selectively etching metal-containing materials from the surface of a substrate are described. The etch selectively removes metal-containing materials relative to silicon-containing films such as silicon, polysilicon, silicon oxide, silicon germanium and/or silicon nitride. The methods include exposing metal-containing materials to halogen containing species in a substrate processing region. A remote plasma is used to excite the halogen-containing precursor and a local plasma may be used in embodiments. Metal-containing materials on the substrate may be pretreated using moisture or another OH-containing precursor before exposing the resulting surface to remote plasma excited halogen effluents in embodiments.
Apparatus and methods for plasma etching are disclosed. In one embodiment, a method for etching a plurality of features on a wafer includes positioning the wafer within a chamber of a plasma etcher, generating plasma ions using a radio frequency power source and a plasma source gas, directing the plasma ions toward the wafer using an electric field, and focusing the plasma ions using a plasma focusing ring. The plasma focusing ring is configured to increase a flux of plasma ions arriving at a surface of the wafer to control the formation of the plurality of features and structures associated therewith.
A template for growing a semiconductor, a method of separating a growth substrate and a method of fabricating a light emitting device using the same are disclosed. The template for growing a semiconductor includes a growth substrate including a nitride substrate; a seed layer disposed on the growth substrate and including at least one trench; and a growth stop layer disposed on a bottom surface of the trench, wherein the trench includes an upper trench and a lower trench, and the upper trench has a smaller width than the lower trench.
A method for forming an aluminum nitride-based film on a substrate by plasma-enhanced atomic layer deposition (PEALD) includes: (a) forming at least one aluminum nitride (AlN) monolayer and (b) forming at least one aluminum oxide (AlO) monolayer, wherein steps (a) and (b) are alternately conducted continuously to form a laminate. Steps (a) and (b) are discontinued before a total thickness of the laminate exceeds 10 nm, preferably 5 nm.
A process for forming land grid array semiconductor packages includes a leadframe that is supported by a substrate comprising mold compound. In some embodiments, at least one die is electrically coupled to the leadframe by bondwires. The package comprises a second mold compound to act as an encapsulant. An apparatus for forming a land grid array semiconductor package includes means for molding a leadframe, assembling thereon at least one semiconductor device, applying a second mold, and singulating to form individual devices. A land grid array package comprises a leadframe, a substrate for supporting the leadframe, at least one semiconductor device and a mold compound.
The invention describes a gas-discharge lamp (1) comprising a vessel (5), which vessel (5) is partially coated with at least one longitudinal stripe (SH, SH′) arranged on the surface of the vessel (5) below a horizontal plane (P) through a longitudinal axis (X) through the centre of the lamp (1) such that, on each side of the lamp, an angle (βH1, βH2) subtended at the lamp centre by the horizontal plane (P) and an upper edge (16, 17) of the longitudinal stripe (SH, SH′) on that side of the lamp comprises at least 10°, more preferably at least 13°, most preferably at least 15°. The invention also describes a reflector (8) for a lamp (1), comprising a reflective interior surface realized to deflect light (L20A, L20B, L21A, L21B) originating from the lamp (1) outward to give a specific beam profile (3) with a bright/dark cut-off line (31) and a shoulder (32), and wherein the lamp (1), in particular a lamp (1) according to any of claims 1 to 12, is positioned horizontally in the reflector (8), and wherein the reflective interior surface comprises at least one beam-shaping region (81 A, 81B) realised to deflect a portion (L21A, L21B) of the light (L20A, L20B, L21A, L21B), emitted from the lamp (1) between 7.5° and 15° below a horizontal plane (P), at a specific region (21A, 21B) within the beam profile (3). The invention further describes a lighting assembly (9) comprising such a reflector (8) and a lamp (1), in particular a lamp (1) according to the invention.
Mass spectrometry systems include an ionizer, mass analyzer and the detector, with a high pressure chamber holding the mass analyzer and a separate chamber holding the detector to allow for differential background pressures where P2
A process for automatically creating a measurement method suitable for plasma ion source mass spectrometry, including: semi-quantitatively measuring all elements in the sample that affect the measurement; determining a plasma condition based on the total concentration of the semi-quantitatively measured elements; for each of the semi-quantitatively measured elements, estimating signal strengths of the element and an interference component in the sample to be measured and based on the resultant estimates, estimating the concentration of the element; and, based on the estimated signal strengths of the elements and the interference components and the estimated concentrations of the elements, creating at least one mass spectrometry method including at least one of: (1) a plasma condition; (2) an internal standard to be added to the sample; (3) a tuning condition for the collision/reaction cell; (4) a mass-to-charge ratio used in the mass spectrometer; and (5) an integration time used in the mass spectrometer.
Systems and methods for delivering a sample to a mass spectrometer are provided. In one aspect, the system can include a sample source for generating a sample plume entrained in a primary gas stream in a first flow direction at a first flow rate, and a gas source for generating a secondary gas stream along a second flow direction different from the first flow direction and at a second flow rate greater than the first flow rate. The sample source and the gas source can be positioned relative to one another such that the primary gas stream intersects the secondary gas stream so as to generate a resultant gas stream propagating along a trajectory different from said first and second direction to bring the sample to proximity of a sampling orifice of the mass spectrometer.
An ion implantation system measurement system has a scan arm that rotates about an axis and a workpiece support to translate a workpiece through the ion beam. A first measurement component downstream of the scan arm provides a first signal from the ion beam. A second measurement component with a mask is coupled to the scan arm to provide a second signal from the ion beam with the rotation of the scan arm. The mask permits varying amounts of the ion radiation from the ion beam to enter a Faraday cup based on an angular orientation between the mask and the ion beam. A blocking plate selectively blocks the ion beam to the first faraday based on the rotation of the scan arm. A controller determines an angle and vertical size of the ion beam based on the first signal, second signal, and orientation between the mask and ion beam as the second measurement component rotates.
A test structure for electron beam inspection and a method for defect determination using electron beam inspection are provided. The test structure for electron beam inspection includes a semiconductor substrate, at least two conductive regions disposed on the semiconductor substrate, a connection structure disposed on the two conductive regions, and a cap dielectric layer disposed on the connection structure. The method for defect determination using the electron beam inspection includes the following steps. An electron beam inspection is preformed to a test structure with an instant detector and a lock-in amplifier. Signals received by the detector within a period of time are amplified by the lock-in amplifier. A defect in the test structure is determined by monitoring the signals received by the detector and amplified by the lock-in amplifier. The inspection accuracy is improved by the test structure and the method for defect determination in the present invention.
An X-ray tube device in one embodiment has an X-ray tube and a container storing the X-ray tube, filled with insulating oil, and having an X-ray emission window. The X-ray tube includes a cylindrical glass envelope holding an anode and a cathode opposite to each other and keeping them in vacuum, and an insulating tube fit over the glass envelope and having an X-ray transmission section. The insulating tube has a base section attached to the container. The base section defines a space communicating between the X-ray transmission section of the insulating tube and the X-ray emission window of the container, and has a container-side end fixed to the container in a liquid-tight manner.
A compact magnet system for use in a high-power microwave tube includes an electromagnetic coil surrounded on three sides by permanent magnets. More particularly, constituent components include a first tubular retaining member; the electromagnetic coil that fits within the first tubular retaining member and that has a central cavity; first permanent magnets positioned to extend radially from the central cavity so that like poles of the first permanent magnets wrap around the central cavity along a first side of the solenoid coil; and second permanent magnets positioned to extend radially from the central cavity so that opposite poles to the first permanent magnets wrap around the central axis along the second side of the solenoid coil. Optional added components include two sets of permanent magnets, one set on each side of the coil and a pole piece located adjacent to an end of the first tubular retaining member.
The instant trip apparatus of the molded case circuit breaker includes a case, a magnet part disposed in the case to generate magnetic attractive force when accident current flows therethrough, an armature disposed to face the magnet part, the armature rotating to the magnet part by the magnetic attractive force, an armature spring for allowing the armature to elastically return to its original position when the magnetic attractive force is removed, and a gap maintenance part restricting the rotation of the armature so that a gap defined between the armature and the magnet part is maintained when the accident current occurs. The gap maintenance part includes a rotation restriction member that is disposed to be exposed to an armature rotation path between the armature and the magnet part. Thus, fusion between the armature and the magnet part due to the accident current occurs may be prevented.
A multidirectional switch device includes an assembled structure of a plurality of members, which include a user-operable button, and a holder that supports the assembled structure. The multidirectional switch device also includes a set of axial recesses and a set of axial projections that define a pivot axis about which the button pivots relative to the holder. The pivot axis is arranged to allow the holder to cooperate with the assembled structure for operation of the button in multiple directions. The holder includes one of the set of axial recesses and the set of axial projections. One of the members of the assembled structure other than the button includes the other one of the set of axial recesses and the set of axial projections.
A control device for a bicycle on-board electronic device that includes: a switch for inputting a command of the on-board electronic device. There is a control member with a constraint region, a driving region configured to be pushed by a cyclist's finger, and a driven region configured to actuate the switch when the driving region is actuated. The control member resembles a control lever where the constraint region, driving region, and the driven region are arranged on an oblong body that is elastically yielding about the constraint region, whereby the driven region is displaced with respect to the driving region and/or to the constraint region by virtue of the elastic yielding.
Embodiments of the present invention provide a circuit structure that allows the use of a single sided Printed Circuit Board (PCB) with a mechanical key structure that has a light emitting element in the middle of the key structure. An LED with pins for protruding through a printed circuit board allows a layout only on the bottom side of the PCB. In one embodiment, the PCB includes at least one low ohm resister forming a bridge for a switch matrix conductor over a perpendicular switch matrix conductor.
A button includes a housing, an operating portion, a mount, a first pushing rod, a bridge, an elastic member, and a second pushing rod. The mount is mounted in the housing. The first pushing rod is movably disposed in the mount. A bump is formed on the first pushing rod. The bridge and the operating portion are disposed on ends of the first pushing rod. The second pushing rod is movably disposed on the bridge and is effected by the elastic member. A step is formed in the housing and is located between the mount and the bridge. The elastic member is disposed on the first pushing rod and is located between the bump and the step. The first pushing rod is slidable relative to the mount under the effect of the operating portion or the elastic member, and drives the bridge and/or the second pushing rod to move.
A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.
Disclosed is a dye-sensitized solar cell module and a method of manufacturing the same. More specifically a counter electrode has connection parts formed within the side surfaces of the transparent conductive substrates. Edges of the working electrode and the counter electrode are bonded with each other by a sealant along the outer peripheral except for at one or more portions of the edges to form an electrolyte injection port. An electrolyte is then injected through the electrolyte injection hole into a space between the working electrode and the counter electrode. The electrolyte injection hole is then sealed by a sealant.
The present invention generally relates to a MEMS DVC having a shielding electrode structure between the RF electrode and one or more other electrodes that cause a plate to move. The shielding electrode structure may be grounded and, in essence, block or shield the RF electrode from the one or more electrodes that cause the plate to move. By shielding the RF electrode, coupling of the RF electrode to the one or more electrodes that cause the plate to move is reduced and capacitance modulation is reduced or even eliminated.
A power reception device includes a power reception unit having a first capacitor, receiving electric power in a non-contact manner from an externally provided power transmission unit, a first housing case housing the power reception unit inside, and a first anchor member anchoring the first capacitor. The first housing case includes a first shield defining a region where an electromagnetic field developed around the power reception unit is emitted. The first capacitor is anchored by the first anchor member at a position spaced apart from the first shield.
A method of assembling the ignition coil assembly including a first spool, a first coil, and a second spool. The first coil is wound around a first spool outer surface. The first spool and the first coil are disposed within a cavity of the second spool and an electrically insulating material injected into an annular space defined between a first coil outer surface and a second spool inner surface. The first spool is configured to allow a decrease of a circumference of the first spool when the first coil is wound around an outer surface of the first spool. Decreasing the circumference of the first spool increases the annular space sufficient to inject the electrically insulating material into the annular space without creating substantial voids in the electrically insulating material.
A rare earth sintered magnet is prepared from a corresponding alloy powder, using a mold comprising a die, an upper punch, and a lower punch which is divided into a plurality of punch segments which are independently movable within the die. The method comprises the steps of filling the mold cavity with the alloy powder when one or more selected punch segments are moved to a higher position than the remaining punch segments; moving the selected punch segments down to the position where the selected and remaining punch segments assume the normal shape of the lower punch during the compression step; compressing the alloy powder between the upper and lower punches under a magnetic field while the normal shape of the lower punch is maintained, for thereby molding a compact; and heat treating the compact.
A non-contact power supply system includes a power supply device and a power reception device. The power supply device includes primary coils arranged on a power supply surface and configured to be excited at an operational frequency. The power reception device includes a secondary coil configured to induce current using resonance phenomenon based on alternating flux from the primary coils when arranged on the power supply surface. The operational frequency that excites the primary coil is set at or in the proximity of a resonance frequency of a resonance system formed when the secondary coil is located at an intermediate position between two of the primary coils that are adjacent to each other.
A planar transformer is provided, which comprises a plate-shaped conductor substrate with integrated primary winding, secondary winding and coupling winding. The conductor substrate has pairs of recesses, and a respective two-part ferromagnetic core having yoke legs is inserted through each pair of recesses. One leg of each core is surrounded by the primary winding or the secondary winding, while the coupling winding is looped around the remaining legs of the cores. At least a minimum total isolation separation distance made up of partial isolation separation distances between the coupling winding and adjacent yoke legs or adjacent windings is maintained for electrical isolation between the primary winding and the secondary winding.
To provide a fluorinated elastomer composition which is excellent in flexibility, heat resistance and flame retardance, and a molded product, cross-linked product and covered electric wire, using such a fluorinated elastomer composition.A fluorinated elastomer composition comprising a tetrafluoroethylene/propylene copolymer (a), an ethylene/tetrafluoroethylene copolymer (b), an ethylene copolymer (c) containing epoxy groups and a flame retardant (d), wherein the mass ratio [(a)/(b)] of (a) to (b) is from 70/30 to 40/60, the mass ratio [(b)/(c)] of (b) to (c) is from 100/0.1 to 100/10, and the content of (d) is from 0.1 to 30 parts by mass per 100 parts by mass of the total content of (a), (b) and (c).
The present invention relates to a graphene-nanoparticle composite having a structure in which nanoparticles are crystallized at a high density in a carbon-based material, for example, graphene, and, more particularly, to a graphene-nanoparticle composite capable of remarkably improving physical properties such as contact characteristics between basal planes of graphene and conductivity since nanoparticles are included as a large amount of 20 to 50% by weight, based on 100% by weight of graphene, and a method of preparing the same.
A betavoltaic power source. The betavoltaic power source comprises a source of beta particles, a substrate with shaped features defined therein and a InGaP betavoltaic junction disposed between the source of beta particles and the substrate, and also having shaped features therein responsive to the shaped features in the substrate, the InGaP betavoltaic junction device for collecting the beta particles and for generating electron hole pairs responsive thereto.
It is provided a memory circuit comprising n inputs; n+1 columns, wherein each column is connected to a plurality of memory cells; wherein the i-th (1≦i≦n−1) column is configured to be conductive connectable to the i-th input or to the (i+1)-th input or neither to the i-th input nor to the (i+1)-th input; a first FET and a second FET in series configured for connecting the i-th column to a defined voltage level; wherein a first gate signal renders the first FET conductive, if the i-th column is not in conductive connection with the i-th input; wherein a second gate signal renders the second FET conductive, if the i-th column is not in conductive connection with the (i+1)-th input.
Techniques are provided for improving the accuracy of read operations of memory cells, where the threshold voltage of a memory cell can shift depending on when the read operation occurs. In one aspect, read voltages are set and optimized based on a time period since a last sensing operation. A timing device such as an n-bit digital counter may be provided for each block of memory cells to track the time. The counter is set to all 1's when the device is powered on. When a sensing operation occurs, the counter is periodically incremented based on a clock. When a next read operation occurs, the value of the counter is cross-referenced to an optimal set of read voltage shifts. Each block of cells may have its own counter, where the counters are incremented using a local or global clock.
Methods of operating a memory include developing first and second voltage levels in first and second semiconductor materials, respectively, forming channel regions for first and second groupings of memory cells, respectively, of a string of series-connected memory cells during an erase operation while applying a third voltage level to control gates of the first grouping of memory cells and applying a fourth voltage level to control gates of the second grouping of memory cells. Apparatus include different groupings of memory cells of a string of series-connected memory cells adjacent respective portions of semiconductor material having a first conductivity type and separated from adjacent portions of semiconductor material having the first conductivity type by portions of semiconductor material having a second conductivity type, and a controller configured to apply respective and different voltage levels to control gates of memory cells of respective different groupings of memory cells during an erase operation.
To prevent data loss due to latent defects, a non-volatile memory system will use a leakage detection circuit to test for small amounts of leakage that indicate that the memory is susceptible to failure.
Some embodiments include apparatus and methods having a string of memory cells, a conductive line and a bipolar junction transistor configured to selectively couple the string of memory cells to the conductive line. Other embodiments including additional apparatus and methods are described.
A semiconductor memory includes a first layer including at least a first memory cell, a second layer including at least a second memory cell, and a wordline shared by the first memory cell and the second memory cell. The first and second memory cells can be above or below the wordline and be coupled to different bit lines.
Provided herein is a memory device including a plurality of memory blocks comprising a plurality of memory blocks each comprising a plurality of memory cells; a peripheral circuit coupled to the memory cells through bit lines, and suitable for sensing currents of the bit lines varying according to threshold voltages of the memory cells; and a control logic suitable for controlling the peripheral circuit so that the current amount of the bit lines vary during a program operation of the memory cells.
Dynamic buffering of streaming temporal video is disclosed. In at least one embodiment, a non-transitory memory is provided for storing machine instructions that are to be executed by a computer. The machine instructions may implement the following functions: streaming temporal video having a current incomplete segment, dynamically buffering the current incomplete segment to store data associated thereto and a current incomplete segment buffer, and receiving a first input to obtain a start time marker. A video segment may be generated including the current incomplete segment data and video data from the streaming temporal video occurring after the start time marker. The dynamic buffering may include buffering an I-frame and one or more P-frames. For example, only a most recent I-frame may be buffered and then cleared when a new I-frame is generated. The size of the dynamic buffer may be adjusted based on the size/number of P-frames and/or I-frames.
Metadata is created in connection with an editing of a copy of a digital media for the purpose of generating a sample of the digital media, such as a ringtone generated from a song. The metadata is published and is retrievable for use in editing another copy of the digital media to automatically recreate the media sample.
Device for providing a playable sequence in renderable manner comprises: a providing unit for providing defined functions, said functions for applying playable effects to objects, a time unit for adding time boundaries to said functions, to provide time bounded functions, an ordering unit for ordering said time bounded functions into a sequence, and a translation unit for applying translations to said objects in accordance with said effects.
A multilayer optical information recording disk comprising a plurality of recording layers and intermediate layers provided between the plurality of recording layers, and a method for manufacturing the same are provided. At least one of two intermediate layers disposed adjacent to respective sides of one recording layer is made of adhesive. Each of the recording layers includes a polymer binder and a dye dispersed in the polymer binder or includes a polymer to which a dye is bonded. Each recording layer is configured such that the dye absorbs a recording beam and generates heat which deforms the recording layer, causing an interface between the recording layer and the intermediate layer made of adhesive to have a protrusive shape protruding into the intermediate layer, thereby recording information thereat. The interface between the recording layer and the recording layer made of adhesive has a groove for track-following servo control.
When waviness having a wavelength component of 10 to 500 μm in the circumferential direction of a main surface of a disk-shaped substrate is acquired and slopes are acquired from the waviness at an interval of 50 to 100 μm, the substrate being used in a magnetic disk on which recording or reading is performed using a DFH head, an average value of absolute values of the slopes is 0.45×10−4 or less. This magnetic-disk substrate is used in a magnetic disk and a magnetic-disk drive device.
Provided is a magnetic tape, which comprises, on a nonmagnetic support, a nonmagnetic layer comprising nonmagnetic powder and binder, and on the nonmagnetic layer, a magnetic layer comprising ferromagnetic powder and binder; wherein a total thickness of the magnetic tape is less than or equal to 4.80 μm; at least the magnetic layer comprises one or more components selected from the group consisting of a fatty acid and a fatty acid amide; and a C—H derived carbon, C, concentration calculated from a C—H peak area ratio in a C1s spectrum obtained by X-ray photoelectron spectroscopy conducted at a photoelectron take-off angle of 10 degrees on a surface on the magnetic layer side of the magnetic tape is greater than or equal to 45 atom %.
An apparatus includes a slider body of a disk drive. The slider body is electrically coupled to a plurality of end bond pads. A voltage applied to one more of the end bond pads sets a surface potential of the slider body.
According to one embodiment, a magnetic disk device includes a disk including a tracks including a servo region, a light irradiator configured to irradiate the disk with light and heat the disk with the light, a head including a write head configured to write data in a range irradiated and heated with the light, and a read head configured to read data from the tracks, a controller configured to write first data to be used for offset detection in a first region of the tracks, read the first data from the first region with reference to servo data in the servo region, detect an offset of the read head based on an amplitude of a first signal of the first data, and control a position of the read head based on the offset.
A lateral spin valve reader that includes a detector structure located proximate to a bearing surface and a spin injection structure located away from the bearing surface. The lateral spin valve reader also includes a channel layer extending from the detector structure to the spin injection structure. An exterior cladding, disposed around the channel layer, suppresses spin-scattering at surfaces of the channel layer.
According to embodiments of the present invention, a sensor array for reading data from a storage medium including a plurality of tracks is provided. The sensor array includes a first sensor, and a second sensor, wherein the first sensor and the second sensor are configured to obtain signals from adjacent tracks of the plurality of tracks of the storage medium, the signals being associated with data stored at the adjacent tracks. According to further embodiments of the present invention, a storage device and a method of reading data from a storage medium including a plurality of tracks are also provided.
A method provides magnetic write apparatus. A side shield location layer having a location corresponding to the side shield(s) and back and side surfaces is provided. Part of the back surface corresponds to the back surface of the side shield. A nonmagnetic layer adjoining the back and side surface(s) of the side shield location layer is provided. A pole trench is formed in the layers using a first etch process. The nonmagnetic and side shield location layers have an etch selectivity of at least 0.9 and not more than 1.1 for the first etch. A pole is provided in the pole trench. A remaining portion of the side shield location layer is removed using a wet etch. The nonmagnetic layer is nonremovable by the wet etch. Side shield(s) having a back surface substantially the same as the back surface of the side shield location layer are provided.
An external clock signal having a first frequency is received. A division ratio is automatically determined based at least in part upon a second frequency of an internal clock. The second frequency is greater than the first frequency. A decimation factor is automatically determined based at least in part upon the first frequency of the external clock signal, the second frequency of the internal clock signal, and a predetermined desired sampling frequency. The division ratio is applied to the internal clock signal to reduce the first frequency to a reduced third frequency. The decimation factor is applied to the reduced third frequency to provide the predetermined desired sampling frequency. Data is clocked to a buffer using the predetermined desired sampling frequency.
Processes are described herein for transforming an audio mixture for which a specific component is affected by reverberation, into a specific dry component (i.e. unaffected by the reverberation) and a background component. In the process described herein, the long-term effects of reverberation are explicitly taken into account by modelling the spectrogram of the specific component as the result of a matrix convolution along time between the spectrogram of the specific dry component and a reverberation matrix. Parameters of the model are estimated iteratively by minimizing a cost-function measuring the divergence between the spectrogram of the mixture signal and the model of the spectrogram of the mixture signal.
An embodiment of the invention provides a noise cancellation method for an electronic device. The method comprises: receiving an audio signal; applying a Fast Fourier Transform operation on the audio signal to generate a sound spectrum; acquiring a first spectrum corresponding to a noise and a second spectrum corresponding to a human voice signal from the sound spectrum; estimating a center frequency according to the first spectrum and the second spectrum; and applying a high pass filtering operation to the sound spectrum according to the center frequency.
A dock for a portable electronic device including a housing, a connector extending from the housing to connect the portable electronic device to the dock, a microphone integrated within the housing, and a processor. The processor is operatively coupled to receive audio input from the microphone, and in response to the audio input, transmit a message to the portable electronic device via the connector to activate a voice recognition mode of the portable electronic device.
A particular method includes determining, based on spectral information corresponding to an audio signal that includes a low-band portion and a high-band portion, that the audio signal includes a component corresponding to an artifact-generating condition. The method also includes filtering the high-band portion of the audio signal and generating an encoded signal. Generating the encoded signal includes determining gain information based on a ratio of a first energy corresponding to filtered high-band output to a second energy corresponding to the low-band portion to reduce an audible effect of the artifact-generating condition.
A mobile terminal including a display; a proximity sensor configured to sense a predetermined action of a user; an audio output unit; and a controller configured to deactivate the display and enter the mobile terminal into a standby mode while maintaining the proximity sensor in an activated state, and in response to the proximity sensor sensing the predetermined action by the user, output audio data through the audio output unit while the display is deactivated corresponding to information collected about a previous event that occurred on the mobile terminal.
Methods, systems, and apparatus are generally described for providing an audio interface. In some examples, first voice data of a first narrator and a second voice data of a second narrator are received and the second voice data is transformed by a voice transformation function. At least a part of a first text data is converted into a first synthesized voice data based, at least in part, on the first voice data and at least a part of a second text data is converted into a second synthesized voice data based, at least in part, on the transformed second voice data by applying a voice transformation function which maximizes a feature difference between the first voice data and the transformed second voice data. The first synthesized voice data and the second synthesized voice data are provided in parallel on a temporal axis via the voice interface system.
A sound absorbing metamaterial comprises an acoustic impedance-matched surface configured to minimize reflection from an incident acoustic wave. The surface is comprised of an elastic or flexible membrane and a substantially rigid mass mounted on the membrane. A relatively solid surface is provided as a reflective surface and is positioned behind the membrane. The reflective surface is separated by a predetermined distance from the elastic or flexible membrane and forms a fluid space between the membrane and the solid surface. The mass mounted on the membrane, in combination with the elastic membrane establish a plurality of eigenfrequencies.
The subject matter described herein includes an approach for wave-based sound propagation suitable for large, open spaces spanning hundreds of meters, with a small memory footprint. The scene is decomposed into disjoint rigid objects. The free-field acoustic behavior of each object is captured by a compact per-object transfer-function relating the amplitudes of a set of incoming equivalent sources to outgoing equivalent sources. Pairwise acoustic interactions between objects are cornuted analytically, yielding compact inter-object transfer functions. The global sound field accounting for all orders of interaction is computed using these transfer functions. The runtime system uses fast summation over the outgoing equivalent source amplitudes for all objects to auralize the sound field at a moving listener in real-time. We demonstrate realistic acoustic effects such as diffraction, low-passed sound behind obstructions, focusing, scattering, high-order reflections, and echoes, on a variety of scenes.
The present invention provides a piano-type key actuator that employs supplemental actuation so as to enable an associated key to become engaged when a typical actuation force is applied anywhere along its entire length, including from within the immediate vicinity of its pivot point, where the key would otherwise be unusable for playing due to the prohibitively large actuation force that would generally be required in this area. By eliminating the unusable portion of a key, a full-function keyboard can be provided in a more compact and portable form.
A musical composition in broken down by instrument or channels within the composition. The composition is further broken down by time period. Each distinct block of time by instrument is a discrete block within the musical composition for which a visualization is created based on the sound produced. These blocks are then scrambled, at least partially, by instrument and time and displayed on a grid where each block or instrument can be played by selecting same. The blocks are also movable with a goal of placing the blocks in order by time and instrument so that the entirety of the musical composition can again be played aurally.
An HDR display is a combination of technologies including, for example, a dual modulation architecture incorporating algorithms for artifact reduction, selection of individual components, and a design process for the display and/or pipeline for preserving the visual dynamic range from capture to display of an image or images. In one embodiment, the dual modulation architecture includes a backlight with an array of RGB LEDs and a combination of a heat sink and thermally conductive vias for maintaining a desired operating temperature.
Several embodiments of display systems that use narrowband emitters are disclosed herein. In one embodiment, a display system comprises, for at least one primary color, a plurality of narrowband emitters distributed around the primary color point. The plurality of narrowband emitters provides a more regular power vs. spectral distribution in a desired band of frequencies.
According to one embodiment, an electronic apparatus includes a first detector, a second detector, a third detector and a security controller. The first detector detects a speed of movement of the electronic apparatus. The second detector detects a direction of the movement. The third detector detects whether the electronic device is located in a first area. The security controller updates position information wherein the position information is indicative of a first position in the first area, and executes a monitoring process based on the position information, detection information of the first detector and detection information of the second detector.
Provided is a driving method whereby it is possible to simultaneously compensate for both degradation of a drive transistor and degradation of a light-emitting element without causing special light emission at the time of detecting characteristics in a display device. In a display device which includes a pixel circuit including an electro-optic element and a drive transistor, a driving method includes: a first characteristic detection step for detecting a characteristic of the drive transistor; a second characteristic detection step for detecting a characteristic of the electro-optic element; a correction data storage step for storing characteristic data obtained based on detection results in the first and second characteristic detection steps as correction data; and a video signal correction step for correcting the video signal based on the correction data. The second characteristic detection step is performed in a light emission period.
Disclosed are a timing controller, a driving method thereof, and a display device using the same. The timing controller includes a memory configured to sequentially store input video data of respective frames, a determiner configured to compare the input video data of respective frames to determine whether a scene is changed, and a converter configured to, when it is determined by the determiner that the scene is changed, in the same scene section until the scene is changed and then changed to another scene, reduce luminance of the input video data included in the scene section, and output image data with reduced luminance.
An illuminated signage includes a light source, a first light transmissive element having first facial features on it and being in a fixed position to convey a fixed message, and a second light transmissive element having second facial features and being in a moveable position relative to the fixed position of the first light transmissive element, to convey a variable message.
A dynamic and refreshable three-dimensional tactile display uses stimulus sensitive hydrogel blocks as pixels to create a touch surface with elevations from a two-dimensional optical image or from stored data. The movable three-dimensional tactiles are powerful in teaching Science, Technology, Engineering, and Mathematics (STEM) materials to visually impaired and blind students.
Provided herein is a multi-purpose exercise apparatus for improving sports coordination with which a user may sense stimuli from inside and outside one's body and at the same time operate one's body functions so as to adapt to the given circumstances using body muscles when playing a football, volleyball, handball, tennis, table tennis game and the like, thereby improving abilities of adjusting one's body parts such as the user's correct posture, balance, timing, flexibility, agility and the like, especially, significantly improving the ball control technique, body senses, and judgment ability of ball game players or sports participants.
In a flight path search device, storage stores map information and enemy force range information. A grid divider divides the map information into cells in grid form. A score calculator calculates, for each cell, a score about an attack avoidance degree. A cell calculator calculates a second cell that is on an extension of a line connecting the enemy forces point and a first cell within the enemy region and is outside the enemy region. A searcher searches for an optimal cell to which to move from the first cell when moving toward the second cell, based on the calculated score. An updater updates the first cell when the optimal cell disagrees with the second cell. The cell of the predetermined point is set as the first cell, and the process is repeated until the optimal cell agrees with the second cell.
A wireless transmission system includes a server in communication with one or more receiving devices. The server generates a query to a user associated with a receiving device regarding a parking-space preference. The server receive the parking-space preference along with the unique identifier and a receiving device identifier from the receiving device. The server determines a current location associated with the receiving device based on the received unique identifier, and generate an instruction to receive attributes associated with one or more parking spaces corresponding to the parking-space preferences. The server upon transmitting the instructions to the database, receive one or more parking spaces corresponding to the parking-space preferences. The server generates a graphical user interface to display instructions to reach parking spaces corresponding to the parking-space preferences in relation to the current location of the receiving device, and then transmits the graphical user interface to the receiving device.
A traffic preemption system comprising a vehicle preemption unit configured to mount to a vehicle and transmit a signal comprising one or more identifying pulses, a detection unit configured to, receive the signal transmitted by the vehicle preemption unit, identify a characteristic of the vehicle preemption unit using the one or more identifying pulses, and calculate a timing delay based on the identified characteristic of the vehicle preemption unit, and an intersection preemption unit configured to receive the timing delay from the detection unit and change a traffic light in response to the timing delay.
In a wireless control terminal configured to control a control target connected to a control apparatus by working in cooperation with a wireless assistant terminal capable of transmitting a predetermined control instruction for controlling the control target to the control apparatus by using a predetermined control wireless scheme with supply of power from a battery included in the wireless assistant terminal, a wireless control terminal-side battery is provided within the wireless control terminal so as to supply driving power required for control regarding emergency stop of the control target performed with a predetermined wireless scheme of the wireless control terminal. At least remaining storage power information regarding a remaining amount of storage power in the wireless control terminal-side battery is output to a notification apparatus provided in the wireless control terminal or the wireless assistant terminal.
Some embodiments are directed to a lockdown apparatus for facilitating initiation of lockdown procedures at a facility. The lockdown apparatus can include an actuator configured to transmit a lockdown initiation signal upon being actuated. The actuator can be configured to be recognizably distinguishable from a fire alarm actuator. The lockdown apparatus can also include a lockdown communicator configured to produce a lockdown communication for communicating initiation of lockdown procedures to the facility occupants and individuals not disposed proximate the facility upon transmission of the lockdown initiation signal, the lockdown communication being recognizably distinguishable from the fire alarm communication.
A warning circuit for use on ladders includes a first sensor responsive to the placement of a first of a user's feet thereon and a second sensor responsive to the placement of a second of the user's feet thereon. The second sensor is electrically connected in series to the first sensor, and a relay is electrically connected in series to one of the first and second sensors. A power source has a power output terminal electrically connected in series to the other of the sensors connected in series. A sound device is electrically connected to a load output of the relay and to the power source. The load output of the relay is energized only when the first sensor is activated prior to activation of the second sensor whereupon the load output then energizes the sound device.
A warning system for emergency first responders approaching high voltage power lines, said warning system comprising: a sensor unit; a warning unit. The sensor unit includes a sensor unit comprising: an encasement, an antenna, a voltage meter; a power source; and a transponder. The sensor unit and the warning unit are separated from one another and adapted such that the sensor unit can be attached to the roof of an emergency vehicle or shoes of an emergency responder, and the warning unit can be attached to a dashboard of the emergency vehicle of the body of the emergency responder, and be able to project a warning image for the emergency responder to view.
In conventional article management systems, a problem has been presented in that the degree of control over how articles are managed has not been adequate. An article management system having: a line constituted by an open-type transfer line; a distribution area in which articles to be managed are placed, the articles to be managed being placed in the distribution area; an RF tag provided with a tag transmission unit for electromagnetic coupling with the line of the distribution area for the articles to be managed; a signal communication unit provided to the line; an antenna for electromagnetic coupling with the signal communication unit; and an RFID reader for sending out the transmission signal to the line via the antenna, and receiving a response signal output by the tag transmission unit via the line. Any variations in the operating characteristics of the tag transmission unit caused by the articles to be managed are detected as a result of variations in the intensity or phase of the signal reflected from the RF tag, whereby the presence of an article to be managed is detected.
Systems (100) and methods (600, 1800) for making a marker. The methods comprise: obtaining a resonator material which has been annealed under a tensile force selected to provide a maximum resonant amplitude at a bias field; providing by a bias material of the marker an operating bias field with a value less than a value of the bias field; forming a first housing portion from a flexible material so as to have a planar shape; and forming a second housing portion from the flexible material so as to comprise a cavity in which the resonator and bias materials can be housed when the second housing portion is coupled to the first housing portion. The cavity is defined by two opposing short sidewalls, two opposing elongate sidewalls (OESW) and a bottom sidewall. Each of OESW is stiffened by forming a plurality of first stiffener edge features along an exterior surface thereof.
A passive infra red detector comprises a plurality of passive infra red sensors (4, 5) and a lens member (2) arranged to direct radiation from a target area onto the sensors. The lens member (2) forms a substantially hemispherical dome about the infra red sensors (4, 5). The dome has a central axis and a plurality of contiguous facets (2a-2g) distributed about the central axis. Each facet has a flat outer surface and an inner surface that forms a lens to direct radiation onto the sensors. The detector further comprises a first passive infra red sensor (4) aligned with the central axis of the dome and having a sensitive surface substantially normal to the central axis, and a plurality of second passive infra red sensors (5) distributed about the central axis of the dome. The second passive infra red sensors (5) are inclined such that the outward normal from the sensitive surface of each second passive infra red sensor (5) makes an acute angle with the outward direction of the central axis. The detector is capable of detecting movement of people within a wide region from a significant height above that region.
A wireless device includes a sensor module generates a wake-up signal and sensor data in response to motion of protective headgear, wherein the sensor data includes acceleration data. A device processing module generates event data in response to the sensor data. A short-range wireless transmitter transmits a wireless signal that includes the event data. A power management module selectively powers the short-range transmitter and the device processing module in response to the wake-up signal.
A hazard detection assembly includes a lamp that may be positioned on a support surface. A smoke alert is movably coupled to the lamp. The smoke alert is selectively extended from the lamp such that the smoke alert may detect smoke. The smoke alert issues an audible alarm when the smoke alert detects the smoke. A security alert is coupled to the lamp and the security alert detects motion. The security alert issues an audible alarm when the security alert detects the motion. A control is coupled to the lamp and the control may be manipulated. The control is electrically coupled to the smoke alert and the security alert such that the control controls operational parameters of the smoke alert and the security alert. A remote control is in electrical communication with security alert such that the remote control controls operational parameters of the security alert.
A method of generating event identifiers includes receiving sensor information from tracked entities. Based on the sensor information for tracked entities, an event can be determined. An event ID can be assigned to the event based on the type of event that was determined. The event ID can be sent to a haptically enabled device, the device outputting a haptic effect determined from the event ID.
Systems and methods for generating haptic effects associated with transitions in audio signals are disclosed. One disclosed system for outputting haptic effects includes a processor configured to: receive a signal; determine a haptic effect based in part on the signal; output a haptic signal associated with the haptic effect; an audio output device configured to receive the signal and output an audible effect; and a haptic output device in communication with the processor and coupled to the touch surface, the haptic output device configured to receive the haptic signal and output the haptic effect.
An automated teller machine is provided for processing a cash withdrawal request from a person having a payment card. The automated teller machine includes a microprocessor, a display connected to the microprocessor for displaying information thereon, an input device connected to the microprocessor for receiving an input from the person, and a card reader connected to the microprocessor for reading at least a card number, including a bank identifier, of the payment card presented by the person. The automated teller machine also includes a dispenser connected to the microprocessor for dispensing cash therefrom, at least one memory connected to the microprocessor for access by the microprocessor, and a plurality of bank identification numbers stored in the at least one memory. Each of the bank identification numbers is different from every other one of the bank identification numbers. The microprocessor is configured to receive the card number from the card reader, to compare the bank identifier of the card number to at least one of the plurality of bank identification numbers stored in the at least one memory, and to process the cash withdrawal request made by the person depending on whether there is a match between the bank identifier of the payment card and one of the plurality of bank identification numbers.
A method of gaming comprising providing a plurality of display positions and selecting a plurality of symbols for display at respective display positions. A base pay table is defined and is usable to determine a prize for a winning outcome when a winning outcome associated with a particular prize comprising a defined win combination of x symbols occurs. It is determined whether a winning outcome exists and, during normal game mode, the base pay table is used to determine a particular prize applicable for a winning outcome when the winning outcome occurs. It is also determined whether a trigger condition exists and if the trigger condition is determined, special game mode is implemented during which the special pay table is used to determine a particular prize applicable for a winning outcome when the winning outcome occurs.
A gaming apparatus comprising a number of mobile gaming devices and gaming means to provide wagering games to players using the mobile gaming devices. The apparatus comprises at least one credit entering device for entering credit in association with the respective mobile devices, wherein the credit entering device has means for detecting the identity of a mobile device presented to it for crediting and means for receiving a credit amount to be associated with the presented mobile gaming device, and wherein the gaming means includes a memory for storing a respective credit amount in association with identifying data of each respective mobile gaming device.
A system and method is provided for authenticating a vehicle equipped with a passive keyless system. The method includes sending one or more initial challenge signal(s) from a vehicle module to a portable keyfob in response to a passive keyless start attempt of the vehicle, the initial challenge signal(s) being sent before a successful passive keyless start of the vehicle; sending one or more secondary challenge signal(s) from the vehicle module to the portable keyfob in response to at least one trigger event and after a successful passive keyless start of the vehicle; initiating an active authentication to confirm the presence of an authorized driver in the vehicle if a valid response to the secondary challenge signal(s) is not received by the vehicle module; and performing one or more remedial action(s) if a valid response to the active authentication is not received.
In embodiments of a hub key service, a device includes a communication interface for communication coordination with one or more associated devices of the device, and the associated devices correspond to hub members. A hub manager is implemented to generate an electronic key that includes access permissions, which are configurable to enable controlled access for the hub members, such as to a building, vehicle, media device, or location. The hub manager can then correlate the electronic key with the device to enable access to the building, vehicle, media device, or location with the device utilized as the electronic key.
Aspects of the disclosure provide a host mobile device for tracking attendance of a plurality of attendees each operating an attendee mobile device. The host mobile device includes a processor configured to execute program instructions, and a memory configured to store program instructions for causing the processor to receive an access request including attendee identification information of an attendee from an attendee mobile device, determine whether a first set of access conditions are satisfied in response to the access request, and allow the attendee mobile device to submit biometric information of an attendee to the host mobile device when the set of access conditions are satisfied. The first set of access conditions includes whether an operation distance between the host mobile device and the attendee mobile device is shorter than a preconfigured threshold distance defining a border of an area for a session attendees have registered for.
An apparatus and operational method are disclosed that use a control module installed in a vehicle to enable a remote computing system to wirelessly communicate with the vehicle. The control module includes a processor configured to interface with a wireless network and the vehicle through, respectively, a wireless network interface and a vehicle interface. A plurality of CAN (control area network) bus transceivers may exist within the vehicle interface operable to allow the processor to interface with multiple vehicle types. The processor may then be configured to automatically detect an identifier for the vehicle though the vehicle interface and automatically select a CAN bus transceiver from the plurality of CAN bus transceivers based on the detected identifier. The processor can then communicate with the vehicle's CAN bus via the selected CAN bus transceiver.
A video game processing apparatus for controlling progress of a video game while displaying a three-dimensional avatar, arranged within a virtual space, on a display screen of a the display device is provided. A three-dimensional partial model is generated on the basis of two-dimensional image data inputted by a user of the video game processing apparatus. The three-dimensional partial model constitutes at least apart of a body of a three-dimensional avatar, including a face portion of the three-dimensional avatar. A plurality of three-dimensional partial models thus generated is stored in a three-dimensional partial model memory. At least one three-dimensional partial model for each scene in the video game is specified from the plurality of three-dimensional partial models. The display device is caused to display the three-dimensional avatar, which includes the specified three-dimensional partial model, in a corresponding scene on the display screen.