US10390681B2

A dishwasher comprises a chassis having a base, a tub supported on the base and at least partially defining a treating chamber having an access opening, a door having a door height extending between a door upper end and a door lower end, a hinge pivotally mounting the door to the chassis for pivotal movement between a closed position, wherein the access opening is closed, and an opened position, wherein the access opening is opened, a non-racking decorative cover having a cover height extending between a cover upper end and a cover lower end; and a slide assembly mounting the decorative cover to the door to move the decorative cover upwardly from a retracted position to an extended position as the door is pivoted from the closed position to the open position. The decorative cover height is greater than the door height such that the decorative cover lower end lies below the door lower end supporting the dishwasher when the door is in the closed position such that extending the decorative cover prevents the decorative cover lower end from contacting the chassis when the door is moved from the closed to the open position.
US10390677B2

A dishwasher may include a tub configured to accommodate one or more items to be washed, a spray arm rotatably mounted to the tub, and configured to spray water onto the one or more items to be washed, a sump disposed at a bottom surface of the tub and configured to store water and to supply stored water to the spray arm, a fixed gear unit fixed to the tub with gear teeth arranged along an outer circumferential surface of the fixed gear unit, a rotary gear unit rotatably mounted on the spray arm and configured to engage the gear teeth of the fixed gear unit, and a link member connected to the rotary gear unit and the spray arm, where the spray arm may include, a main arm with a pair of arms, and a pair of auxiliary arms rotatably connected to the main arm.
US10390675B2

A warewash machine includes in-situ tank soil load reduction that involves at least one of: (i) prior to addition of fresh water, draining the collection tank via a path that exits the collection tank at a location lower than a primary overflow path until wash liquid level in the collection tank drops below a standard operating level, and thereafter adding fresh water; or (ii) draining the collection tank via a path that exits the collection tank at a location lower than a primary overflow path while simultaneously adding fresh water; or (iii) adding fresh water such that wash liquid level in the collection tank rises above a standard operating level, and thereafter carrying out draining of the collection tank.
US10390665B1

A commercial toilet seat for use in public facilities for adults where the improved toilet seat has a stabilizing base section which conforms to the upper rim of a toilet for stability when people, especially large adult people, sit on a toilet. The toilet seat provides a greater surface area of contact between the toilet seat and the rim of the toilet and a greater surface area to sit on. The toilet seat also has downwardly slopping wings that extend from each side of the toilet seat which allow the user to more easily lift the toilet seat.
US10390657B2

A grid for cooking food, in particular for equipping a barbecue; the grid comprising a plate which has an upper face, configured for being set in contact with the food, and a lower face, configured for facing a heat source; the upper face comprising a plurality of channels parallel to one another and configured for conveying liquids; each channel being separated from the adjacent channel by a partition; the plate comprising a plurality of through openings for enabling the hot air and the combustion fumes produced by the heat source to lap the food; wherein the openings are provided at the portions of connection of two adjacent channels with the corresponding partition so as to provide paths for the hot air and combustion fumes that have an inlet on the lower face and two lateral outlets towards two adjacent channels.
US10390655B2

A grill is provided including a base structure. An upper platen assembly is connected to the base structure and includes an upper grilling plate. A lower platen assembly is connected to the base structure and includes a lower grilling plate. A plurality of leveling mechanisms is mounted to the base structure and arranged in contact with the lower grilling plate. The leveling mechanisms are configured to move the lower grilling plate relative to the upper grilling plate. At least one grease receptacle has an inboard sidewall and an outboard sidewall connected by a compartment configured to receive grease from a grilling surface of the lower plate. The inboard sidewall is mounted to the lower grilling plate at or below the grilling surface.
US10390653B2

The disclosure relates to a beverage preparation module intended for installation in a self-service beverage vending machine. According to the disclosure, a water connection and a preparation device for preparing a beverage by means of water provided at the water connection are provided. Beverage preparation parameters can be transmitted to a control unit via a communication interface. The control unit is configured to control the preparation device in order to prepare a beverage based on the beverage preparation parameters. A beverage outlet for discharging the beverage prepared by the preparation device is provided. In one embodiment, at least one additional module interface is provided for connecting the control unit to at least one additional module.
US10390649B2

A diffuser for beverages comprising: a container, a cover, an outer diffuser body, an inner diffuser body and a diffuser cover. The container has a containment space with a main opening. The cover has a stepped assembly opening. The outer diffuser body has a cup-shaped body with a side opening. The inner diffuser body has a cup-shaped body corresponding to the outer diffuser body, and the inner diffuser body has a filtering portion with a plurality of filtering apertures and a plurality of positioning protrusions. by rotating the inner diffuser body, the positioning protrusion moves between the open end and the closed end of the rotation slot to control the filtering portion of the inner diffuser body to align with the side opening of the outer diffuser body or offset away from the side opening to connect or separate the container and the inner diffuser body.
US10390646B1

An elongated tool includes at least one of a specially-adapted tool handle/shaft and/or a specially-adapted tool head that may be used for reaching and manipulating objects, for example, for reaching a clothing portion such as a strap or a bra strap. The tool may have various quick-connect tool heads for adaptation to reach and manipulate different objects, such as different strap sizes and materials. The tool handle may have massaging bumps to reduce skin friction, potential scrapes, and/or fabric snags, and/or to increase direct path accuracy when routing tool along a user's skin and/or along a clothing surface. The preferred tool heads have multiple hooks shaped and curved for optimal control and capture of various clothing portions and/or straps. The tool may aid both abled-bodied and physically-challenged persons to remove or put on a bra, and/or otherwise undress or dress, in a comfortable, convenient, and/or discrete or private manner.
US10390642B1

A holder and display device includes three rectangular rigid panels, and a knife receiving structure formed on an inner surface of one of the rigid panels. A flexible sheet is attached to each of the rigid panels such that the flexible sheet hingably connects the rigid panels together, whereby the three panels may hinge with respect to each other via the flexible sheet between a closed configuration and a display configuration.
US10390636B2

The present disclosure relates generally to various improved mounting devices. Some embodiments relate to a mounting device, comprising: a bracket that can be attached to or mounted on a vertical surface with one or more adhesive strips; and one or more mechanical features on the bracket that prevent or minimize an item hung on the bracket from sliding horizontally off the bracket.
US10390633B2

A display case door assembly for a temperature-controlled storage device includes a vacuum panel, a hinge rail, and a lighting element. The vacuum panel includes a first vacuum pane, a second vacuum pane, and an evacuated gap between the first and second vacuum panes. The evacuated gap provides thermal insulation for the vacuum panel. The hinge rail is coupled to an edge of the vacuum panel and configured to rotate along with the vacuum panel between an open position and a closed position. The lighting element is coupled to at least one of the edge rail and the vacuum panel and configured to emit light toward an interior of the temperature-controlled storage device when the hinge rail and vacuum panel are in at least the closed position.
US10390629B2

A move and discover chair helps teachers transition to new education paradigm where children “move” and “discover” education with the teacher positioned in the midst of the children to encourage them in the excitement of learning. The chair stimulates the ability to focus on learning and to be more effective in one's work by allowing some level of movement, balance, fidgeting, and engagement with the background environment. The chair includes a concave end cap with a first side edge and an external concave surface, a convex end cap with a second side edge and an external convex surface, and a center section fixedly positioned between the concave end cap and the convex end cap and with an outer surface that is substantially straight in a directions between the concave end cap and the convex end cap.
US10390624B2

An outdoor chaise lounge may include a frame, multiple legs coupled to and extending below the frame to support the frame, a seat member coupled to the frame to enable a user to sit or lay on the seat member, a lock-box fixedly supported by the frame that enables a user of the outdoor chaise lounge to store and lock items therein. The lock-box may include a lock-box door inclusive of a user interface that enables a user to lock and unlock the lock-box. A door member may be coupled to the seat member and have a closed position and an open position such that when said door member is in the open position, the user has access to the user interface on the lock-box door.
US10390623B2

A pillow is provided that includes a u-shaped section having opposing ends. Each of the ends has an extension section extending outward there from. One or more of the extension sections has an opening therein that provides access to a pocket located within the extension section. The pockets preferably contain blanket halves therein removably attachable to each other, which may be removed from the pockets and coupled together to form a larger blanket.
US10390617B2

A bracket adapted for mounting a slide rail to a post of a rack includes a bracket plate, a mounting member, a first fastening member, and an engaging base. The bracket plate is attached to the slide rail. The mounting member is connected to the bracket plate and can be mounted to the post. The first fastening member is movably mounted on the bracket plate and has a fastening portion to be locked to the post. The engaging base is coupled to the first fastening member and includes first and second portions. A second fastening member can enter a space between the second portion and the first fastening member, engage with the second portion, and thus be prevented from detachment from the engaging base.
US10390613B2

A securement device that includes a main support having a top surface, and a vertical support having a rear surface, front surface, inner edge, and outer edge. The vertical support's inner edge couples to the main support's top surface such that the main support is orthogonal to the vertical support. The securement device further includes an auxiliary support having a top surface, bottom surface, and inner edge, where the auxiliary support's inner edge couples to the vertical support's outer edge such that the auxiliary support is orthogonal to the vertical support. The main support has a first side-edge that extends out beyond a first side-edge of the vertical support to define a first side-top surface of the main support, and a second side-edge that extends out beyond a second side-edge of the vertical support to define a second side-top surface of the main support.
US10390609B2

A foldable table and table legs comprises a tabletop comprising a plurality of tabletop sections each of which are interconnected by a hinge mechanism allowing the tabletop fold into a small, compact package. Detachable and foldable legs are configured for coupling to a table skirt comprising four segments which fold down from a storage pocket on the underside of the tabletop. The foldable legs interconnect with the table skirt once it is folded down from its storage position. The tabletop and foldable legs may all be folded into a compact, portable and packable configuration.
US10390608B2

A scissor-type banquet or event table comprises a tabletop removably coupled to and disposable upon a stand. The stand comprises a pair of leg frames pivotally coupled together at an intersection. The pair of leg frames comprise adjacent spars with each of the spars associated with a different one of the pair of leg frames. A safety spacer is disposed between the adjacent spars of the pair of leg frames and separates the adjacent spars. The safety spacer has a thickness so that the adjacent spars are spaced-apart by a gap greater than ¾″ to resist pinching a user's fingers. In addition, the tabletop and the stand are coupled together with a snap-fit. The snap-fit comprises detents between the tabletop and the stand. Each detent is biased into a respective hole along an axis between the detent and the respective hole.
US10390607B2

A liquid supply apparatus with leakage protection. The apparatus includes a housing defining a storage cavity having a total volume including a liquid portion and a gas portion. The storage cavity extends along a cavity axis. A capillary member is fluidly coupled with the liquid to transport the liquid to the external atmosphere. The apparatus includes a plurality of vents that prevent liquid from flowing therethrough while permitting air to pass therethrough. A hub component is mounted within the storage cavity and it includes a plurality of radial vent passageways extending between the storage cavity and a primary vent passageway, which in turn forms a pathway to the external atmosphere. The vents may be located and arranged such that irrespective of inclination and rotational orientation of the housing relative to a gravitational vector at least one of the vents is in spatial communication with the gas.
US10390605B1

A hair brush for use on animals or people has a planar base member with two major faces, the base member being formed with a plurality of shallow recesses on one of the faces. Two of the recesses are spaced from one another by an elongate area, and the base member is formed with at least one elongate groove on the other of the major faces of the base member. The groove is opposed to and parallel with the elongate area. Plural bristle plates are seated in respective recesses in the base member, each bristle plate exhibiting a multiplicity of prongs or tines. The bristle plates are substantially rigid at room temperature, while the base member is made of a material substantially more flexible at room temperature than the bristle plates.
US10390602B2

The present invention is an electro-mechanical external skin pulling device for users to pull/stretch and hold in place their skin in an easy, reliable, safe and predictable manner to enable facial, eye, cheek, neck and/or throat appearance modifications, integrated with an optional wireless remote control adjustment/monitoring system using either a mobile communication device running an application for the present invention or a dedicated remote control device to adjust and maintain the desired skin alteration.
US10390599B1

A hair gathering accessory can be formed as a comb or a brush device, and has a handle formed with a body. On one side of the body are a plurality of tines (e.g. comb teeth, brush bristles, etc.). On the other side of the body is a heat shield that is attached to the body and which extends away from the body some distance. The tines are used to gather a portion of hair while the hair gathering accessory is being held by a person, and the heat shield protects the person whose hair has been gathered from the heat of a hair iron that is applied to the gathered portion of hair.
US10390593B2

Contact lens blister packages and related methods are described. The present devices include a thermoplastic base member with a grip portion, a distal end region, a first side region extending from the proximal end region to the distal end region, a second side region opposing the first side region, and a cavity configured to contain a packaging solution and a contact lens. The cavity comprises has a bottom wall with a bottom wall perimeter and a sidewall extending upwardly from the bottom wall perimeter to an upper cavity edge defining a cavity perimeter. A plane formed at the intersection of the bottom wall perimeter with the sidewall slopes away from the substantially linear portion of the cavity perimeter.
US10390591B2

A variable-sized finger ring includes a fixed diameter outer ring component surrounding a circumference of a finger opening, a moveable inner component positioned along a portion of the circumference of the finger opening, a compression spring elastically biasing the moveable inner component radially inwardly in relation to the fixed diameter outer ring component.
US10390585B2

A shoe that grows comprises a sole having a toe, medial side, lateral side, and heel. The toe of the sole extends outwardly to form a toe cap. A vamp member is adjustably connected to a free end of the toe cap. At least one medial strap connects the vamp member to the medial side of the sole. At least one lateral strap connects the vamp member to the lateral side of the sole. An adjustable heel strap connects to the medial and lateral sides of the sole and extends around the heel of the sole.
US10390579B2

Emergency call processing in a helmet (100) with a rigid shell (101) that spatially divides a shell interior from a shell ambiance includes receiving an emergency indication signal, upon reception of the emergency indication signal establishing a speech link between a controllable transceiver and a counterpart transceiver via at least one wireless communication channel, and reproducing sound in the shell interior and picking up sound with a sensitivity that is higher in the shell interior than in the shell ambience. The sound reproduced in the shell is received from the counterpart transceiver and the sound picked-up in the shell interior is transmitted to the counterpart transceiver.
US10390572B2

One-piece swimsuit and method of manufacture provide for easy extraction of one or both legs without removing the top of the swimsuit. A top and bottom portion of the swimsuit can be partially separated by an openable closure that connects the top portion to the bottom portion when closed. An integral joining strip that secures the top portion to the bottom portion at one side of the swimsuit, so that when both legs are removed from the bottom portion, the bottom portion of the swimsuit is retained at the side of the wearer. An elastic expansion may be provided in the joining strip to facilitate pulling the bottom portion downward when extracting the wearer's leg(s). The closure may be an elastic band or elastic zipper to facilitate reconnection of the bottom portion to the top portion. A flap or skirt may be included to hide the closure.
US10390562B2

An electronic smoking article includes a liquid aerosol formulation, a heater operable to at least partially volatilize the liquid aerosol formulation and form an aerosol, and at least one frangible and/or crushable flavor bead. The at least one frangible and/or crushable flavor bead can be positioned in a filter plug.
US10390555B2

The production process comprises a step (A) in which an alkali-treated tobacco source is heated to make the tobacco source release a flavoring ingredient into a gas phase, a step (B) in which the flavoring ingredient released into the gas phase is brought into contact with a given solvent which is a liquid substance at ordinary temperature, thereby trapping the flavoring ingredient in the given solvent, and a step (C) in which the given solvent is added to a constituent element.
US10390553B2

Ingesting a food etc. which is in a unit package form per meal and contains, in the unit, not less than 0.3 g of histidine as an ingestion amount per meal is effective for improving mental energy and biorhythm.
US10390550B2

Systems and method for thermal preservation (sterilization) of heterogenous and multiphase foods and biomaterials in order to achieve their shelf stability at ambient level temperatures. Flowing heterogenous, multiphase foods and biomaterials are exposed to single or multiple stages of electromagnetic energy under continuous flow conditions within conduits passing through the electromagnetic energy exposure chambers.
US10390545B2

A method for concentrating a particular component in powder by performing a mechanical dry processing on powder formed by granulating a solution containing two or more components, producing chips in a fine-powder form by chipping away at particle surfaces of the powder where a larger amount of the particular component is contained than particle interior portions of the powder, classifying the powder into fine powder containing the chips and coarse powder containing particles whose surfaces have been chipped away, and collecting the fine powder containing the particular component.
US10390535B2

Compositions are provided that include a new Bacillus thuringiensis strain designated RTI545 for use in benefiting plant growth and controlling plant pests. In particular, the RTI545 strain is useful for controlling plant nematode, insect and fungal pests. The compositions include plant seeds coated with the RTI545 strain. The compositions can be applied alone or in combination with other microbial, biological, or chemical insecticides, fungicides, nematicides, bacteriocides, herbicides, plant extracts, plant growth regulators, or fertilizers. In one example, enhanced growth and insect control are provided by delivering at the time of planting a combination of a chemical insecticide such as bifenthrin and a liquid fertilizer to plants or seeds treated with RTI545.
US10390529B2

The present invention relates in general to a medical device consisting of a blocker made of a mixture of natural products such as African palm oil and the triglycerides thereof and natural waxes as active and emulsifying components, polymer and silver nanoparticles, acting as a blocker for latex protein and other skin irritants.
US10390512B1

The invention provides seed and plants of the hybrid corn variety designated 93677237. The invention thus relates to the plants, seeds and tissue cultures of the variety 93677237, and to methods for producing a corn plant produced by crossing a corn plant of variety 93677237 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety 93677237.
US10390509B1

A novel maize variety designated PH42CV and seed, plants and plant parts thereof are provided. Methods for producing a maize plant comprise crossing maize variety PH42CV with another maize plant are provided. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH42CV through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby are provided. Hybrid maize seed, plants or plant parts are produced by crossing the variety PH42CV or a locus conversion of PH42CV with another maize variety.
US10390505B1

A novel soybean variety, designated 5PVKC48 is provided. Also provided are the seeds of soybean variety 5PVKC48, cells from soybean variety 5PVKC48, plants of soybean 5PVKC48, and plant parts of soybean variety 5PVKC48. Methods provided include producing a soybean plant by crossing soybean variety 5PVKC48 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety 5PVKC48, methods for producing other soybean varieties or plant parts derived from soybean variety 5PVKC48, and methods of characterizing soybean variety 5PVKC48. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety 5PVKC48 are further provided.
US10390503B2

A closed loop system for growing vegetation is provided. The closed loop system includes at least a first transport conveyor and a second transport conveyor. Each of the first and second transport conveyors includes a front end opposite a rear end. The present invention further includes at least a first transfer conveyor. A lighting system is positioned to emit light towards the first transport conveyor and a second transport conveyor. The present invention further includes at least one terrace structure. The first transport conveyor transports at least one terrace structure from the front end to the rear end, the first transfer conveyor transfers the at least one terrace structure from rear end of the first transport conveyor to the front end of the second transport conveyor and the second transport conveyor transports the at least one terrace structure from the front end to the rear end.
US10390498B2

A system and method for an engaging tool. Removing debris, trees and clearing land and paths requires the use of specific tool and machinery. To grind, break and shred wood, the machines must be fitted with proper attachments and engaging tools. One tool includes a front a front face and a back face connected by two opposing side faces and an opposing top face and base face. The front face has a concave shape and an outer channel which extends inwardly into the front face. The front face also has a tube a tube extending outwardly from said front face. The tube is located within the outer channel.
US10390496B2

A system for regulating the supply of conditioned gases to an environmentally controlled enclosure. A greenhouse or warehouse in which plants are grown are supplied with gases having a controlled absolute humidity, temperature, and carbon dioxide content. The properties of exhaust gas from the environmentally controlled enclosure are measured, and the mass of bone dry gas provided, the absolute humidity, temperature, and carbon dioxide content in the enclosure are maintained, and the transpiration rate of plants in the enclosure is measured by comparing properties of conditioned gas at the inlet with exhaust gas exhausted from the enclosure, in order to enhance transpiration of the plants in the enclosure, to allow the grower to maximize growth or other selected properties of the plants under cultivation.
US10390491B2

A combine harvester includes a housing having a rear hood and defining an interior, a blower for generating an air stream in a substantially rearward direction, and a cleaning system separating residue from a crop material such that the residue is transported via the air stream rearwardly to be discharged from the housing. A chopper rotor assembly is disposed within the interior below the rear hood and includes a chopper rotor having a plurality of blades for chopping the residue as it is received via the air stream. A chopper housing is disposed within the interior and includes a roof structure located above the chopper rotor such that a minimal gap is defined therebetween. The air stream flows out of the interior via a flow path defined through the chopper rotor without being substantially redirected from flowing in the rearward direction by the plurality of blades of the chopper rotor.
US10390490B1

A concave for an agricultural combine includes first and second frames connected together for movement between closed and open positions. The first frame includes curved members axially spaced from one another, and bars each movable between a first position removably connected to the first frame and a second position detached from the first frame, wherein the bars are spaced from one another and extend axially between the curved members forming openings therebetween for grain to pass through in the first position of each of the bars. The second frame restricts movement of each of the bars between the first and second positions in the closed position of the first and second frames, and the second frame allows movement of each of the bars between the first and second positions in the open position of the first and second frames.
US10390487B2

A conveyor belt for an agricultural harvesting head includes a base web of elastomer-impregnated fabric; elongate cleats that extend upward from the base web and extend across substantially the entire width of the base web; and a plurality of textured protrusions that extend upward from the web between adjacent elongate cleats, wherein the textured protrusions are organized in rows of pockets between adjacent cleats and extend over substantially the entire width of the base web.
US10398059B2

Provided is a cooling device, and methods of fabricating and operating such cooling devices, for electromagnetic induction (EMI) filters. Specifically, a cooling device is provided which comprises a housing enclosing the electromagnetic induction filter. The housing may comprise one or more of the following: one or more exterior chambers, one or more central flow channels, and peripheral flow channels. The one or more exterior chambers surround an exterior surface of the EMI filter. The one or more central flow channels extend the length of the center of the EMIR filter. The peripheral flow channels extend the length of the exterior of the electromagnetic induction filter. The peripheral flow channels may be disposed between one or more exterior chambers and open into the one or more exterior chambers. The one or more central flow channels, the peripheral flow channels, and the one or more exterior chambers are interconnected.
US10398056B1

A near real-time custom server system includes robots deployed at a data center location and a server assembly controller configured to receive requests for near-real time custom servers. The requests may specify one or more characteristics for the custom servers and the server assembly controller may cause the robots deployed at the data center location to assemble the custom servers and install the custom servers in a server mounting structure of the data center in near real-time. For custom server types requested in lower volumes, the custom servers may be assembled autonomously by respective ones of the robots; and for custom server types requested in higher volumes, the custom servers may be assembled by respective groups of robots working in coordination with one another via an assembly line.
US10398051B2

The socket of the present disclosure includes: a terminal unit assembly with a plurality of terminal units, each extending in a longitudinal direction, arranged along a lateral direction orthogonal to the longitudinal direction; and a frame member including an assembly accommodating recess that accommodates the terminal unit assembly. The terminal units each include: a terminal holding part extending in the longitudinal direction; a plurality of terminals; and a side wall. The plurality of terminals each includes a body held by the terminal holding part, a contact part protruding upward beyond an upper surface the terminal unit or protruding downward beyond a lower surface of the terminal unit, and a contact arm connecting the body and the contact part; and the side wall extends in the longitudinal direction, includes a plurality of abutting parts capable of abutting the contact arm, and is arranged adjacent to the terminal holding part in the lateral direction. When the contact part receives force in a vertical direction orthogonal to the lateral direction and the longitudinal direction, the side wall receives force toward one side in the longitudinal direction.
US10398047B2

A decorative cover for an electrical panel and a method of making or creating a decorative cover for an electrical panel is disclosed herein. The decorative cover includes inner and outer sections that are disposed in a covering relation with a different portion of the electrical panel, such as a door of the electrical panel, and an outer frame portion. The inner and outer sections of the decorative cover include an attachment undersurface, such a magnetic or adhesive surface, for attachment to the respective portions of the electrical panel. A decorative top or outer surface is provided with decorative or aesthetically pleasing patterns, designs, colors, or graphics.
US10398033B2

Generally discussed herein are systems and apparatuses that can include a base with one or more recesses therein. The disclosure also includes techniques of making and using the systems and apparatuses. According to an example a technique of making a releasable core panel can include providing a releasable core, the releasable core including a first conductive foil integrally coupled with a base at a first side of the base and a first side of the conductive foil, the first conductive foil situated in a first recess in the first side of the base. The technique can include releasably coupling a second conductive foil to a second side of the first conductive foil through a temporary adhesive layer integrally coupled to a first side of the second conductive foil, the second side of the first conductive foil opposite the first side of the first conductive foil.
US10398032B1

A computing system includes a circuit board assembly and multiple expansion cards connected to one another and also connected to the circuit board assembly. The connected expansion cards form a modular expansion card bus that allows the expansion cards to communicate between each other without routing the communications through the circuit board assembly. In some embodiments, the expansion cards are mounted on a tray that includes mounting pins that engage mounting slots of the expansion cards, allowing for simple installation of various combinations of expansion cards connected together to form a modular expansion card bus.
US10398027B2

A wiring board includes: a wiring structure including: a first insulating layer; a first wiring layer formed on a bottom surface of the first insulating layer; and a protective insulating layer which covers the bottom surface of the first insulating layer and has a first opening; and a support base member bonded to the protective insulating layer with an adhesive layer and has a second opening. A diameter of the second opening at a position between the top surface and the bottom surface of the support base member in a thickness direction of the support base member is smaller than a diameter of the second opening at the top surface of the support base member and a diameter of the second opening at the bottom surface of the support base member, and smaller than a diameter of the first opening.
US10398025B2

A printed circuit board (PCB) structure and mounting assembly for joining two PCBs. A first PCB has a top and bottom surface faces and a peripheral end face separating the top and bottom surface. The first PCB has one or more conductive wire ends exposed at a surface of the peripheral end face; the exposed conductive wire ends forming multiple separate electrical contacts across the thickness and length of the PEF surface. A second PCB has a top surface face and one or more conductive pads exposed at the top surface at locations corresponding to locations of the multiple electrical contacts. A surface mount solder material is disposed on one or more exposed conductive pads for electrically connecting with corresponding the multiple electrical contacts. The disposed solder material stably joins the PEF surface of the first PCB to the top surface of the second PCB in a relative perpendicular orientation.
US10398014B2

In the present invention, a ferroelectric body is irradiated with ultraviolet light, and the ferroelectric body is caused to stably generate electric potential. A method for radiating charged particles, in which the UV-light-receiving surface of the ferroelectric body that receives UV light and is caused to generate a potential difference is irradiated with UV light having a wavelength not transmitted by the ferroelectric body, and charged particles are radiated from the charged-particle-radiation surface of the ferroelectric body, wherein the UV-light-receiving surface is irradiated with pulses of UV light at a peak power of 1 MW or greater. The pulse width of the UV light is measured in picoseconds (less than 1×10−9 seconds), and the UV pulses can be transmitted by fiber.
US10398007B2

A control module attached to a lighting fixture and having a front cover portion may comprise one or more sensors, such as a daylight and/or occupancy sensor, for sensing information through the front cover portion. The control module may have a main printed circuit board (PCB) that extends from a front side to a rear side of the control module, and a sensor PCB perpendicular to the main PCB to enable at least one sensor attached to the sensor PCB to face the front side of the control module. The main PCB may comprise a wireless communication circuit and an antenna for communicating radio frequency (RF) signals, wherein at least a portion of the antenna is located within a plastic lip of the front cover portion of the control module. The control module may further have a conductive enclosure to reduce radio-frequency interference noise from coupling into the antenna.
US10398004B1

Circuitry 31 for a solid-state lighting arrangement 20 designed for as a replacement for a gas discharge lamp used in a lighting fixture having a ballast. The circuitry 31 unsafe flow of current through the solid-state lighting arrangement 20, under non-operational conditions and during installation of the lighting arrangement, so as to provide compatibility with safety standards for use with discharge lamps.
US10398001B2

According to various embodiments, a control method may be provided. The control method may include: determining geometric information about respective geometries of respective housings of a plurality of light sources; determining a photographic representation of an environment in which the plurality of light sources are provided; determining spatial information about the plurality of light sources based on the geometric information and based on the photographic representation; determining control information for the plurality of light sources based on the spatial information; and controlling the plurality of light sources based on the control information.
US10397997B2

A dimming controller is capable of receiving a dimming signal to dim light-emitting device no matter the dimming signal is of a first type or of a second type. A type identifier identifies whether the dimming signal received from an input node is of the first type or of the second type, to accordingly generate a selection signal. A signal converter generates a first signal in response to the dimming signal, and the first signal is of the first type. A multiplexer has two inputs receiving the first signal and the dimming signal respectively, and, in response to the selection signal, forwards one of the first signal and the dimming signal to a driver driving the light-emitting device.
US10397996B2

A lighting module configured to be powered by an external driver includes a light emitting diode (LED) array, and a control circuit configured to control current initially applied by the external driver to the LED array. A lighting system includes a driver configured to provide a constant current power supply and a plurality of lighting modules coupled to the driver. Each lighting module includes a light emitting diode (LED) array, and an integrated control module including an attenuator configured to attenuate current initially applied by the driver to the LED array in response to a received control signal, and a processor configured to generate the control signal to the attenuator.
US10397995B2

An input device includes a switch, light sources, and a light guide body. The switch is configured to switch between ON and OFF by being pressed. The light sources include a first light source and a second light source disposed at a position different from a position of the first light source. The light guide body guides a light emitted from the light sources in an opposite direction opposite from a pressing direction of the switch. The light guide body includes an output section, a first light guide leg section, and a second light guide leg section. The output section outputs the light emitted from the light sources in the opposite direction. The first light guide leg section is connected to the output section and guides the first light emitted by the first light source to the output section. The second light guide leg section is connected to the output section and guides the second light emitted by the second light source to output section. The output section includes a first design configured to emit light by reflecting the first light in the opposite direction and a second design configured to emit light by reflecting the second light in the opposite direction.
US10397991B2

A load control device for controlling power delivered from a power source to an electrical load may comprise a control circuit configured to control the load regulation circuit to control the power delivered to the electrical load. The control circuit may be configured to operate in an AC mode when an input voltage is an AC voltage and in a DC mode when the input voltage is a DC voltage. The control circuit may be configured to disable the power converter in the DC mode. The control circuit may be configured to render a controllable switching circuit conductive in the AC mode, and non-conductive in the DC mode. The rectifier circuit may be configured to rectify the input voltage to generate a rectified voltage when the input voltage is an AC voltage, and to pass through the input voltage when the input voltage is a DC voltage.
US10397970B2

In embodiments, one or more wireless stations operate to configure direct communication with neighboring mobile stations, i.e., communication between the mobile stations without utilizing an intermediate access point. Configuration of NAN includes mapping of NAN clusters and multi-hop data routing within a NAN cluster. A wireless device may transmit a subscribe service discovery frame (SDF) to one or more neighboring wireless devices and receive a respective publish SDF from the one or more wireless devices, the respective publish SDF including respective wireless device information. The wireless device may maintain a data structure comprising the respective wireless device information. In some embodiments, the wireless device information may include an address, hop count, and/or service indications, e.g., for data routing and/or service discovery.
US10397965B2

Embodiments of the present invention relate to systems and methods for restricting at least one service to a subscriber by receiving a connection request from a user equipment [102], wherein the connection request includes at least one of a UE identifier and a unique SIM identifier; generating one of a positive response and a negative response based on the connection request, wherein the positive response is generated in an event a user profile corresponding to the user equipment [102] is identified and the negative response is generated in an event the user profile corresponding to the user equipment [102] is not identified; and restricting the at least one service to the subscriber in an event, one of: the negative response is generated based on the connection request, a state information of a subscriber identity module (SIM) indicates detached, and a location area information of the SIM belongs to a forbidden list of areas.
US10397963B2

In an information processing apparatus instructions are executed to perform communication with a communication apparatus by a first communication method and a second communication method, obtain, from the communication apparatus, first information relating to a network connection in the communication apparatus using the first communication method, and hold the obtained first information in a memory. When the information processing apparatus cannot communicate by the first communication method using the first information, second information is obtained from the communication apparatus and via communication using the second communication method, relating to the network connection in the communication apparatus using the first communication method, and when the obtained second information is different from the first information, the first information is transmitted to the communication apparatus and via communication using the second communication method.
US10397961B2

A terminal and a method of connecting terminals in a predetermined space are provided. The terminal includes a first communication interface configured to transmit a signal for executing input applications of a plurality of terminals through a first communication scheme; a second communication interface configured to broadcast information about the first terminal through a second communication scheme; and a processor configured to generate a list of terminals located in the predetermined space, based on responses from terminals that received the information about the first terminal through the second communication scheme.
US10397960B2

Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
US10397950B1

Disclosed is a method and apparatus to help manage communication on a wireless channel when transmitting and receiving nodes will engage in a sequence of data-ACK exchanges with each other on the channel. As disclosed, the transmitting node and/or receiving node may include in at least one of the data-ACK exchanges an indication of how many data-ACK exchanges remain in the sequence and may further include indicia of how often each data-ACK exchange will occur and how long each data-ACK exchange will last. A neighboring node that is observing the channel to determine whether the channel is available may thus determine, based at least in part on the indication in the data-ACK exchange how many times to refrain from transmitting on the channel, how often to so refrain, and how long to refrain in each instance.
US10397936B2

An embodiment of the present invention relates to a method for receiving control information by a user equipment (UE) having multiple component carrier groups configured therefor in a wireless communication system. The method may comprise the steps of: receiving, from a base station, configuration information on the transmission of main control information which comprises common control information for individual component carrier groups; and attempting to detect main control information for each of the multiple component carrier groups and sub-control information comprising individual component carrier-specific control information, using the configuration information, wherein the configuration information may comprise information on the transmission cycle and transmission offset of the main control information for each of the multiple component carrier groups.
US10397925B2

A method of supporting a buffer status report associated with a device-to-device (D2D) communication includes: establishing an RRC connection with an eNB; receiving, by a UE, configuration information associated with a D2D communication from the eNB, the configuration information including information of a resource selection mode for a D2D data transmission, the information of a resource selection mode indicating a resource pool from which the UE selects a resource for a D2D data transmission to another UE; identifying a D2D target identity of at least one target UE to which the UE transmits D2D data by performing a D2D discovery procedure; setting an RRC message to be transmitted to the eNB, the RRC message including information of the identified D2D target identity; and transmitting the RRC message to the eNB, the information of the identified D2D target identity being transmitted through UEinformation message for a D2D data transmission.
US10397922B2

A scheduler allocates time-frequency resources of a predefined time period for transmitting latency-constrained and non latency-constrained data packets over a frequency selective channel. The scheduler: performs assignment of time-frequency resources for transmitting non latency-constrained data; then, possibly performs a revision of the assignment so that time-frequency resources are allocated to latency-constrained data packets instead of non latency-constrained data packets, said revision being performed by minimizing cost impact of the revision on a global performance metric related to the transmissions of said non latency-constrained data packets; and, allocates the time-frequency resources as assigned to the non latency-constrained data packets that did not incur the assignment revision, whereas the latency-constrained data packets that incurred the assignment revision are put aside for later scheduling.
US10397917B2

Embodiments described herein provide a method in a network node for configuring interference measurements for a wireless device. According to the method, the network node receives information indicating whether a channel state information interference measurement (CSI-IM) resource configuration restriction applies for the wireless device. The network node further configures CSI-IM resources for the wireless device based on the information.
US10397903B2

The present invention relates to a wireless communication system. Specifically, the present invention relates to a method for transmitting control information, and an apparatus therefor, the method comprising: a step of detecting one or more PDSCHs on a plurality of cells, wherein the plurality of cells are divided into a first cell set including a PCell and a first SCell, and a second cell set including one or more second SCells; and a step of transmitting, as feedback for the one or more PDSCHs, HARQ-ACK information through a PUCCH, wherein if the one or more PDSCHs are detected only on the first cell set, the HARQ-ACK information includes HARQ-ACK responses only for the first cell set, and if the one or more PDSCHs are detected at least on the second cell set, the HARQ-ACK information includes HARQ-ACK responses for both the first and second cell sets.
US10397899B2

A wireless communication device in a wireless network sets management information notification cycles at specified time intervals and transmits management information containing receive timing information showing its own position to start receiving information, receive window information, and receive cycle information. Another wireless communication device receiving that management information links it to a communication device number for the corresponding wireless communication device and stores the receive timing, the receive window information, and the receive cycle information. When sending information, the receive start position of the corresponding communication device is found from the receive timing information, the receive window information, and the receive cycle information of the other communication and information is then transmitted at that timing. An asynchronous ad-hoc communication wireless network can therefore be configured without a particular control station.
US10397895B2

The present disclosure provides a range finding base station selection method and apparatus. The embodiments of the present disclosure are capable of eliminating the inappropriate base stations, so that the range finding from the base station to the tag can be accurate, thereby improving the accuracy of tag positioning.
US10397891B2

A communication device for handling multiple cellular radio operations in a wireless communication system comprises a storage device for storing instructions and a processing circuit coupled to the storage device. The processing circuit is configured to execute the instructions stored in the storage device. The instructions comprise transmitting a first user equipment (UE) capability to a first network, when the communication device attaches to the first network; and transmitting a second UE capability to the first network, when the communication device attaches to the first network and a second network, wherein the second UE capability is different from the first UE capability.
US10397887B2

System and method for temperature-calibration of a crystal oscillator (XO) in a mobile device. A temperature-calibration status of the XO is determined and a trigger condition related to temperature-calibration of the XO is detected. If the temperature-calibration status of the XO is not fully temperature-calibrated or if the XO has not been previously temperature-calibrated, a temperature-calibration session is initiated by an XO manager based on the condition, wherein a receiver is configured to receive signals and temperature-calibration of the XO is performed in a background mode based on the received signals. The condition based triggering ensures that the XO is temperature-calibrated prior to launch of any position based or global navigation satellite systems (GNSS) based applications on the mobile device. The trigger condition can include first use or power-on, charging, presence in an outdoor environment, variation in operating temperature, pre-specified time, and/or user input pertaining to the mobile device.
US10397877B2

An electronic device includes at least one antenna, a Wi-Fi module including a plurality of processing circuits performing communication using the at least one antenna, and a processor configured to determine whether the Wi-Fi module is simultaneously operating in a plurality of frequency bands, to obtain a number of processing circuits that are operating in the Wi-Fi module if the Wi-Fi module is simultaneously operating in the plurality of frequency bands, and to reduce a transmission power level of the Wi-Fi module based on the number of processing circuits that are operating.
US10397876B2

Wireless devices are provisioned using multiple factors. As part of a wireless detection phase, multiple wireless communications are received that were transmitted by multiple wireless devices. Individual wireless devices are distinguished from each other among the multiple wireless devices based on a distinguishing feature of each of the multiple wireless communications to obtain a provisional set of wireless devices. As part of an electrical load detection phase, one or more wireless devices connected to an electrical power circuit are identified based on time-based measurements of electrical power consumed by electrical loads on the electrical power circuit and/or powerline communications received via the electrical power circuit. The provisional set of wireless devices obtained by wireless detection may be filtered to obtain a filtered set of wireless devices that excludes wireless devices of the provisional set not connected to the same electrical power circuit.
US10397873B2

MAC addresses provide a way to identify wireless client devices. Some wireless client devices are able to change their MAC addresses. Provided are devices computer-program products, and methods for identifying wireless client devices based on radiofrequency signatures of transmissions from the client devices. In some implementations, one or more wireless frames are received at a network device. In these implementations, a wireless frame is received at two or more antennas. In some implementations, a signal characteristic associated with transmission of the wireless frame is monitored. In these implementations, monitoring the signal characteristic includes using two or more antennas to determine a physical or temporal characteristic associated with the transmission of the wireless frame. In some implementations, a client device is identified. The identified client device is associated with the transmission of the wireless frame. In these implementations, identifying the client device includes using the monitored signal characteristics.
US10397871B2

Improvement of use efficiency of radio resources is realizable.An information processing device is an information processing device which includes a reception unit and a control unit. The reception unit included in this information processing device is a reception unit which receives a packet. In addition, the control unit included in the information processing device is a control unit which controls a packet monitoring state of the information processing device in case of detection of reception of a packet not addressed to the information processing device. The packet monitoring state is controlled on the basis of reception power at the time of reception of the packet not addressed to the information processing device.
US10397867B2

A method of operating a user equipment includes setting a user equipment to enter a public safety mode, converting the user equipment to an idle state when the user equipment enters the public safety mode, and temporarily converting the user equipment from the idle state to a partial wakeup state during the public safety mode. A public safety carrier searching is performed for device-to-device (D2D) communication between the user equipment and a neighboring equipment during the partial wakeup state. The method may efficiently support the D2D communication and reduce power consumption by changing the state of the user equipment into the idle state when entering the public safety mode and temporarily changing the user equipment into the partial wakeup state for public safety carrier searching.
US10397865B2

Systems, methods, apparatuses, and computer-readable storage media for managing power consumption of a mobile device are disclosed. The systems, method, apparatus, and computer-readable storage medium may cause the base station to identify an energy metric associated with a mobile device, and to configure the transmission between the base station and the mobile device based at least in part on the energy metric. The configuration of the transmission may reduce the power consumption of the mobile device for processing the transmission.
US10397857B2

In a handheld communication device capable of a plurality of wireless communication modes, a method of communication begins by receiving, at the handheld communication device, a notification of an available one of the wireless communication modes. Then, in a data communication window of the communication device, a user-indication of an active one of the available wireless communication modes is provided in accordance with the received communication mode indication. The data communication window is configured to facilitate data communication via the plurality of wireless communication modes, and facilitates the data communication via the active wireless communication mode.
US10397852B2

Embodiments provide apparatuses, methods and a computer programs for a base station transceiver and a mobile transceiver. An apparatus for a base station transceiver of a communication system comprises a transceiver module operable to communicate radio signals with a plurality of mobile transceivers using a plurality of radio resources. The apparatus further comprises a control module operable to control the transceiver module, and operable to receive access messages from a first subgroup of one or more mobile transceivers from the plurality of mobile transceivers using a first subgroup of the plurality of radio resources. The control module is further operable to receive access messages from a second subgroup of one or more mobile transceivers from the plurality of mobile transceivers using a second subgroup of the plurality of radio resources. An apparatus for a mobile transceiver of a communication system is also provided as well as methods associated therewith.
US10397850B2

The present invention relates to a method and apparatus for transmitting and receiving a message performed by a first relay device in a mesh network of Bluetooth including receiving a first message from at least one device including a first device and a second device, calculating a Hop count with the first device based on the first message, receiving a second message transmitted from a second device to the first device, and the second message includes a first relay value indicating a relay count and a destination address field including an address of a destination device, comparing the first relay value with the Hop count, and dropping or transmitting the second message to one or more neighboring devices according to the result of comparison.
US10397847B2

In accordance with particular embodiments, a method for offloading a wireless device is disclosed. The method comprises identifying a second best cell. The second best cell provides the wireless device with a second wireless signal that has a first signal characteristic that is less than a corresponding first signal characteristic of a first wireless signal provided by a serving cell. The method also includes offloading the wireless device from the serving cell to the second best cell despite the first signal characteristic of the first wireless signal of the serving cell being better than the first signal characteristic of the second wireless signal of the second best cell.
US10397844B2

Disclosed aspects relate to access point selection. A set of beacon frame transmission data for a set of access points may be collected by a computing device. The beacon frame transmission data may include first and second subsets indicating respective frame success rates. The computing device may compare factors derived utilizing the respective frame success rates. The computing device may evaluate network capability data for the access points. The computing device may weight the beacon frame transmission data with respect to information indicating network security and encryption level have heavier weights than other factors, and identify that the first access point achieves an encryption level threshold. The computing device may use the beacon frame transmission data for the set of access points to determine to establish a connection utilizing the first access point. The computing device may establish the connection utilizing the first access point.
US10397843B2

There is provided a communication apparatus. A first communication unit communicates with an external apparatus in accordance with a first communication method. A second communication unit communicates with the external apparatus in accordance with a second communication method. A determination unit determines identification information of the second communication unit based on predetermined information related to communication with the external apparatus via the first communication unit. A control unit performs control so as to establish communication with the external apparatus via the second communication unit, using the determined identification information of the second communication unit.
US10397840B2

Aspects of the subject disclosure may include, for example, a method including receiving, from a first network, a first node identifier associated with a second network, transmitting the first node identifier to a small cell node, receiving a handover initiation signal from the first network responsive to a request for a handover, from a macro cell node of the second network to the small cell node of the first network, of a communication session associated with a first wireless communication link to a communication device, where the request is triggered at the second network responsive to identification of the first node identifier in a first wireless signal from the communication device, and where the first node identifier is obtained by the communication device via a second wireless signal from the small cell node, and facilitating a second wireless communication link to the communication device via the small cell node to complete the handover. Other embodiments are disclosed.
US10397838B2

The method provided in this embodiment improves the capabilities of automatic driving and ADAS of electric vehicles. The method can be applied to vehicle networking, such as V2X, LTE-V, V2X, etc. The method includes receiving, from the mobile device, an indication of a requirement for transmission resources, comprising at least an indication that the resources are required with a periodicity, transmitting, to the mobile device, an assignment of a first scheduling configuration for the device-to-device connection, transmitting, to the mobile device, an indication to begin use of periodically recurring radio resources, and handing over responsibility for providing radio resources for the device-to-device connection from the network node to a target network node such that the availability of radio resources with the periodicity is substantially maintained.
US10397834B2

The present invention discloses a single radio voice call continuity handover method and apparatus. An MME records whether a bearer deletion request message sent by a gateway device is received, and if the MME determines that the bearer deletion request message is received, the MME does not send a bearer deletion instruction message to the gateway device, and does not delete a local voice service bearer resource. Therefore, after the MME performs voice service bearer deletion on an IMS side, the MME does not perform voice service bearer deletion on an EPS side, thereby avoiding a conflict in an SRVCC process. Alternatively, when a reason for session termination is SRVCC handover, a PCRF does not send a re-authentication request message to the gateway device, that is, the gateway device does not perform a voice bearer deletion process on the IMS side, thereby avoiding a conflict in an SRVCC process.
US10397833B2

Provided are a method for a user equipment (UE) to perform early data transmission (EDT) in a wireless communication, and an apparatus supporting the same. The method may include: receiving system information including a threshold for the EDT; determining whether or not a condition for initiating the EDT is satisfied, by comparing the threshold for the EDT with a size of data for transmission; if the condition is satisfied, performing the EDT; and if the condition is not satisfied, performing a radio resource control (RRC) connection establishment or resume procedure.
US10397829B2

A system, method and apparatus having a mobile device with a plurality of radio access technologies, a server computer in the cloud running a cognitive offloader and cloud scheduler improves the execution time and reduces energy use of an application program residing on or accessible to the mobile device and having a plurality of components by apportioning executable tasks and routing data between the mobile device and the server computer based upon a cognitive offloader algorithm aware of dynamic parameters such as CPU and memory use, energy costs for transmissions and measurements of connectivity. The scheduling of tasks apportioned between the computing devices in the system may be enlightened by a component dependency graph of the application that is used by the offloader algorithm.
US10397825B2

Explicit congestion notification (ECN) data that is utilized in a core portion of a cellular communication network has known issues associated with a first use scenario and an infrequent use scenario. A probe comprising probe data and a data structure for storing certain ECN data can be transmitted in order to mitigate these issues. Transmitting the probe in response to a communication session being established with a device of a network can mitigate the first use issue. Transmitting the probe in response to expiration of a probe timer in connection with a network traffic idle period can mitigate the infrequent use scenario.
US10397823B2

For load balancing in a large-scale wireless mesh network, a device, a system and a method are provided for controlling data packet transmissions in the wireless mesh network, wherein a time slot is randomly selected within a determined answer interval for transmitting an answer responding to a received data packet.
US10397817B2

One disclosure of the present specification provides a method for performing measurement. The method for performing measurement may comprise the steps of: receiving, from a serving cell, pattern information on a subframe wherein power backoff is performed; on the basis of the pattern information, performing measurements independently in a subframe wherein power backoff is performed and in a subframe wherein power backoff is not performed; and reporting results of the measurements to the serving cell.
US10397809B2

Particular embodiments described herein provide for a system, method, and apparatus that can be configured to determine that a first network element is no longer connected to a second network element, where interests had been sent to the second network element and are still pending. Each of the pending interest can be associated with a pending interval timer and the pending interests can be forwarded to a third network element before the expiration of the pending interval timer associated with each of the pending interests. In an example, the pending interest is part of an information centric networking protocol.
US10397803B2

A cellular communications network may be configured to leverage a millimeter wave (mmW) mesh network. Base stations may be configured to operate as mmW base stations (tnBs). Such base stations may be configured to participate in the mmW mesh network and to access the cellular communications network (e.g., via cellular access links). A network device of the cellular communications network (e.g., an eNB) may operate as a control entity with respect to one or more niBs. Such a network device may govern mesh backhaul routing with respect to the cellular communications network and the mmW mesh network. Such a network device may configure the mmW mesh network, for example by performing a process to join a new mB to the mmW mesh network. A WTRU may send and receive control information via a cellular access fink and may send and receive data via the mmW mesh network.
US10397801B2

Positioning determination of a communication device in a wireless communication network is supported by a positioning device receiving [230] tight synchronization signals from a master positioning cell; determining [232] therefrom a plurality of time differences between their actual and theoretical times of arrival; synchronizing [234] a positioning cell clock based on the received tight synchronization signals adjusted by the time differences; and emitting [236] to the communication device a positioning signal at a time determined by the synchronization. The positioning signal includes an identifier of the positioning cell, and it is transmitted so as not to interfere with positioning pilot signals transmitted by the wireless communication network. The positioning device may alternatively receive synchronization signals from another positioning cell instead of a master positioning cell.
US10397797B2

Devices, systems, and methods for resource allocation of shared spectrum. In one embodiment, a server includes a communication interface, a memory, and an electronic processor. The communication interface configured to communicate with one or more servers via a backchannel, and control a terrestrial antenna to provide a wireless network. The electronic processor is configured to allocate bid units, determine whether an increase in spectrum is needed, control the communication interface to transmit a specified number of the bid units to the one or more servers over the backchannel, receive zero or more external bid units from each of the one or more servers, determine whether the zero or more external bid units from the each of the one or more servers is more than or equal to the specified number of the bid units, and control the communication interface to transmit information via the wireless network using the increase in the spectrum.
US10397790B2

A wireless access point has a physically-embedded hardware-trust key and serves User Equipment (UE) with hardware-trusted wireless data communications. The wireless access point receives a hardware-trust challenge number and responsively generates a hardware-trust result with the physically-embedded hardware-trust key and the hardware-trust challenge number. The wireless access point transfers the hardware-trust result and receives an access hardware-trust digital certificate. The wireless access point wirelessly receives a hardware-trusted attachment request from the UE and wirelessly transfers the access hardware-trust digital certificate to the UE. The UE validates the access hardware-trust digital certificate. The wireless access point wirelessly exchanges user data with the UE responsive to the UE validating the access hardware-trust digital certificate. The wireless access point exchanges the user data with a data network.
US10397783B2

An approach is provided for a remote lost-and-found service. A local sensor manager causes, at least in part, pairing of a device and a local sensor. The local sensor manager then determines when the local sensor is beyond a predetermined distance from the device, and causes, at least in part, a change in a profile status of the local sensor based on the determination. The profile status specifies, at least in part, a visibility of the local sensor to one or more other devices.
US10397781B2

Provided are a method for personalizing a security element for a mobile end device for communicating via a mobile radio network as well as a corresponding system. The method comprises the following steps: supplying initialization data of an initialization entity to the security element, wherein the initialization data comprise a personalization token; supplying the personalization token from the security element to a personalization entity; checking the validity of the personalization token through the personalization entity; and after successfully checking the validity of the personalization token, supplying personalization data from the personalization entity to the security element, wherein authorization data for authenticating the security element in encrypted form are already part of the initialization data and the personalization data comprise a key for decrypting the authorization data.
US10397777B2

A method is provided in which a network access system receives an initial request from a device requesting access to the network. In response to successfully authenticating the initial access request, the system causes a code to be transmitted in light emitted by one or more light fixtures within a physical space in which access to the network is to be restricted. The system receives information from the device requesting access to the network and determines whether to permit the device access to the network based on the initial request and on whether the received information is derived from the code transmitted by the one or more light fixtures, thereby indicating that the requesting device is within the physical space.
US10397772B2

A first mobile device is provided. The first mobile device includes at least one hardware processor and a first mobile device application, executed by the at least one hardware processor. The first mobile device application is configured to detect that the first mobile device is in physical contact with, or within a predetermined distance of, a second mobile device. The first mobile device is also configured to, in response to the detection, send a switch request to make a mobile phone line inactive for the first mobile device and active for the second mobile device.
US10397766B2

A method for device-to-device (D2D) operation performed by a terminal in a wireless communication system, and a terminal using the method are provided. The method comprises: receiving, from a cell, resource pool information indicating a first resource pool which may be used in transmitting a D2D signal within the coverage of the cell; and transmitting a D2D signal by using overlapping resources between the first resource pool, and a second resource pool which may be used in the D2D operation outside the coverage of the cell.
US10397745B2

Systems and methods for redirecting notifications, including determining that a first mobile device is in motion at a speed that exceeds a threshold value; determining that the while the first mobile device is in motion at a speed that exceeds the threshold value, the first mobile device is within a threshold distance of the second mobile device; determining, from an input received by the first mobile device that the first mobile device is in a position of a driver of an automobile; determining that a second mobile device is in a position of a passenger of the automobile; and automatically transmitting the notification from the first mobile device to the second mobile device, without providing an indication to a user of the first mobile device that the notification was received by the first mobile device.
US10397744B2

One or more mobile device movement detection computing devices and methods are disclosed herein based on acceleration data collected from an accelerometer of a mobile device found within an interior of a vehicle. The mobile device movement detection computing devices may identify a likely mobile device movement event based on a change of angle between two three-dimensional acceleration vectors. Where the mobile device movement detection computing devices detect a likely mobile device movement event, sensor data from various sensors of a mobile device are collected and aggregated for a window of time encompassing the mobile device movement event. Data from vehicle sensors and other external systems may also be used. The mobile device movement detection computing devices calculate a risk score based on the aggregates sensor data, and provide feedback to a mobile device or vehicle based on the calculated risk score.
US10397743B2

Techniques are disclosed for using contextual information to determine an appropriate response in a system that includes a device paired with an accessory device. The contextual information can be sourced from local sensors, received communications, and information stored on a device within the system. Stored parameters in the system allow flexibility and configurability in evaluating the contextual information. Using feedback obtained after actions taken based on the contextual information allows the system to adapt to better meet the needs of the user.
US10397741B2

A system to assist in monitoring and improving services in hotels, motels and other lodging facilities. The system includes a plurality of fixed-location wireless devices that are situated throughout the facility and each service provider or asset to be monitored or tracked is provided with a cooperating mobile wireless device. The mobile devices may periodically transmit beacons that are received by the fixed location devices. The system may determine location based on evaluation of signal strength across a plurality of fixed devices. The system may include premapped calibration data on signal strength to assist in determining location. The location information may help to assess employee performance, to assist in improving performance and to provide improved services. The system may also interact with an application running on a hotel guest's electronic device to allow the system to track guest location. Guest location information can be used to provide improved guest services.
US10397734B2

The disclosure is directed to methods and systems for activating a geofence. These methods and systems include storing a plurality of pre-defined geofences in a database, storing a plurality of geofence activation rules in a database, each activation rule being based on data obtained from at least one member selected from the group consisting of analytics data, calendaring data and on-demand data, enable a geofence activation rule, selecting at least one pre-defined geofence based on the enabled geofence activation rule and activating and deactivating the at least one selected pre-defined geofence based on the enabled a geofence activation rule.
US10397732B2

A mobile data processing device configured to assist in locating a user. The device comprises an enclosure and an attachment base for attaching the device to a garment, lanyard or strap wearable by a user. The attachment base moves between a first (“normal”) position and a second (“alert”) position with respect to the enclosure in response to an external force acting on the enclosure. The device further comprises a detector system for detecting removal of the attachment base from the normal position, and an alert signal generator configured to send an alert signal in response to said detection. The alert signal can be generated quickly by grabbing the enclosure and pulling the device downwards.
US10397729B2

An electronic device identifies a location of a physical object that is away from a listener. The electronic device convolves sound so the sound externally localizes as binaural sound to the physical object. The sound plays to the listener through earphones so the listener hears the sound as emanating from the physical object.
US10397726B2

Focusing sound signals in a shared 3D space uses an array of physical microphones, preferably disposed evenly across a room to provide even sound coverage throughout the room. At least one processor coupled to the physical microphones does not form beams, but instead preferably forms 1000's of virtual microphone bubbles within the room. By determining the processing gains of the sound signals sourced at each of the bubbles, the location(s) of the sound source(s) in the room can be determined. This system provides not only sound improvement by focusing on the sound source(s), but with the advantage that a desired sound source can be focused on more effectively (rather than steered to) while un-focusing undesired sound sources (like reverb and noise) instead of rejecting out of beam signals. This provides a full three dimensional location and a more natural presentation of each sound within the room.
US10397711B2

The present disclosure relates in a first aspect to a method of determining an objective perceptual quantity of a noisy speech signal using directional sound information. The method comprises steps of applying a noisy speech signal comprising a mixture of target speech and interfering noise to a first hearing instrument with an adjustable microphone arrangement and controlling the adjustable microphone arrangement to produce first and second directivity patterns exhibiting first and second directivity indexes, respectively, wherein said second directivity index is smaller than the first directivity index at one or more reference frequencies. First and second noisy speech segments are recorded from the adjustable microphone arrangement using the first and second directivity patterns, respectively, and at least one value of the objective perceptual quantity of the noisy speech signal is determined by comparing the first noisy speech segment and the second noisy speech segment.
US10397709B2

A microelectromechanical microphone includes a planar first electrode that is formed, at least in portions, from an electrically conductive material, a planar second electrode that is formed, at least in portions, from an electrically conductive material and that is arranged at a distance from the first electrode, a spacer that is arranged between the first electrode and the second electrode, and a membrane that is arranged in a space defined between the first electrode and the second electrode and that is displaceable in the direction of at least one of the first electrode or the second electrode. The membrane has a membrane passage opening through which the spacer extends. The space defined between the first and the second electrode, in which the membrane is arranged, has a gas exchange connection with the surroundings of the microphone.
US10397706B2

A method for avoiding an offset of a membrane (3) of an electrodynamic acoustic transducer (1) having two voice coils (7, 8) is presented, wherein a control voltage (UCTRL) is applied to at least one of the voice coils (7, 8) until the electromotive force (Uemf1) of the first coil (7) or a parameter derived thereof and the electromotive force (Uemf2) of the second coil (8) or a parameter derived thereof substantially reach a predetermined relation. Furthermore, an electronic offset compensation circuit (12) is presented, which performs the above application of a control voltage (UCTRL). Finally, the invention relates to a transducer system with a transducer (1) and an electronic offset compensation circuit (12) connected to the transducer (1).
US10397704B2

An acoustic apparatus may include a frame having an annular open portion that opens in an axial direction; a diaphragm supported by being attached to the annular open portion via a flexible edge member so as to be capable of vibrating in the axial direction; and a driving unit connected to the diaphragm at a center portion of the diaphragm, where the driving unit is configured to apply a driving force in the axial direction to the diaphragm. The diaphragm has a rotationally symmetric shape around an axis of the diaphragm when viewed in the axial direction. The diaphragm includes a sheet member having an orientation dispersion structure in which shape-anisotropic fillers are dispersed in a resin with long axes of the fillers oriented in one predetermined direction, and the diaphragm has mechanical characteristics having two-fold rotation symmetry around the axis.
US10397703B2

Practical speaker connection is identified using a device having a sound channel of a 5.1 channel or 7.1 channel, and a device is provided that can easily reproduce the optimum multiple channels. Actual speaker arrangement can be identified by, for example, measuring the impedance of a terminal at the side of an audio amplifier. If incorrect connection is found, a warning is issued. This information is transmitted to a signal source with an EDID and a signal with the optimum a number of sound channel is sent. The EDID is also used for the connection with a display unit and the speaker connection with which the display unit is provided uniquely. For example, a sound through the 7.1 channel is easily reproduced using the speaker of the display unit in the channel of the front speaker.
US10397697B2

This disclosure describes a band-limited beamforming microphone array made by the augmenting a beamforming microphone array with non-beamforming microphones. The band-limited beamforming microphone array includes a plurality of first microphones configured as a beamforming microphone array to resolve first audio input signals within a first frequency range. The band-limited array further includes one or more additional microphone configured to resolve second audio input signals within a restricted second frequency range such that the additional microphones are coupled to the beamforming microphone array. In addition, the band-limited array includes augmented beamforming that processes audio signals from the beamforming microphone array and the additional microphone(s), where the augmented beamforming combines the beamformed first audio input signal with the resolved and restricted second audio input signals to create an audio signal within a band-limited frequency range.
US10397696B2

An omni-directional speaker system includes a deflector sub-assembly and a pair of acoustic sub-assemblies. The deflector sub-assembly includes a pair of diametrically opposed acoustic deflectors. Each of the acoustic sub-assemblies includes an acoustic driver for radiating acoustic energy toward an associated one of the acoustic deflectors. The acoustic sub-assemblies are coupled together via the deflector sub-assembly.
US10397694B1

A playback device comprises an electroacoustic transducer; an acoustic waveguide in fluid communication with the transducer; and a housing delimiting an opening of the waveguide, the opening extending around an axis passing through the transducer. The opening may have a radial distance from the axis that varies with an azimuthal angle about the axis. An acoustic path length within the waveguide, between the transducer and the opening, is substantially constant and independent of azimuthal angle about the axis.
US10397692B2

The speaker system disclosed includes multiple closely spaced drivers in a column matrix format. Using signal processing and pairing of the drivers, the speaker system optimally combines acoustic output and maintains the benefits of a single column vertical array while achieving improved low frequency sound production by coupling speakers through spatial and frequency alignment. The full frequency range of an audio signal is provided to a first set of drivers while a low frequency band of the audio signal is provided to a second set of drivers. The horizontal centers of the two adjacent sets of drivers are such that the signal wavelength provided to the second set of drivers is at least twice the separation distance between transducer acoustic centers. By providing a continuous range of signal to at least one driver set, and proper frequency management of the second set, crossover artifacts are substantially minimized while the benefits of coupled drivers are optimized.
US10397689B2

A dual wireless earphones comprise two earphone bodies and a connecting cable assembly. The connecting cable assembly comprises a cable tube and two connectors fixedly connected to both ends of the cable tube respectively, one of the connectors is detachably connected to one of the earphone bodies, and the other connector is detachably connected to the other earphone body. In the dual wireless earphones according to the present disclosure, two earphone bodies are detachably connected by a connecting cable assembly, and when the dual wireless earphones are used, the two earphone bodies can be connected by the connecting cable assembly, thereby effectively avoiding the earphone bodies being dropped and lost when they are worn. Moreover, the user can choose whether to connect the two earphone bodies according to his preferences and usage scenarios, so the use of the dual wireless earphones is greatly facilitated.
US10397688B2

A system and method for managing wireless earpieces. Circuitry of the wireless earpieces are powered utilizing a high-power mode in response to detecting a magnetic field is not applied to one or more of the wireless earpieces. The power sent to the circuitry of the wireless earpieces is altered to a low power mode in response to detecting the magnetic field is applied to one or more of the wireless earpieces.
US10397686B2

An earpiece includes an earpiece housing, a processor disposed within the housing and a sensor system associated with the earpiece housing, the sensor system operatively connected to the processor. The sensor system is configured to detect skin touches proximate the earpiece housing. The sensor system may include an emitter and a detector which may be a light emitters/light detectors or other types of emitters and detectors. The skin touches may be skin touches on an ear of the housing while the earpiece is positioned within the ear. The earpiece may further include a speaker and wherein the earpiece provides audio feedback through the speaker in response to the skin touches.
US10397683B2

A case for a listening device includes a housing and a lid attached to the housing with a pivotable joint allowing the lid to rotate between a closed position and an open position. An over center mechanism for the lid includes a torsion spring that impels the lid to either the open or the closed position.
US10397679B2

An integrated transparent ultrasonic audio speaker and touchscreen panel, includes a first transparent layer comprising a first base layer and a first conductive layer; and a second transparent layer disposed adjacent the first transparent layer, the second transparent layer comprising a second base layer and a second conductive layer; wherein the second transparent layer is a touchscreen.
US10397666B2

A method is described for determining a region-of-interest (ROI) for a client device on the basis of at least one HEVC-tiled (panorama) video stream wherein the method comprises: receiving a ROI video stream for rendering a first ROI defining a first sub-region within the full image region of said HEVC-tiled video stream, the positions of HEVC tiles in said HEVC-tiled panorama video being defined by tile position information; providing ROI position information associated with at least one video frame of said ROI video stream, said ROI position information comprising at least first position of said first ROI; identifying one or more HEVC tiles of said HEVC-tiled video stream on the basis of said ROI position information and said tile position information, preferably one or more HEVC tiles that overlap with said first ROI; and, requesting video data associated with said one or more identified HEVC tiles for rendering a second ROI defining a second sub-region within the full image region of said HEVC-tiled video stream.
US10397665B2

Disclosed herein are systems, methods, and computer readable-media for temporally adaptive media playback. The method for adaptive media playback includes estimating or determining an amount of time between a first event and a second event, selecting media content to fill the estimated amount of time between the first event and the second event, and playing the selected media content possibly at a reasonably different speed to fit the time interval. One embodiment includes events that are destination-based or temporal-based. Another embodiment includes adding, removing, speeding up, or slowing down selected media content in order to fit the estimated amount of time between the first event and the second event or to modify the selected media content to adjust to an updated estimated amount of time. Another embodiment bases selected media content on a user or group profile.
US10397664B2

The present invention relates to a method (20) for operating a mobile device (10). The mobile device (10) is configured to download a media stream comprising a plurality of data segments (S1-Sn) and to playback the media stream during download. The media stream is downloaded as a plurality of blocks of data segments and each block of data segments comprises a set of the plurality of data segments (S1-Sn) representing a corresponding media stream portion of the media stream. According to the method, a required playback time (T) for a next block of data segments to be downloaded is determined depending on a predetermined required minimum playback time (C) which defines a required minimum time duration for playing back the media stream portion provided by the next block of data segments.
US10397660B2

Provided is a broadcasting receiving apparatus and a control method thereof capable of receiving recommendation information, the control method of a broadcasting receiving apparatus receiving recommendation information about a broadcasting program; comparing a time of confirming the recommendation information and a broadcasting time of a recommended program included in the recommendation information; and supplying a function of the broadcasting receiving apparatus for using the recommendation information to correspond to a comparison result. Accordingly, a broadcasting receiving apparatus and a control method thereof capable of supplying a broadcasting service having an improved user convenience is provided.
US10397656B2

A virtual in-venue experience is provided to a remote spectator receiving one or more sets of audio visual (AV) feeds of an event, a set of the feeds including a primary and one or more secondary AV feeds. The secondary AV feed(s) provides supplemental content to the main content provided by the primary AV feed, and includes peripheral field of view audio visual content for the set. The set of feeds may be captured from a respective location within the venue. The primary audio visual feed is displayed for view by the remote spectator, and in association with display of the primary feed, the secondary audio visual feed(s) is displayed in a peripheral field of view of the remote spectator. The secondary AV feed(s) provides the remote user with peripheral AV content at the respective location within the venue, thereby enhancing the in-venue experience for the remote spectator.
US10397646B2

Method, system, and program product for measuring audio video synchronization. This is done by first acquiring audio video information into an audio video synchronization system. The step of data acquisition is followed by analyzing the audio information, and analyzing the video information. Next, the audio information is analyzed to locate the presence of sounds therein related to a speaker's personal voice characteristics. In Analysis Phase Audio and Video MuEv-s are calculated from the audio and video information, and the audio and video information is classified into vowel sounds including AA, EE, OO, B, V, TH, F, silence, other sounds, and unclassified phonemes. The inner space between the lips are also identified and determined. This information is used to determine and associate a dominant audio class in a video frame. Matching locations are determined, and the offset of video and audio is determined.
US10397645B2

Apparatuses, methods and storage medium associated with real time closed captioning or highlighting are disclosed herein. In embodiments, an apparatus may include an audio interceptor to intercept an audio portion of an audio/video output stream of a multi-media application; a speech recognizer coupled to the audio interceptor to, in real time, process the audio portion of the audio/video stream, recognize speech within the audio portion, and automatically generate text corresponding to recognized speech, or keywords within the recognized speech; and a controller coupled to the audio interceptor and the speech recognizer, to control operations of the audio interceptor and the speech recognizer. The automatically generated text or keywords may be outputted as closed captions or highlights to complement video content of the audio/video stream. Other embodiments may be disclosed or claimed.
US10397644B2

A method and apparatus for switching from a first IPTV channel arranged to be delivered to a plurality of nodes, such as a broadcast or a unicast, to a second unicast IPTV channel. The first IPTV channel is received at an IPTV receiving node, such as a User Equipment. If it is determined that the first IPTV channel is no longer available, then an IPTV content provider capable of providing the same IPTV channel in a unicast as the first IPTV channel is identified. A message is then sent to an IPTV AS, the message including an instruction to switch to a unicast IPTV channel and an address for the identified IPTV content provider node. The IPTV receiving node then receives the IPTV channel unicast.
US10397639B1

Methods and systems are described. In one aspect, a control user interface including selectable representations identifying a plurality of operating media players is presented. A user selection identifying a selected portion of the plurality of operating media players is received. And, an indication is provided allowing a media player in the selected portion access to a presentation device.
US10397633B2

A receiver apparatus includes: a broadcast receiver that receives a broadcast stream, a first time code being added to each first unit of first image data of the broadcast stream; a communication receiver that receives a communication stream via a network, a second time code being added to at least each first unit of second image data of the communication stream, the second image data being synchronized with the first image data and reproduced; a criterion time generator configured to generate criterion time; a time code processor configured to obtain the first time code added to the received broadcast stream and the second time code added to the communication stream at a predetermined timing, and to calculate an amount of delay of the second time code behind the first time code; and an adjuster configured to adjust the criterion time with reference to the amount of delay.
US10397629B2

A distribution system and reception apparatus, and methods thereof, are provided for broadcasting and receiving a plurality of first services from a plurality of different broadcast providers, which broadcast a plurality of second services over a plurality of different broadcast channels, on a transition broadcast channel that is different from the plurality of different broadcast channels. The system includes at least one receiver and a transmitter. The at least one receiver is configured to receive the plurality of first services from the plurality of different broadcast providers. The transmitter is configured to broadcast the plurality of first services over the transition broadcast channel.
US10397627B2

Embodiments of the present invention, relating to the field of desktop cloud applications, provide a desktop-cloud-based media control method and a device, so as to reduce a bandwidth occupied by transmission of a multimedia data stream in a media control process. The method includes: acquiring, by a client, a multimedia data stream, displaying the multimedia data stream, receiving a control instruction sent by a cloud server, and performing a corresponding control operation on the displayed multimedia data stream according to the control instruction. The method embodiment is used for media control.
US10397621B2

Video streams, either in form of on-demand streaming or live streaming, usually have to be transcoded based on the characteristics of clients' devices. Transcoding is a computationally expensive and time-consuming operation; therefore, streaming service providers currently store numerous transcoded versions of the same video to serve different types of client devices. Due to the expense of maintaining and upgrading storage and computing infrastructures, many streaming service providers recently are becoming reliant on cloud services. However, the challenge in utilizing cloud services for video transcoding is how to deploy cloud resources in a cost-efficient manner without any major impact on the quality of video streams. To address this challenge, in this paper, the Cloud-based Video Streaming Service (CVSS) architecture is disclosed to transcode video streams in an on-demand manner. The architecture provides a platform for streaming service providers to utilize cloud resources in a cost-efficient manner and with respect to the Quality of Service (QoS) demands of video streams. In particular, the architecture includes a QoS-aware scheduling method to efficiently map video streams to cloud resources, and a cost-aware dynamic (i.e., elastic) resource provisioning policy that adapts the resource acquisition with respect to the video streaming QoS demands. Simulation results based on realistic cloud traces and with various workload conditions, demonstrate that the CVSS architecture can satisfy video streaming QoS demands and reduces the incurred cost of stream providers up to 70%.
US10397612B2

A three-dimensional (3D) video encoding method, decoding method, and related apparatus is disclosed. The decoding method may include decoding a video bitstream to obtain a single sample flag bit corresponding to a current image block in a current depth map, performing detection on a first adjacent prediction sampling point and a second adjacent prediction sampling point of the current image block in the current depth map if the single sample flag bit obtained by decoding indicates that a decoding mode corresponding to the current image block is a single depth intra-frame mode (SDM), and constructing a sample candidate set according to results of the detection on the first adjacent prediction sampling point and the second adjacent prediction sampling point, where the sample candidate set includes a first index location and a second index location, decoding the video bitstream to obtain a single sample index flag bit corresponding to the current image block.
US10397603B1

In some embodiments, an apparatus for video coding includes processing circuitry. The processing circuitry is configured to receive a current block of a current picture. The current block has a width and a height. The processing circuitry is further configured to determine whether a first temporal motion candidate at one of a right edge and bottom edge of a co-located block of the current block can be used according to the width and/or the height of the current block in the current picture, and in response to determining that the first temporal motion candidate can be used, check the availability of the first temporal motion candidate at the one of the right edge and bottom edge of the co-located block of the current block. The processing circuitry is further configured to add the first temporal motion candidate to a motion candidate list when the first temporal motion candidate is available.
US10397599B2

An inter prediction method according to the present invention comprises: a step for deriving reference motion information related to a unit to be decoded in a current picture; and a step for performing motion compensation for the unit to be decoded, using the reference motion information that has been derived. According to the present invention, image encoding/decoding efficiency can be enhanced.
US10397595B2

Supplemental processing information defining post-decoding instructions for processing decoded media content is co-organized in a file together with a pseudo-identifier of a media codec employed for encoding the media content. The co-organization trigger abortion of decoding of the media content by a legacy media terminal that does not recognize the pseudo-identifier but enables decoding of the media content by a media terminal that recognizes the pseudo-identifier to thereby enable post-decoding processing of the decoded media content using the supplemental processing information. The co-organization thereby prevents legacy media terminals that cannot use the supplemental processing information from decoding the media content and rendering the media content in a media presentation.
US10397593B2

An image decoding method for decoding a bitstream including a coded signal resulting from coding tiles and slices into which an image is partitioned, the method including decoding the coded signal, wherein each of the slices is either a normal slice having, in a header, information used for an other slice or a dependent slice which is decoded using information included in a slice header of another slice, and when the normal slice starts from a position other than a beginning of a first tile, a second tile coded next to the first tile does not start from the dependent slice.
US10397582B2

An association circuit determines whether a first pixel in an image will be associated with an entry in a palette, based on a threshold for a difference between a pixel value and a palette value. An addition circuit adds an entry to the palette when the first pixel is not associated with an entry. A fusion circuit fuses two entries so as to generate a fused entry when a condition of a target amount of information is not satisfied by adding an entry. A control circuit changes the threshold when the first pixel is associated with an entry, when an entry is added, or when the fused entry is generated and an entry is added. The association circuit determines whether a second pixel in the image will be associated with an entry, based on the changed threshold. A palette encoding circuit encodes the image by using the palette.
US10397579B2

A position coordinate difference computing unit (5a to 5c) calculates position coordinate differences between position coordinates of the output digital signals and position coordinates of the input digital signals adjacent to the position coordinates. An FIR coefficient memory (13a to 13c) stores FIR coefficients of an FIR-LPF and outputs FIR coefficients corresponding to position coordinate differences between a fixed number of the output digital signals adjacent to the position coordinates of the output digital signals and the output digital signals. A control unit (11) supplies a group of the FIR coefficients and a group of the input digital signals corresponding to the respective position coordinate differences to the parallel FIR calculator (4) in predetermined order when the position coordinate differences corresponding to two or more different output digital signals are concurrently computed. The parallel FIR calculator (4) performs an FIR-LPF interpolating calculation by using those to obtain the output digital signals.
US10397576B2

In a system for coding high dynamic range (HDR) images using lower-dynamic range (LDR) images, a reshaping function allows for a more efficient distribution of the codewords in the lower dynamic range images for improved compression. A trim pass of the LDR images by a colorist may satisfy a director's intent for a given “look,” but may also result in unpleasant clipping artifacts in the reconstructed HDR images. Given an original forward reshaping function which maps HDR luminance values to LDR pixel values, a processor identifies areas of potential clipping and generates modified forward and backward reshaping functions to reduce the visibility of potential artifacts from the trim pass process while preserving the director's intent.
US10397574B2

Systems and methods for determining quantization parameter (QP) for video coding. Embodiments may be particularly advantageous for strongly temporal correlated frames, such as for video conferencing applications. An initial QP for a frame of a video sequence may be modified based on a spatial complexity or a temporal complexity associated with the video frame, and/or based on an inter-predicted frame bitrate target cycle, as a function of whether the frame is intra- or inter-predicted. The inter-predicted frame bitrate target cycle includes a sequence of two or more inter-predicted frame bitrate targets that are assigned to the frame according to the inter-predicted frame bitrate target cycle. A reference frame for an inter-predicted frame may be selected based on the bitrate target associated with candidate reference frames. Initial QP of an inter-predicted frame with a scene change may be modified in a manner independent of an inter-predicted frame bitrate target cycle.
US10397562B2

The present invention provides a 4D platform for home use and a 4D system for home use, which have a compact structure allowing the same to be easily connected to a TV monitor and comprise a physical sensation effect execution unit for providing a physical sensation effect according to each scene of an image.
US10397551B2

A data capture device includes: an imaging module including an image sensor and a lens; a temperature sensor associated with the imaging module; a memory storing, for a plurality of temperatures, respective imaging module response parameters corresponding to the temperatures; an imaging controller connected to the image sensor and the temperature sensor; the imaging controller including a frame generator configured to: receive (i) image data from the image sensor and (ii) a temperature measurement from the temperature sensor; generate a raw image frame containing the temperature measurement and the image data; and provide the raw image frame to a calibrator for generation of a calibrated image frame based on the raw image frame and one of the imaging module response parameters corresponding to the temperature matching the temperature measurement.
US10397546B2

Apparatus for controlling a plurality of active illumination range cameras to operate in a time division multiplexed operating mode to acquire range images of scenes that the cameras image.
US10397545B2

Methods and systems for generating three-dimensional (3D) images, 3D light field (LF) cameras and 3D photographs are provided. Light representing a scene is directed through a lens module coupled to an imaging sensor. The lens module includes: a surface having a slit-shaped aperture and a cylindrical lens array positioned along an optical axis of the imaging sensor. A longitudinal direction of the slit-shaped aperture is arranged orthogonal to a cylindrical axis of the cylindrical lens array. The light directed through the lens module is captured by the imaging sensor to form a 3D LF image. A 3D photograph includes a 3D LF printed image of the scene and a cylindrical lens array disposed on the printed image, such that the combination of 3D LF printed image and the cylindrical lens array forms a 3D stereoscopic image.
US10397540B2

A method and a device are provided for generating an image. The method comprises the steps of: (i) providing information that relates to an image of a single target captured by at least two image capturing devices; (ii) storing the information provided in at least two input buffers; (iii) sampling the stored information and storing the sampled information at at least two output line buffers, each corresponding to a different image resolution; (iv) processing the sampled information that had been stored at the at least two output line buffers in accordance with pre-defined disparity related information, wherein the pre-defined disparity related information is associated with a respective one of the at least two image capturing devices that had captured the information being currently processed; and (v) retrieving information from the at least two output line buffers and storing the retrieved information at a hybrid row buffer, for generating the image.
US10397530B2

A method of determining a touch position and a touch projection system using the above-mentioned method are provided. The touch projection system has multiple interactive projection apparatuses. The method includes steps of: projecting each of the projection sub-images to a projection touch area, and forming a blending projection image having an overlap area; capturing the blending projection image within a viewing angle range of an image capture unit; providing a portion of information of a positioning pattern to each of the projection units, projecting each of the projection sub-images to the projection touch area, and capturing each of the projection sub-images having a portion of the positioning pattern, and forming a positioning image respectively; confirming a coordinate range of the overlap area located within the blending projection image according to each of the positioning images.
US10397525B2

In a pilotless flying object detection system, a masking area setter sets a masking area to be excluded from detection of a pilotless flying object which appears in a captured image of a monitoring area, based on audio collected by a microphone array. An object detector detects the pilotless flying object based on the audio collected by the microphone array and the masking area set by the masking area setter. An output controller superimpose sound source visual information, which indicates the volume of a sound at a sound source position, at the sound source position of the pilotless flying object in the captured image and displays the result on a first monitor in a case where the pilotless flying object is detected in an area other than the masking area.
US10397512B2

A display device includes a display panel, a light source disposed on a rear side relative to the display panel, an optical member disposed on the rear side relative to the display panel, a light source housing component housing the light source, and first and second flat components extending in an outward direction relative to an opening edge of the light source housing component, the first and second flat components being substantially parallel to a rear face of the display panel, the second flat component being disposed closer to the display panel than the first flat component, the second flat component supporting the optical member.
US10397510B2

An electronic device includes an image signal processor and a memory. The image signal processor receives a signal of a first code value that corresponds to an active pixel included in an active area, calculates a correction value based on a second code value associated with a first area and a third code value associated with a second area, and calculates an output code value based on the first code value and the correction value. The first area and the second area are different from the active area. The correction value includes a component of the third code value in proportion to a distance between the active pixel and the first area and includes a component of the second code value in proportion to a distance between the active pixel and the second area.
US10397509B2

A solid-state imaging device includes a pixel region in which shared pixels which share pixel transistors in a plurality of photoelectric conversion portions are two-dimensionally arranged. The shared pixel transistors are divisionally arranged in a column direction of the shared pixels, the pixel transistors shared between neighboring shared pixels are arranged so as to be horizontally reversed or/and vertically crossed, and connection wirings connected to a floating diffusion portion, a source of a reset transistor and a gate of an amplification transistor in the shared pixels are arranged along the column direction.
US10397507B2

An electric camera includes an image sensing device with a light receiving surface having N vertically arranged pixels and an arbitrary number of pixels arranged horizontally, N being equal to or more than three times the number of effective scanning lines M of a display screen of a television system, a driver to drive the image sensing device to vertically mix or cull signal charges accumulated in individual pixels of K pixels to produce, during a vertical effective scanning period of the television system, a number of lines of output signals which corresponds to 1/K the number of vertically arranged pixels N of the image sensing device, K being an integer equal to or less than an integral part of a quotient of N divided by M, and a signal processing unit having a function of generating image signals by using the output signals of the image sensing device.
US10397503B2

A photodiode produces photogenerated charges in response to exposure to light. An integration period collects the photogenerated charges. Collected photogenerated charges in excess of an overflow threshold are passed to an overflow sense node. Remaining collected photogenerated charges are passed to a sense node. A first signal representing the overflow photogenerated charges is read from the overflow sense node. A second signal representing the remaining photogenerated charges is read from the sense node.
US10397493B2

A system includes an optical element configured to separate light into a first light beam and a second light beam, a first lens module configured to focus the first light beam, a second lens module configured to focus the second light beam, a first sensor having a first sensor size and configured to capture a first image from the first light beam focused by the first lens module onto the first sensor, a second sensor having a second sensor size different from the first sensor size and configured to capture a second image from the second light beam focused by the second lens module onto the second sensor, and one or more processors configured to modify the first image or the second image based on the first sensor size and the second sensor size to generate a modified image and generate a combined image based on the modified image.
US10397482B2

An imaging control apparatus includes a display control unit for performing control to present a 2-area enlargement display of displaying live view images captured at two imaging regions in an imaging unit that are separately arranged in a width direction or a height direction on a display unit, and a control unit for performing control to conduct an autofocus operation inside a range displayed in the 2-area enlargement display while maintaining the 2-area enlargement display in response to an autofocus instruction operation on a first operation unit in a state where the 2-area enlargement display is presented, and end the 2-area enlargement display and conduct the autofocus operation in a range independent of the inside the range displayed in the 2-area enlargement display in response to an autofocus instruction operation on a second operation unit in a state where the 2-area enlargement display is presented.
US10397479B2

A method of compensating for camera motion during capture of the image in a rolling shutter camera, the method comprising: receiving an image of a scene captured by a camera with a rolling shutter; extracting line segments in said image; estimating the movement of the camera during the capturing of the image from the received image; and producing an image compensated for the movement during capture of the image, wherein the scene is approximated by a horizontal plane and two vertical planes that intersect at a line at infinity and estimating the movement of the camera during the capture of the image comprises assuming that the extracted line segments are vertical and lie on the vertical planes.
US10397478B2

A suspension assembly is described. A suspension assembly including a support member; a moving member; one or more bearings; and one or more bearing limiters. The one or more bearings between the support member and the moving member to space the support member and moving member by a bearing distance about the z axis. And, the one or more bearing limiters between the first and second members to limit movement of the support member and moving member about the z axis to a gap distance that is less than the bearing distance.
US10397473B2

An image processing apparatus includes a memory that stores instructions, and one or more processors that execute the instructions to cause the image processing apparatus to function as, among other things, an image synthesis unit configured to synthesize first image data acquired by a first acquisition unit and second image data acquired by a second acquisition unit based on an object brightness, so that the first image data is selected in an area in which the object brightness is a first value that is greater than a threshold value, and the second image data is selected in an area in which the object brightness is a second value that is less than the threshold value, and to generate synthesized image data of the first image data and the second image data.
US10397471B2

An information processing apparatus that acquires captured image data; determines whether a position determining unit of the information processing apparatus detects a location of the information processing apparatus; controls a user interface to prompt a user to enter information when it is determined that a location of the information processing apparatus has not been detected; and receives location information that is extracted based on a user input received at the user interface in response to the prompt.
US10397464B2

A control apparatus (105) includes a normalizer (400, 401) that performs normalization processing on a first signal and a second signal by using normalization coefficients related to the first signal and the second signal, respectively, a correlation calculator (402) that performs correlation calculation with respect to the normalized first and second signals, and a corrector (403, 800, 801) that corrects correlation data to cancel the normalization processing, and the correlation data is based on an output signal from the correlation calculator.
US10397460B2

In one example, a case that is configured to be removably attached to a smartphone includes a back panel that substantially covers a back face of the smartphone when the case is attached to the smartphone, the case defining a first opening configured and arranged so that when the case is attached to the smartphone, part of a display of the smartphone is visible by way of the first opening, and the case further including one or more light sources positioned along a side edge of the first opening, and the one or more light sources operable to illuminate part of an area to be imaged by a front-facing camera of the smartphone, and the back panel has a second opening that is aligned with a rear-facing camera of the smartphone when the case is attached to the smartphone, and the case further includes an electrical connector.
US10397459B2

This disclosure relates to an autonomous intelligent vehicle, including: a vehicle body and two eye lamps located in the front of the vehicle body and spaced apart from each other, wherein the eye lamp comprises a light emitting device and image acquiring device spaced apart from the light emitting device; the light emitting device is used to emit light to light the object in front of the vehicle, the image acquiring device is used to acquire and process the image of the object, and send the processed result to the advanced driver assistance system.
US10397458B2

A telecentric illumination and photographing system for detection of marine microscopic organisms includes an optical path module and an illumination drive module, where the optical path module includes: an LED light source, a light homogenizing rod, a decoherence light homogenizing sheet, a diaphragm, a telecentric collimation camera, where a light beam emitted from the diaphragm is incident into a microscopic organism area with uniform illuminance after passing through the telecentric collimation camera; and a telecentric imaging camera, matching the telecentric collimation camera to receive an illumination beam passing through the microscopic organism area and output the illumination beam to an imaging unit, to obtain an imaging result of uniform illuminance. Further, the illumination drive module enables the LED light source to work in a stable state in which light emitting intensity is constant, thereby improving current output accuracy.
US10397457B2

A camera module includes a lens assembly, a voice coil motor assembly, an image sensor assembly and a flash assembly. The lens assembly is installed in the voice coil motor assembly along an optical axis direction, the image sensor assembly is located below the lens assembly, the flash assembly is mounted above the voice coil motor assembly and includes at least one light source located around a lens of the lens assembly, and the light source adapted for providing a flash for the lens. The flash assembly can provide uniform and even flashing light for the lens to improve imaging quality, and provide compact structure to meet the development of the electronic products miniaturization.
US10397451B2

A vehicular vision system includes a camera and a processor operable to process captured image data. With the vehicle moving, the processor models outputs of photosensing elements of the camera as Gaussian distributions. With the vehicle moving, the processor determines an output of respective photosensing elements over multiple frames of captured image data, and determines whether the output of a photosensing element fits the Gaussian distribution for that element. Responsive to determination that the output of the element fits within the respective Gaussian distribution for that element, the system classifies that element as a blocked element. Responsive to determination that the output of the element does not fit within the respective Gaussian distribution for that element, the system classifies that element as a not blocked element. Responsive to determination that the ratio of blocked elements to not blocked elements is greater than a threshold ratio, a blockage condition is determined.
US10397450B2

An apparatus is described. The apparatus includes an execution lane array coupled to a two dimensional shift register array structure. Locations in the execution lane array are coupled to same locations in the two-dimensional shift register array structure such that different execution lanes have different dedicated registers.
US10397446B2

An example disclosed herein analyzes a first scan of a first target scanned with a first scanner module of a scanner, analyzes second scan of a second target scanned with a second scanner module of the scanner, identifies a color difference greater than a threshold color difference between the first scan and the second scan, and adjusts color settings for the first scanner module to correct the color difference to less than the threshold color difference.
US10397444B2

An image display apparatus includes: a light source unit including three or more light sources, combining lights from the light sources and emitting the combined light; a wavelength detector that detects, for each light source, wavelength information indicating the wavelength of light from the light source; a color value determiner that determines, for each light source, from the wavelength information, a color value indicating a color of light from the light source in a predetermined color space; a correction value determiner that determines, based on the color values, a correction value for correcting a ratio between the intensities of lights from the light sources so that the color of the combined light is a color to be displayed; and a driver that drives the light sources so that the ratio between the intensities of lights from the light sources is a ratio corrected based on the correction value.
US10397437B2

An image forming apparatus, including: a light source including a plurality of light emitting points and configured to emit light beams; a photosensitive member configured to rotate in a rotation direction so that a latent image is formed thereon with the light beams; a rotary polygon mirror configured to rotate around a rotation axis and having a plurality of mirror faces each configured to deflect the light beams so that the photosensitive member is scanned with the light beams; a detector configured to detect temperature; and a correction unit configured to correct image data of an input image by using a deviation amount, in the rotation direction of the photosensitive member, of the light beams deflected by each of the plurality of mirror faces, wherein the correction unit obtains the deviation amount according to the temperature detected by the detector.
US10397435B2

An electronic device includes an operation section, first storage, second storage, a processing section, and a display section. The first storage stores data of a file therein. The file includes contents that can be printed. When the operation section receives an instruction for erasing the file, the processing section transfers the file from the first storage to the second storage. The display section displays an inquiry screen for inquiring whether or not to reproduce the file. When the operation section receives an instruction for reproducing the file, the processing section executes print processing or transmission processing. The print processing is processing for printing the contents. The transmission processing is processing for transmitting an email with the file attached thereto. After executing the print processing or the transmission processing, the processing section erases the file from the second storage.
US10397429B2

There are disclosed methods, systems and computer readable medium for a scalable printing software system. The method includes requesting installation of printing software from a printing device to enable a computing device to print using the printing device, receiving printing software from the printing device, and installing the printing software. The method further includes requesting information related to a customized version of the printing software from a customization server unrelated to the printing device, requesting installation of the customized version of the printer software, installing the customized version of the printing software and performing a print operation using the computing device to execute software components from the printing software and from the customized version of the printing software.
US10397414B2

An information processing apparatus that has an electronic mail function and is capable of operating in cooperation with a portable terminal includes: a communication unit configured to perform a communication with the portable terminal; a terminal control unit configured to transmit a command of activating an address book application to the portable terminal, and to acquire a transmission destination address and a user address from the portable terminal; a mail creating unit configured to create an electronic mail in which the transmission destination address is set to a transmission destination of the electronic mail, and the user address to a transmission source of the electronic mail; an image acquiring unit configured to acquire an image to be transmitted with the electronic mail; and a mail transmitting unit configured to attach the image acquired by the image acquiring unit to the electronic mail, and to transmit the electronic mail.
US10397410B2

Disclosed is a voice message exchange system and method for improving communication between an inmate and a third party by enabling the inmate to leave a message when a call is not answered and further allowing the third party who receives the message to reply with a message to the inmate. Additionally, outside parties that meet the institution's requirements can leave messages for inmates at any time. The present invention can be used as an add-on to legacy inmate call management systems or incorporated internally into an inmate call management system. The system also provides monitoring, controlling, recording, and billing means.
US10397401B1

An example computing system may include one or more of a chassis including an enclosure and a communication interface, and a plurality of server modules that form a PSAP, housed by the enclosure of the chassis, and communicating via the communication interface, wherein the plurality of server modules include a communication server module that interconnects the PSAP to a radio signal, a recorder, a telephone line, and an operator call talking system, a call talking server module that executes a call-taking application for outputting audio of the PSAP to the operator call talking system, and a computer aided dispatch (CAD) server module that outputs a computer aided dispatch for emergency vehicles and/or emergency services via a display device of the operator call talking system.
US10397393B2

Systems and methods are described herein for controlling the roaming behaviors of mobile applications, such as applications provided by mobile devices. In some embodiments, the systems and methods may determine that a mobile device is connected to a roaming network, and prompt or otherwise cause a user to authorize a mobile application to use the roaming network for sending and receiving data. Other details are provided herein.
US10397389B2

Techniques and mechanisms for exchanging information between a mobile device and another device which is to serve as an accessory to the mobile device. In an embodiment, the accessory device and the mobile device are coupled to one another via an audio connector of the mobile device. The mobile device receives via the audio connector encoded signals which represent, in a first frequency range, information generated by a sensor of the accessory device. The first frequency range is within an audible frequency range and outside of a telephony frequency range of the mobile device. In another embodiment, the encoded signals are provided to telephony logic of the host device during a telecommunication exchange between the host device and a remote device. Due to its representation in the first frequency range, some sensor information is prevented from being represented as an audio signal in the telecommunication exchange.
US10397386B1

Apparatus, methods, and other embodiments associated with debugging a device-under-test are disclosed. In one embodiment, a method includes sensing and recording a screen image produced by a device-under-test as the device-under-test is being operated. The sensing and recording of the screen image are performed by an apparatus. The method also includes sensing and recording coordinates and durations of gestures impinged upon the apparatus while operating the device-under-test. The sensing and recording of the coordinates and durations are performed by the apparatus. The apparatus is configured to physically conform to the device-under-test to allow functionality of the device-under-test through the apparatus.
US10397376B2

A streaming policy management system and method wherein bandwidth may be allocated based on external device information received from a streaming client device connected to one or more external audio/video (A/V) devices. When a streaming network back office receives a request from the streaming client device for delivery of a particular content, wherein the request includes external device information of one or more external A/V devices connected to the streaming client device, a bandwidth is determined for streaming the particular content to the streaming client device and a request may be made to a content delivery network to create a distribution pipe having the bandwidth to accommodate the delivery of the particular content. A manifest file is provided to the streaming client device that includes one or more pointers that point to content segments of the particular content.
US10397375B2

Techniques are disclosed for multi-tenant cloud-based queuing. Certain techniques are disclosed herein that provide for interactions and observability between tenant queues within a multi-tenant cloud-based queuing database. In some embodiments, the queues may be utilized by both users and merchants for both online and point-of-service interactions. Multiple queues for multiple tenants are hosted by a cloud computing system. Each queue may include one more queue entries, each of which includes a ticket value, and may further include a ticket alias. The ticket values and/or ticket aliases may be decoupled from a queue position for the entry. In some embodiments, the queue entries may be swapped within a queue or between queues, and the system may enable searching in or automated actions between queues and/or tenants based in part upon queue conditions.
US10397356B2

Various embodiments are described herein for systems and methods that can be used to determine a destination location in a network fabric. In one example embodiment, the method comprises receiving an application server attribute at a fabric controller from a source port, generating at the fabric controller a destination location based on the application server attribute and mapping information stored on the fabric controller, and transmitting the destination location to the source port, where the source port transmits packetized data to a destination location based on the destination location.
US10397354B2

The object of the invention is a system, a device, a terminal and a method for filtering electronic information to be transferred to the terminal through a telecommunication connection. The invention comprises attaching a specific filtering parameter (30-32) by the device transferring the electronic information to the electronic information for the purpose of filtering before the electronic information is transferred to the terminal through the telecommunication connection, and informing the terminal of said filtering parameter (30-32) before the electronic information is transferred to the terminal through the telecommunication connection. In the terminal, the steps comprise checking said informed filtering parameter (30-32) and allowing or preventing the receiving of the electronic information on the basis of said filtering parameter (30-32). In response to said allowing of the receiving, the electronic information is transferred to the terminal through the telecommunication connection, and in response to said preventing of the receiving, the electronic information is not transferred to the terminal through the telecommunication connection.
US10397348B2

Embodiments of the invention are directed to methods, systems, and devices for tracking recurrence across computer systems. One embodiment of the invention is directed to a method including processing, by a transaction processing computer, a plurality of transactions and then storing, by the transaction processing computer, data relating to the plurality of transactions. The transaction processing computer may be configured to use the data to determine a recurrence value indicating at least a frequency or number of interactions between a resource provider computer and a user, and the transaction processing computer may further initiate an action based on the recurrence value.
US10397345B2

Methods and systems for location-based asset sharing are provided. In an embodiment, a method stores a publication in a data store accessible by a server system, the publication including a publication location and a distance restriction. The method receives a request for the asset and then determines, by the server system, to provide the asset in response to the request. The determining is based on a requesting location associated with the request, the publication location, and the distance restriction, wherein according to the distance restriction, the asset is only provided to the requesting location if a distance from the requesting location to the publication location satisfies a specified relationship. The method provides the asset in response to the request. In another embodiment, the publication includes references to one or more assets being shared by a publisher. Another method creates an asset-listener association in response to a received asset association request.
US10397338B2

A mobile device performs a method for proximity-based redirection of data associated with web traffic. The method includes detecting a beacon signal from an external device when in proximity to the external device. The beacon signal contains a resource locator. The method also includes using the resource locator to redirect, to a redirecting device, data associated with web traffic requested by the mobile device from a website. The method further includes discontinuing the redirecting of the data associated with the web traffic when the beacon signal is no longer detected.
US10397334B2

A management server communicable with portable information devices includes: a group generating portion that generates a group to which two or more portable information devices belong; an identification information receiving portion that receives the identification information from a transmission source device, which receives from any one of fixed terminals each located geographically at a fixed position, identification information corresponding to related information assigned to the fixed terminal; a group determining portion that, in response to receipt of the identification information from the transmission source device, determines a group to which the transmission source device belongs; and a linked transmitting portion that transmits the identification information received from the transmission source device, in order to allow each of one or more portable information devices which belong to the group determined, to display the related information corresponding to the identification information received from the transmission source device.
US10397327B2

Federation of trusted data distribution systems is accomplished by treating an entire data distribution network as either a publisher or subscriber to a feed in another data distribution network. A first data feed is created in a first data feed management subsystem associated with a first data distribution network. A second data feed related to the first data feed is created in a second data feed management subsystem associated with a second data distribution network. A first data access policy is associated with the second data feed and a publisher for the second data feed is created in the second data distribution network. The identity and authentication of a second subscriber to the second data feed in the second data distribution network is managed by referencing the first data access policy.
US10397323B2

Systems and methods for automated content selection and/or distribution are disclosed herein. The system can include a packet selection system including a recommendation engine. The recommendation engine can select a next data packet that can include content for delivery to a user device. The system can include a presentation system including a presenter module. The presenter module can receive an indication of the selected next data packet and send the content for delivery to the user device via an electrical communication. The system can include a response system including a response processor. The response processor can receive a response from the user device, and the response processor can determine whether the received response is a desired response. The system can include a summary model system including model engine, and a messaging bus.
US10397321B2

An information processing apparatus that is capable of reducing total network traffic without wasting received synchronizing data in the information processing apparatus. A plurality of devices of which energization states are controllable independently perform information processes according to set data. A determination unit determines whether each of the plurality of devices is in an energized state. A request unit requests update information about set data concerning a device that is determined being in the energized state by the determination unit from an external apparatus connected to the information processing apparatus through a network. An update unit performs an update process that updates the set data according to the update information transmitted from the external apparatus in response to the request.
US10397320B2

In an approach to location based augmented reality broadcasting, one or more computer processors determine a location of the one or more computing devices. The one or more computer processors determine whether two or more of the one or more computing devices are in the same location. In response to determining whether two or more of the one or more computing devices are in the same location, the one or more computer processors upload a first synchronized augmented reality data stream to the two or more computing devices in the same location.
US10397317B2

Embodiments comprise a distributed join processing technique that reduces the data exchanged over the network. Embodiments first evaluate the join using a partitioned parallel join based on join tuples that represent the rows that are to be joined to produce join result tuples that represent matches between rows for the join result. Embodiments fetch, over the network, projected columns from the appropriate partitions of the tables among the nodes of the system using the record identifiers from the join result tuples. To further conserve network bandwidth, embodiments perform an additional record-identifier shuffling phase based on the respective sizes of the projected columns from the relations involved in the join operation. Specifically, the result tuples are shuffled such that transmitting projected columns from the join relation with the larger payload is avoided and the system need only exchange, over the network, projected columns from the join relation with the smaller payload.
US10397313B2

In a data processing system, a received data stream comprises a plurality of tuples having respective key values. The received data stream is separated into portions that are delivered to respective ones of a first set of servers in a manner that permits different tuples having the same key value to be processed by different servers of the first set. For each distinct key value, each of at least a subset of the servers of the first set maintains a corresponding partial key result based on one or more of the tuples having that key value that are received by that server. The partial key results are periodically delivered from the servers of the first set to servers of a second set of servers in a manner that ensures that different partial key results having the same key value are processed by the same server of the second set.
US10397304B2

A system and method to improve implementation efficiency of user interface content by using standard content attributes used across all platforms and devices to implement a lowest common denominator programming system. Standardized content attributes are used to produce a universal content framework that is implemented identically across various devices and platforms, resulting in a consistent and standardized user experience. The invention allows programming functionality to be universally applied and usable with any device and platform so that significant computer programming and updating inefficiencies are eliminated.
US10397300B2

A method of improving Hyper Text Transfer Protocol (HTTP) performance on communication networks and an apparatus adapted to the method are provided. In a communication system including a first server, a second server and at least one connection server for connecting the first and second servers, the communication method using the first server includes: receiving a request for content from at least one client; establishing a bypass connection to directly receive data from the second server; directly receiving data about the content from the second server by using the bypass connection; and transmitting the data to the client.
US10397293B2

Techniques are provided for dynamically creating index files for streaming media based on a determined chunking strategy. The chunking strategy can be determined using historical data of any of a variety of factors, such as Quality of Service (QoS) information. By using historical data in this manner, index files can be generated using chunking strategies that can improve these factors over time.
US10397290B2

It is provided a method for switching replay of a home media streaming, wherein a first device receives a content from a source device via multicast to replay, including: receiving a request from a user to switch a device where the content is replayed from the first device to a second device; instructing the first device to unicast the content stored in the first device from the time-point of receiving the request to the second device to replay; instructing the source device to retransfer via multicast the content from the time-point; stopping receiving the unicast content from the first device when the retransferred content from the source device via multicast reaches a frame of the content being replayed at the second device; starting receiving and storing the retransferred content from the source device via multicast by the second device when the retransferred content reaches the content unicasted from the first device and stored in the second device.
US10397282B2

An embodiment provides a user equipment that includes a processor configured to receive a Session Initiation Protocol (SIP) NOTIFY message transmitted by a network component as a result of a registration event. The SIP NOTIFY message contains at least a portion of information included in a first SIP message sent between a first user equipment and the network component. Another embodiment provides method and apparatus for a network node to determine whether filter criteria include one or more indicators that specify the need for information, and including in a second SIP message the information specified by the one or more indicators.
US10397273B1

Systems are provided for collecting threat intelligence to use in monitoring network activity in computing environments for malicious activity. The systems load sensors into compute resources associated with particular users of a compute resource virtualization platform. The systems receive network activity information sent by first and second sensors, identify an IP address as being a suspected source of malicious computing activity using aggregated the first and second network activity, and generate threat information that includes the IP address as a suspected source of malicious computing activity.
US10397272B1

A system including at least one processor; and at least one memory having stored thereon computer program code that, when executed by the at least one processor, controls the at least one processor to: receive an email addressed to a user; separate the email into a plurality of email components; analyze, using respective machine-learning techniques, each of the plurality of email components; feed the analysis of each of the plurality of email components into a stacked ensemble analyzer; and based on an output of the stacked ensemble analyzer, determine whether the email is malicious.
US10397267B2

A computer-implemented method, computer program product and computing system for importing threat data from a plurality of threat data sources, thus generating a plurality of raw threat data definitions. The plurality of raw threat data definitions are processed, thus generating a plurality of processed threat data definitions. The plurality of processed threat data definitions are processed to form a master threat data definition. The master threat data definition is provided to one or more client electronic devices.
US10397253B2

From a record of a packet in a Domain Name System (DNS) communication between a DNS client and a DNS server, an input feature is constructed. Using the packet, a metadata item supporting the input feature is computed. Using a processor and a memory to execute a trained cognitive classification model, and by supplying the input feature and the supporting metadata item as inputs to the cognitive classification model, a transmission of the packet is classified as malicious use of DNS tunneling between the DNS client and the DNS server. From the cognitive classification model, a classification of the packet as malicious, and a confidence value in the malicious classification are output. By generating a notification, the DNS client is caused to cease the malicious use of the DNS tunneling.
US10397249B2

An attempt by a user to login to a destination server is identified from a source server. A destination score is determined based on the count of attempts by the user to login to the destination server and the count of attempts by the user to login to all destination servers. A source given destination score is determined based on the count of attempts by the user to login from the source server to the destination server, and the count of attempts by the user to login to the destination server. An outlier score is determined based on values associated with the destination score and the source given destination score. An alert is output if the outlier score satisfies a threshold.
US10397247B2

A data packet is received. The data packet is a unit of data transmitted across a packet-switched network. A determination is made whether a new connection is detected. The data packet is transmitted using the new connection. In response to determining that a new connection is detected, a connection context for the new connection is added to a current connection context in a dynamic event table. The dynamic event table includes the current connection context, one or more previous connection contexts, and a listing of one or more events. Each event of the one or more events is a malicious activity and is retrieved from a repository. A score for each event is calculated based on the current connection context. Each event in the dynamic event table is prioritized based on the calculated score for each event. The event with the highest score receives the highest priority.
US10397237B2

A set of existing account information belonging to respective user accounts of a first set of users is retrieved. Pattern matching is performed by an attribute pattern discovery component on the retrieved set of existing account information to discover attribute patterns in the retrieved set of existing account information. A first pattern matching process extracts user attribute information in the retrieved set of existing account information and a second pattern matching process discovers at least a first attribute pattern within the extracted user attribute information. An account template is generated according to the first discovered attribute pattern. The generated account template is used to create a new account on the first target for a first user where the first user is not a member of the first set of users. The first user is granted access to the first target using the created new account.
US10397231B2

Systems and methods may provide for receiving web content and determining a trust level associated with the web content. Additionally, the web content may be mapped to an execution environment based at least in part on the trust level. In one example, the web content is stored to a trust level specific data container.
US10397230B2

A service processor is provided that includes a processor, a memory coupled to the processor and having instructions for executing an operating system kernel having an integrity management subsystem, secure boot firmware, and a tamper-resistant secure trusted dedicated microprocessor. The secure boot firmware performs a secure boot operation to boot the operating system kernel of the service processor. The secure boot firmware records first measurements of code executed by the secure boot firmware when performing the boot operation, in one or more registers of the tamper-resistant secure trusted dedicated microprocessor. The operating system kernel enables the integrity management subsystem. The integrity management subsystem records second measurements of software executed by the operating system kernel, in the one or more registers of the tamper-resistant secure trusted dedicated microprocessor.
US10397228B2

A method for providing access to a target electronic device through a first service running on a different electronic device may include receiving in the first service a command directed to the target electronic device from a command sender and receiving in the service device operation status parameters of the target electronic device. The device operation status parameters may include properties of the target electronic device such as a battery level, a battery charging rate, an age, a planned lifespan, a recent wireless usage, an internal temperature, or any of the above in relation to an intervening electronic device over which communication to the target electronic device travels, or any combination thereof. The method may also include using the device operation status parameters to determine, using the service, whether to provide or not to provide an update signal incorporating the command or information to the target electronic device.
US10397226B2

Exemplified system and method optimizes dynamic Quality of Service (QoS) operation across a network infrastructure to alleviate time constraints when applying dynamic QoS policy on newly initiated traffic flow, particularly for various data streams. Initially, and by default, the exemplified system and method temporarily applies a high QoS policy to a newly initiated traffic flow and then verifies the QoS legitimacy of the flow to which the high QoS policy for the newly initiated traffic flow is maintained or is reduced to a lower-priority QoS policy. This trust-but-verify QoS operation allows new traffic, e.g., with voice and video components, to receive a high QoS PHB treatment as transmission of the traffic is initiated without having a nominal delay at the beginning of the call before QoS is applied while allowing the QoS legitimacy to be validated and maintained.
US10397224B2

The Shared Internet Storage Resource provides Internet-based file storage, retrieval, access, control, and manipulation for a user. Additionally, an easy-to-use user interface is provided both for a browser or stand-alone application. The entire method provides means by which users can establish, use, and maintain files on the Internet in a manner remote from their local computers yet in a manner that is similar to the file manipulation used on their local computers. A high capacity or other storage system is attached to the Internet via an optional internal network that also serves to generate and direct metadata regarding the stored files. A web server using a CGI, Java®-based, or other interface transmits and retrieves TCP/IP packets or other Internet information through a load balancer/firewall by using XML to wrap the data packets. File instructions may be transmitted over the Internet to the Shared Resource System. The user's account may be password protected so that only the user may access his or her files. On the user's side, a stand-alone client application or JavaScript object interpreted through a browser provide two means by which the XML or other markup language data stream may be received and put to use by the user. Internet-to-Internet file transfers may be effected by directly downloading to the user's account space.
US10397220B2

An account management system establishes an account for a user. The user enters user account information into the account and the account management system establishes a facial template for the user based on an image of the face of the user. The user requests to change user account information at a merchant POS (POS) device. The merchant POS device captures a facial image of the user and transmits the image the account management system, which generates a facial template and compares the generated facial template against the existing facial template associated with user account. If the generated facial template is less than a threshold difference from the existing facial template, the user may update user account information at the merchant POS device, which communicates the updated user account information to the account management system. The account management system associates the updated user account information with the user account.
US10397219B2

A system, computer-readable storage medium storing at least one program, and a computer-implemented method for controlling a local utility are disclosed. A first request originating from an application and including a first token is received at a local utility. The application received a web page, including a plurality of links and the first token, from a first server. The plurality of links are received by the application from a second server. The first token is authenticated. Authentication includes sending the first token to a third server. In response to authenticating the first token, a second token is generated at the local utility. The second token is sent to the application for inclusion in subsequent requests from the application.
US10397211B2

Disclosed is a system comprising: an authentication datastore; a device presence engine; a traffic monitor engine; an authentication presence monitor engine; an authentication server selection engine; and a traffic routing engine. In operation: the device presence engine is configured to detect presence of a user device on a trusted network; the traffic monitor engine is configured to monitor, in response to the detection, traffic on the trusted network from the device; the authentication presence monitor engine is configured to evaluate onboarding characteristics of the user device in response to the monitoring; the authentication server selection engine is configured to select one of a plurality of authentication servers to authenticate the user device to the trusted network, the selecting based on the onboarding characteristics; and the traffic routing engine is configured to route traffic from the user device to the selected authentication server.
US10397201B2

Sending encrypted data to a service provider includes exchanging an encryption key between an entity and a service provider without retaining the encryption key and while hiding an identity of said entity from the service provider and forwarding encrypted data based on the encryption key to the service provider from the entity while hiding the identity of the entity from the service provider.
US10397200B2

A card-based method for generating a dynamic password, in which the method comprises: power on a device, initialize a current running state as a first state, prompt a user to press down a mode key, the device determines an operation to be executed when the mode key is pressed down, obtain input data according to the operation on a number key pressed by the user in the case that a number key is pressed down; obtain a confirm state according to the operation on a state key pressed by the user in the case that a state key is pressed down; otherwise, execute a corresponding operation according to the current running state, the corresponding operation comprises: obtain a dynamic password according to the interaction with the card and preset process the password data and output the dynamic password. According to the invention, both internal data of the card held by the user and information input by the user take part in the generation of the dynamic password, thus, the password data is formed to protect from being manipulated so as to make the process of generating a dynamic password more secure.
US10397198B2

An information communication system has a plug-in stored in a transmitting terminal and a second program stored in a cloud server. The cloud server is configured to communicate with the transmitting terminal and a receiving terminal through the Internet W in a confidential state. The plug-in generates an encryption password 8 for encrypting an attachment file and transmits the encryption password to the cloud server. The second program determines whether or not a receiver e-mail address is registered, generates a first URL information, and transmits the first URL information to the transmitting terminal. The plug-in generates an e-mail including the encrypted attachment file and the first URL information, and the second program returns the encryption password to the receiving terminal when an access to the first URL from the receiver is authenticated.
US10397196B2

A device, method and product for port-scrambling-based networks. The method comprising in response to a device intending to transmit an outgoing communication to a target device in a computer network, via a first port, scrambling the first port of the outgoing communication to obtain a second port by applying a transformation function which utilizes a certificate that is shared among a portion of the devices in the computer network; and transmitting the outgoing communication to via the second target port. The method comprises receiving, via a second source port, an incoming communication from a source device in the computer network, descrambling the second source port of the incoming communication to obtain a first source port by applying a reverse function of the transformation function; and directing the incoming communication at the first source port instead of the second source port.
US10397190B2

A system and method for obfuscating an optical signal is disclosed. Obfuscating the optical signal may make it more difficult for the optical signal to be detected by an interloper. In one embodiment, an optical signal is received at an optical transmitter, and an obfuscated optical signal is generated by performing a modification of the received optical signal. The obfuscated optical signal is then transmitted from the optical transmitter to an optical receiver. An at least partially deobfuscated optical signal is generated at the optical receiver by performing a modification of the obfuscated optical signal. The modification performed at the optical receiver corresponds to the modification performed at the optical transmitter.
US10397189B1

A provider network includes a service that creates virtual private network (VPN) endpoint nodes. Application programming interfaces are available that the creation of VPN endpoint nodes, peer them together, and attach them to respective virtual private networks to thereby establish communication tunnels between pairs of virtual private networks. Each VPN endpoint node may be implemented as a fault tolerant endpoint node in which the node is created as a plurality of virtual machines. Each of the virtual machines is configured from a common machine image that includes software capable of causing the respective virtual machine to configure a tunnel such as an IPSec tunnel. One of the virtual machines, however, is operated in an active mode, while another virtual machine is configured to operate in a standby mode.
US10397187B2

An API call filtering system filters responses to API call requests received, via a network, from UEs. The API call filtering system is configured to require personalized API call requests wherein each API call (except for some minor exceptions) includes a unique UE identifier (“UEIN”) of the UE making the request. Using the UEIN, the web service or other service protected by the API call filtering system can be secured against excessive request iterations from a set of rogue UEs while allowing for ordinary volumes of requests of requests the UEs, wherein one or more boundaries between what is deemed to be an ordinary volume of requests and what is deemed to be excessive request iterations are determined by predetermined criteria.
US10397185B1

Systems and methods for protecting and deduplicating streams of data in a cloud based platform. A platform is configured with multiple services and can communicate with multiple clients. The platform receives all requests at an endpoint and distributes the requests to workers using multiple queues. The platform may be stateless and is scalable. The meta-data is handled separately from the data in one example.
US10397184B2

A device can receive, from a network device, a request to create an internet protocol (IP) session for a user device. The device can allocate an IP address for the user device and a first tunnel endpoint identifier associated with a tunnel. The IP address can include a first set of bits associated with a location identifier and a second set of bits associated with a device identifier. The device can provide a response to the network device, and can receive a request that includes a second tunnel endpoint identifier associated with the tunnel. The device can provide the IP address and the first and second tunnel endpoint identifiers to be stored using a data structure. The device can provide a response to the network device indicating to establish the downlink portion of the IP session, and can perform one or more actions associated with managing the IP session.
US10397157B2

Disclosed aspects relate to message management utilizing a social networking environment. A message which pertains to an anticipated activity may be detected in the social networking environment. A relevant actionable portion of the message which corresponds with the anticipated activity may be identified by analyzing the message. Using the relevant actionable portion of the message, an activity management operation for utilization to manage the anticipated activity may be determined. The activity management operation may be executed in the social networking environment for utilization to manage the anticipated activity.
US10397155B2

Embodiments of a content delivery system are disclosed herein. In particular, an embodiment of a content delivery system may receive content associated with a first destination identifier associated with a first delivery method, determine a second destination identifier and a second delivery method associated with the first delivery destination, and deliver the content to the second destination identifier according to the second delivery method.
US10397154B2

A method of secure electronic message conveyance. The method can include, via a processor, receiving a request to forward an electronic message originally received by a first user to at least a second user. The method also can include, based on content contained in the electronic message, selecting from a plurality of approval entities at least one approval entity that is to determine whether the electronic message is approved to be forwarded to the at least a second user, and receiving from the selected approval entity an indication that indicates whether the electronic message is approved to be forwarded to the second user. The method further can include, responsive to the selected approval entity approving the forwarding of the electronic message to the second user, automatically forwarding the electronic message to the second user.
US10397150B1

In one embodiment, a computer-implemented method is provided, comprising: creating at least a portion of an instant messaging application that is configured to cooperate with a relay that is configured to communicate with a web service, the instant messaging application, when executed, configured to cause a device to: display an instant messaging interface including a textbox user interface element for receiving a message text portion and a send user interface element for sending the message text portion in response to a user selection thereof, and receive, from the relay and utilizing a communications agent on the device configured to receive incoming messages addressed to a communicant identifier associated with a user of the instant messaging application, a first message.
US10397142B2

A multi-chip structure comprises a switch system on chip (switch SOC), a plurality of serializer/deserializer (SerDes) chips positioned around the switch SOC, and a plurality of inter-chip interfaces for connecting the switch SOC to the plurality of SerDes chips, respectively.
US10397139B2

According to one embodiment, a storage device includes a plurality of memory nodes. Each of memory nodes includes a plurality of input ports, a plurality of output ports, a selector, a packet controller and a memory. The selector outputs a packet input to the input port to one of the output ports. The packet controller controls the selector. The memory stores data. The memory nodes are mutually connected at the input ports and the output ports. The memory node has an address that is determined by its physical position. The packet controller switches the output port that outputs the packet based on information including at least a destination address of the packet and an address of the memory node having the packet controller when receiving a packet that is not addressed to the memory node having the packet controller.
US10397136B2

Some embodiments provide a method for a network controller that manages a logical network implemented in a datacenter having forwarding elements to which the network controller does not have access. The method identifies a data compute node (DCN) operating on a host machine in the datacenter, to attach to the logical network. The DCN has a network interface with an address provided by a datacenter management system. A workload application executes in a first namespace of the DCN. The method distributes configuration data for configuring a managed forwarding element (MFE) executing in a second namespace of the DCN to receive data packets sent from the application via an interface pairing between the first and second namespaces. The data packets sent by the application have the provided address as a source address when received by the MFE and are encapsulated by the MFE using the provided address as a source address.
US10397134B2

A method and system for bandwidth sharing to enable communication between users. A second key is received from a first user after the first user received the second key from a second user. A directive to transfer W upload bandwidth from the first user to the second user for a time duration is received. A first and second key was previously provided to the first and second user, configured to identify the first and second user, in conjunction with the first user and second user having an upload bandwidth of U1 and U2 for transmitting data, respectively. Responsive to the second key being received from the first user, the first and second user's upload bandwidth is changed to U2−W and U1+W, respectively. The specified data is transferred from the second user to the first user with a permitted upload bandwidth between U2 and U2+W.
US10397127B2

A method is provided in one example and includes allocating a first queue, allocating at least two default queues, where the at least two default queues depend from the first queue, allocating a plurality of local queues that each depend from one of the at least two defaults queues, receiving data in a data stream, determining a quality of service (QoS) associated with the data, and assigning the data to one of the plurality of local queues based on the determined QoS. In an example, the QoS is a differentiated services code point.
US10397115B1

One embodiment performs longest prefix matching operations in one or more different manners that provides packet processing and/or memory efficiencies in the processing of packets. In one embodiment, a packet switching device determines a set of one or more mask lengths of a particular conforming entry of a multibit trie or other data structure that matches a particular address of a packet via a lookup operation in a mask length data structure. A conforming entry refers to an entry which has less than or equal to a maximum number of different prefix lengths, with this maximum number corresponding to the maximum number of prefix lengths which can be searched in parallel in the address space for a longest matching prefix by the implementing hardware. The packet switching device then performs corresponding hash table lookup operation(s) in parallel in determining an overall longest matching prefix for the particular address.
US10397104B2

Systems and methods for supporting SMA level abstractions at router ports for enablement of data traffic in a high performance computing environment. In accordance with an embodiment, a subnet manager in a local subnet is responsible for enabling data traffic between subnets in a high performance computing environment. The SM can configure and set a data attribute at a switch port configured as a router port such that incoming data packets can be checked against the attribute to determine whether the data packet's destination is allowed or disallowed to receive inter-subnet data traffic.
US10397098B2

A control device may manage a switch device within a same software defined network (SDN) of the control device, manage a topology structure of an SDN corresponding to the SDN instance managed by the control device, and calculate flow paths based on the topology structure.
US10397097B2

A routing technique provides a routing table which assigns weights in the process of selecting a next hop at a router, while still using an equal cost multipath selection process at the router. The routing table is configured to cross reference an IP address prefix set to a number of next hops which can be all, or fewer than all, available next hops. This occurs in each row of the table for a different IP address prefix set. Subsets of the next hops are identified in each row in a manner which results in the next hops being selected according to specified weights. An estimate of traffic to the different IP address prefix set is also considered. The routing table can be configured based on announce and withdraw messages received from a link weight translator of a controller.
US10397088B2

A node configured to support a Flexible Ethernet (FlexE) client service in a network includes circuitry configured to interface a FlexE client; and circuitry configured to monitor and update one or more Operations, Administration, and Maintenance (OAM) fields associated with the FlexE client, wherein the one or more OAM fields include a monitoring field that covers 64b/66b codes for a path of the FlexE client. A method, implemented in a node, for supporting a Flexible Ethernet (FlexE) client service in a network includes interfacing a FlexE client; and updating and monitoring one or more Operations, Administration, and Maintenance (OAM) fields associated with the FlexE client, wherein the one or more OAM fields include a monitoring field that covers 64b/66b codes for a path of the FlexE client.
US10397084B2

A transmission device connects a plurality of transmission device by a ring network. The transmission device includes a generating unit, a transmission unit, a determination unit, and a setting unit. The generating unit generates a test signal. The transmission unit transmits the generated test signal to a first transmission device provided immediately downstream in the ring network. The determination unit determines whether a transmission characteristic of the own device on the basis of the test signal measured by the first transmission device is acquired from a second transmission device provided immediately upstream by rounding the ring network. The setting unit sets, on the basis of the acquired transmission characteristic when the transmission characteristic of the own device is acquired, a control level related to the transmission performed by the transmission unit.
US10397079B2

A system for evaluating quality of video delivered over a telecommunications network is provided. The system includes one or more monitoring probes coupled to one or more network interfaces providing direct communication between two or more networked devices. The monitoring probes are adapted to capture video data from the network interfaces. The system further includes a processor adapted to analyze the data captured by the monitoring probes. The processor is operatively configured to determine a number of lost data packets within the captured video data. The processor is further operatively configured to determine probability of unrecoverable losses within the captured video based on the determined number of lost data packets. The processor is also operatively configured to calculate a video quality index value based on the determined probability of unrecoverable loses.
US10397076B2

A computer system is monitored for conditions bearing on the effective age of various hardware components of the system. Upon detecting an age adjustment condition, the affected hardware components are identified. An age adjustment is determined for each of the affected hardware components. The adjusted age is stored for reference when taking actions based on the adjusted age, such a component replacement and/or workload placement.
US10397075B2

In one embodiment, a computer server running a social networking application aggregates raw local area network (LAN) traffic data received from one or more listening nodes in one or more LANs. The aggregated LAN traffic data is comprised of multiple entries, each of which includes a MAC address for a networked device, as well as an association between each MAC address and a user of a social networking system. The computer server may then detect, identify, and qualify recurring patterns when a particular user is on the same LAN as other users of the social networking system. Based upon the qualified patterns, the social networking system may suggest friend connections or other interactions on the social networking system to the particular user.
US10397073B2

Techniques are disclosed for using arbitrary criteria to define events occurring within a network infrastructure, as well and techniques for detecting and responding to the occurrence of such custom events. Doing so allows a collection of networking elements (switches, routers, etc.) to perform a variety of distributed functions from within the network itself to respond to custom events. Further, because custom events are published across the network, multiple network elements can communicate and respond to the same event. Thus, unlike currently available event management systems, custom events (and responding applications) can be used to create and coordinate software defined networking within a common network infrastructure.
US10397072B2

Provided herein are methodologies, systems, apparatus, and non-transitory computer-readable media for interacting between a service provider system and an enterprise incident management system, that include a gateway device programmed to receive a provider method including processor-executable instructions to perform a task relating to an incident at an enterprise back-end and convert the provider method to be compatible with the incident management system. The conversion is based on a structured framework to convert a method executable in the service provider system to a method executable in the incident management system. The gateway device is also programmed to transmit the converted provider method to a server of the incident management system. The system may include a server programmed to execute the converted provider method to generate a response method and transmit the response method to the gateway device, where the response method includes data relating to performance of the task.
US10397071B2

A system and method is provided for deploying a network monitoring agent to monitor a network. The method includes receiving a deployment request to deploy a monitoring agent, the monitoring agent including first executable instructions to monitor the network, the request specifying a region external from the network in which to deploy the monitoring agent. The method further includes installing the monitoring agent for execution within a controlled runtime environment on a host machine, the host machine operating in the specified region and having a single operating system. The monitoring agent is executed within the controlled runtime environment to monitor the network from an external perspective of the network. In the controlled runtime environment, during execution of the monitoring agent, all areas of the operating system that are writable by the monitoring agent are isolated from areas of the operating system that are writable by any other software application using the operating system.
US10397069B2

A self-adaptive management method and system thereof are provided. The method includes: sending, by a target AMA server based on pre-stored address information of at least one AMF server, first detection information to the at least one AMF server; receiving, by the at least one AMF server, the first detection information, and returning, by the at least one AMF server, first detection response corresponding to the first detection information to the target AMA server; receiving, by the target AMA server, the first detection response, selecting, by the target AMA server, a target AMF server from the at least one AMF server, and sending, by the target AMA server, a join request to the target AMF server; receiving, by the target AMF server, the join request, and adding, by the target AMF server, the target AMA server to a network node corresponding to the target AMF server.
US10397064B2

A custom graph of nodes can be selectively generated based on a selected node in a graph representative of a network-connected computing infrastructure. The custom graph can, for example, be generated using software executing on a server device. The server device can receive an indication of the selected node from a client device. A plugin can then be invoked by providing the selected node to the plugin. Responsive to providing the selected node to the plugin, the plugin can provide output including child nodes generated by the plugin. The child nodes generated by the invocation of the plugin can be iteratively processed to generate the custom graph, such as by providing those child nodes to the plugin for subsequent invocation, as applicable. After the custom graph is generated, it can be transmitted to the client device from which the indication of the selected node was received. The custom graph may be displayed at the client device.
US10397059B2

In an example, an aggregation router encapsulates a first Console command as a control packet in an Ethernet format, determines a target branch router of the control packet, and transmits the control packet to the target branch router via an Ethernet link between the aggregation router and the target branch router, so that the target branch router can decapsulate the control packet to obtain and execute the first Console command. The aggregation router receives a feedback packet from the target branch router via the Ethernet link between the aggregation router and the target branch router, wherein the feedback packet comprises an output result obtained by the target branch router through executing the first Console command.
US10397049B2

In one embodiment, a network controller identifies a first sign of life for an edge device in a communication network (e.g., when the network controller receives an encapsulated workflow request for the edge device over a control plane of the communication network). The network controller further imports the encapsulated workflow request from the edge device over the control plane, determines configuration parameters for a tenant and a tenant network from the encapsulated workflow request, and transmits the configuration parameters to the edge device to provision the edge device for the tenant according to the configuration parameters.
US10397046B1

Triggering of user interface notifications can be managed for a plurality of computer applications via a digital assistant, which can include a notification triggering engine. The managing can include selecting a time to trigger a user interface notification from a computer application of the plurality of computer applications. The selecting can use the data representing a current contextual user interface activity computer state. The current contextual user interface activity state can be a state other than a state of the digital assistant, the triggering engine, or a state of the computer application. The technique can further include, in response to the selecting of the time, triggering the notification in the computer system at the selected time via the digital assistant. Further, the technique can include responding to the triggering of the notification by presenting the notification on a user interface device in the computer system.
US10397045B2

A method for migrating a service of a data center is disclosed. When an active data center is faulty, a tunnel processing device disables a locally-saved tunnel entry of a server in the active data center. After receiving a service access request packet from a customer edge router, the tunnel processing device acquires an IP address of a tunnel processing module deployed on a server in a standby data center according to an IP address of a destination virtual machine, encapsulates the service access request packet and routes the encapsulated packet to the tunnel processing module, so as to migrate a data center service from the active data center to the standby data center.
US10397044B2

The problem of recovering from multiple link failures in a way that is quick, avoids loops, avoids packet modifications, and that avoids significant modifications to existing routers is solved by: (1) associating a network rerouting unit (NRU) with each of the plurality of routers; (2) configuring each router so that if a link (or more specifically, any link) directly connected to the router fails, the router redirects any packets whose next hop is a port terminating an end of the failed link to the NRU associated with the router; (3) executing a routing protocol on each of the NRUs whereby each NRU will learn a topology of the communications network; (4) receiving by a first NRU, a packet redirected from the router associated with the first NRU; and (5) responsive to receiving, by the first NRU, the packet redirected from the router associated with the first NRU, (i) identifying a link directly connected to the router as a failed link using a destination address in the redirected packet, and the topology of the network learned by the first NRU, (ii) determining an alternative path to the destination address of the redirected packet bypassing the identified failed link, and (iii) tunneling the redirected packet to an intermediate node on or associated with the alternative path using encapsulation. NRUs provide more programmability and better flexibility, thereby allowing network operators to deploy new network functions and features on demand in a timely and agile manner. Such NRUs provide resilience as a network function (“RaaNF”) that can be plugged into a running network easily and help the network recover from link failures without modifying existing routers.
US10397041B2

An electronic control unit provides a transmission node in a communication system in which the transmission node stores first data in a transmission frame having a predetermined format and transmits the first data to a network, and a reception node receives the first data as a reception frame via the network. The electronic control unit includes: an allocation unit that divides second data into a plurality of split data items, and allocates the split data items to an empty area of the transmission frame other than an area where the first data is allocated; and a transmission unit that transmits the spilt data items allocated by the allocation unit and the first data as the transmission frame.
US10397040B2

A dynamic broadcast system and a spectrum management device for use in a dynamic broadcast system. A dynamic white space database unit stores and dynamically updates a dynamic white space database of frequency resources that are assigned for broadcasting broadcast content but can locally not be used for broadcasting. One or more white space devices can access the frequency resources included in the dynamic white space database. A spectrum server dynamically manages the frequency resources included in the dynamic white space database for access by the one or more white space devices.
US10397038B2

An all-digital software-only modem using distributed processing resources of cloud computing is provided. In particular, all processes that were previously supported by purpose built software, firmware, Field Programmable Gate Array (FPGA) hardware description language (HDL) firmware, and an Application Specific Integrated Circuit (ASIC) are in the instant disclosure supported entirely by a High Performance Computing (HPC) server inside a cloud computing environment.
US10397034B2

Provided is a wireless communication device and a wireless communication method which can maintain compatibility with a plurality of communication schemes and send a response signal back within the allowed time specified by each communication scheme. The wireless communication device includes a radio receiving unit (120) that receives a packet having a format conforming to a first communication scheme and including a second format portion conforming to a second communication scheme using a higher frequency band than the first communication scheme and a first format portion excluding the second format portion, and a processing unit (160) that, outputs a response signal at completion of demodulation and decoding of the first format portion, regardless of whether demodulation and decoding of the second format portion are completed or not.
US10397032B2

Methods, systems, and devices for wireless communication using multi-user superposition (MUST) techniques in conjunction with multiple-input multiple-output (MIMO) techniques are described. A base station may configure an enhancement layer user equipment (UE) and a base layer UE with a transmit power ratio associated with enhancement layer transmissions and base layer transmissions. The base station may then transmit on the base layer and enhancement layer on multiple spatial layers using MIMO techniques. A UE may receive the transmission, determine the total power of the transmission on all spatial layers, and apply a power splitting constraint to determine the distribution of power for the transmission on the different spatial layers. The UE may then determine the transmit power of a transmission on a specific layer based on the power ratio configuration and use this information to demodulate and decode the transmission.
US10397023B2

A gateway RB may search for an ARP entry of the destination IP address of an IP packet. The gateway RB may generate an Ethernet header based on a VLAN identification and a MAC address in the found ARP entry and a first local MAC address. The gateway RB may generate an Ethernet packet by adding the generated Ethernet header to the IP packet, and send out the Ethernet packet via an egress port in the found ARP entry; wherein the founded ARP entry is generated by the gateway RB based on a received TRILL-encapsulated ARP packet and a VSI on the gateway RB associating with the first local MAC address and the destination IP address of the IP packet belong to the same VLAN.
US10397021B2

Disclosed herein are systems and techniques for slave-to-slave communication in a multi-node, daisy-chained network. Slave nodes may provide or receive upstream or downstream data directly to/from other slave nodes, without the need for data slots first to route through the master node.
US10396992B2

Disclosed is a method, a device, and/or a system of authentication of a user and/or a device through parallel synchronous update of immutable hash histories. In one embodiment, a computer-implemented method for authentication includes receiving an identity claim from a device that includes a device root hash of a hashed history of the device, referred to as a device hastory. Data of a user profile associated with the device that includes a profile root hash of a profile hastory is retrieved. The device root hash and the profile root hash are compared and determined to be identical to verify an identity of a user and/or a device. A transaction record is generated and deposited as a new block in both in the profile hastory and device hastory. A new profile root hash is computed to evolve the identity of the user profile for a prospective authentication request.
US10396974B1

An apparatus includes signal control circuitry, a phase-locked loop (PLL), and a correlation circuit. The signal control circuitry provides a reference clock signal carrying pseudo-random phase noise and as derived from an application clock signal and pseudo-random noise. The PLL, responsive to the reference clock signal carrying the pseudo-random phase noise, provides an output signal that is related to the phase of the reference clock signal. The correlation circuit self-tests the PLL by cross-correlating a signal corresponding to the output signal from the phase detector with the pseudo-random noise and, in response, by assessing results of the cross-correlation relative to a known threshold indicative of a performance level of the PLL.
US10396971B2

A method for measuring one-way delays in a communications network, the method comprising: maintaining, at a third node having a reference clock, a first virtual clock state emulating a first node clock located at a first node and a second virtual clock state emulating a second node clock located at a second node; registering a timeset comprising transmission and reception times at the first node and the second node, respectively, for each packet of a plurality of packets that are transmitted from the first node to the second node and reflected from the second node back to the first node; converting times in the timeset, responsive to the first and/or second virtual clocks, into times in accordance with the reference clock; calculating, for each packet of the plurality of packets, a forward one-way delay (FOWD) and a reverse one-way delay (ROWD), responsive to the converted timeset.
US10396969B2

Disclosed herein are a systems and method for using frequency tones to schedule full-duplex communications between at least two full-duplex communication nodes. Communication nodes having data to transmit send, as part of two contention rounds, two separate and randomly selected frequency tones. In the first contention round, all nodes having data to transmit simultaneously transmit a frequency tone. Based on these first frequency tones, groups of nodes are formed. Each group of nodes in turn transmits a second set of frequency tones, and a schedule of full-duplex communications is created based on the second frequency tones.
US10396964B2

A method and an apparatus for transmitting/receiving feedback in a mobile communication system are provided. A method of configuring and receiving feedback information of an evolved Node B (eNB) includes transmitting configuration information on a plurality of reference signals including a first reference signal and a second reference signal to a User Equipment (UE); transmitting feedback configuration information including first feedback configuration information on the first reference signal and second feedback configuration information configured such that feedback information on the second reference signal is generated with reference to the first feedback configuration information to the UE; transmitting the reference signal to the UE according to the configuration information on the reference signal; and receiving feedback information including first feedback information according to the first feedback configuration information and second feedback information according to the second feedback configuration information from the UE.
US10396960B2

The present disclosure relates to a method and apparatus for transmitting uplink control information for a terminal. That is, the method and apparatus may be provided for transmitting downlink control information through a downlink control channel which is introduced into a data domain and receiving control information. More particularly, a method and apparatus may be provided for mapping an uplink control channel resource for feeding back uplink HARQ ACK/NACK of the terminal for a downlink data channel through downlink scheduling information, which is transmitted via the downlink control channel.
US10396959B2

Certain aspects of the present disclosure provide techniques for signaling information regarding beams used for data and control transmissions to a receiving entity.
US10396946B2

A method of wireless communication using time division duplex over widely spaced frequency bands by a radio base station includes transmitting millimeter wave band downlink signals comprising a plurality of first transmission time intervals (TTIs) and receiving millimeter wave band uplink signals comprising at least one second TTI. The number of first TTIs is greater than the number of second TTIs. The method includes transmitting sub-7 GHz band downlink signals comprising at least one third TTI and receiving sub-7 GHz band uplink signals comprising a plurality of fourth TTIs. The number of third TTIs is less than the number of fourth TTIs.
US10396937B2

An improved receiver design implements a method for modeling users in SIC turbo loop multiuser detection architectures that reduces the number of implementation cycles, and thereby reduces the computational overhead associated with computing the inverse of the received signal covariance matrix, by efficiently reusing components of a QR decomposition. By reusing some of the computational results from the previous turbo loop's equalizer calculation, the disclosed receiver significantly reduces the computational burden of updating the linear equalizer on each turbo loop. Depending on the embodiment, this reduction can be accomplished in at least two different ways, depending on the dimensionality and other aspects of the implementation.
US10396935B2

A method for transmitting an uplink control signal of a terminal in a wireless communication system and a terminal using the method are provided. The method comprises the steps of: setting a first physical uplink control channel (PUCCH) resource for a first antenna port; setting a second PUCCH resource for a second antenna port; and transmitting a same uplink control signal through the first and second antenna ports by using the first and second PUCCH resources, wherein the first and second PUCCH resources are orthogonal to each other.
US10396934B2

Apparatus and methods are provided to report channel status with transmission repetition. In one novel aspect, the mobile station computes a transmission efficiency for a transport block, which is repeatedly transmitted such that the transport block is received with a predefined receiving quality; determines a channel quality indicator based on the transmission efficiency and transmits it to a base station. In one embodiment, the transport block is repeatedly transmitted over multiple subframes. In another novel aspect, the mobile station computes a plurality of transmission efficiencies corresponding to a plurality of transport blocks, wherein at least one transport block is repeatedly transmitted such that each transport block is received with a pre-defined receiving quality. The mobile station determines one or more channel quality indicators based on the transmission efficiencies and transmits either the channel quality indicator with the highest efficiency or each channel quality indicator to a base station.
US10396930B2

A non-orthogonal multiple access (NOMA) scheme data receiving method is provided. The method can comprise the steps of: receiving, by a user equipment (UE), downlink control information (DCI) for a NOMA scheme; receiving downlink data on the basis of the DCI; decoding interference data included in the received downlink data; cancelling decoded interference data in the received downlink data if the decoding is successful; and decoding the own downlink data remaining after the interference data has been cancelled.
US10396929B2

The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal. The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit is in optical communication with an input of the OTDM-to-WDM converter. The invention further relates to a method for all-optical regeneration of WDM data signals.
US10396928B2

A method and system for obtaining system information from a plurality of cells in a network based on a downlink (DL) synchronization signal block (SB) burst used by the plurality of cells to transmit information to user equipment (UE) wherein the DL SB burst includes a plurality of SB's each containing synchronization information for one or more of the plurality of cells.
US10396927B2

Automatic configuration of cell assignment of non-Inter-Cell Interference Coordination (ICIC)-engaged remote units in a wireless distribution communications system (WDCS) to non-ICIC-engaged WDCS cells to avoid or reduce dividing radio resources. The WDCS is configured to identify which remote units are “ICIC-engaged remote units.” A cell assignment configuration circuit is configured to identify ICIC-engaged WDCS cell(s) (i.e., in ICIC relation with a neighboring cell) among the WDCS cells in the WDCS, based on determining the WDCS cells assigned to ICIC-engaged remote units. The cell assignment configuration circuit is configured to determine a cell assignment configuration for the WDCS based on reassigning non-ICIC-engaged remote units assigned to the identified ICIC-engaged WDCS cells to non-ICIC-engaged WDCS cells. In this manner, radio resources for servicing non-ICIC-engaged remote units are not divided among non-ICIC-engaged remote units.
US10396922B2

A system on a chip (SOC) is configured to support multiple time domains within a time-sensitive networking (TSN) environment. TSN extends Ethernet networks to support a deterministic and high-availability communication on Layer 2 (data link layer of open system interconnect “OSI” model) for time coordinated capabilities such as industrial automation and control applications. Processors in a system may have an application time domain separate from the communication time domain. In addition, each type time domain may also have multiple potential time masters to drive synchronization for fault tolerance. The SoC supports multiple time domains driven by different time masters and graceful time master switching. Timing masters may be switched at run-time in case of a failure in the system. Software drives the SoC to establish communication paths through a sync router to facilitate communication between time providers and time consumers. Multiple time sources are supported.
US10396918B2

A node unit of distributed antenna system, the node unit comprises a delay measuring part configured to transmit a first test signal for delay measurement to an upper adjacent node unit and detect the first test signal looped back via the upper adjacent node unit and measure a round trip delay between the node unit and the upper adjacent node unit, and a delay providing part disposed on a signal transmission path through which a second test signal for delay measurement, to be transmitted from a lower adjacent node unit, is to be looped back to the lower adjacent node unit, and configured to provide a delay corresponding to the round trip delay.
US10396917B2

Disclosed herein is an algorithm that leverages the unique features and capabilities of a DCC-DAS in order to perform automatic measurements of uplink noise, PIM, and any uplink interference. Once an interference in the uplink is detected, this algorithm may automatically measure its parameters such as frequency, intensity, bandwidth, etc., and identify the source of the problem. It may automatically isolate and identify which element or cable of the DCC-DAS is the root cause of the problem or also which external source is generating the problem.
US10396911B1

A method and apparatus for generating a probability density function eye are provided. The method preferably includes the steps of acquiring an input waveform, performing a clock data recovery in accordance with the input waveform to determine one or more expected transition times and defining a plurality of unit intervals of the input waveform in accordance with the one or more expected transition times. One or more values of one or more data points may then be determined in accordance with the input waveform in accordance with the one or more expected transition times, and a category for each unit interval in accordance with its state and its position within the input waveform may also be determined. One or more histograms may then be generated for the determined one or more values for each category of unit intervals.
US10396909B1

A multi-antenna test system is provided. The multi-antenna test system includes a device under test and at least four antenna devices. The at least four antenna devices are spaced apart in a fixed angular relationship with respect to the device under test to create different certain angular relations between each pair of the at least four antenna devices.
US10396907B2

A method and apparatus are provided for calculating s-parameters of a device under test from step waveforms acquired by a time domain network analyzer.
US10396905B2

Information is communicated to an individual by directing an acoustic signal transcranially to a target region in the brain. The target region is stimulated to produce a cognitive effect, and the cognitive effect is modulated or encoded to carry the desired information.
US10396900B2

A method of controlling a transmission signal, includes transmitting a training signal including four polarization states having a given relation; and performing rotation control and transmission power level control of a polarization component of a data signal, based on a rotation control matrix for a polarization state and an inverse-operation control matrix for a power level imbalance, which are estimated from Stokes parameters related to input power level present on a Poincare sphere acquired from the training signal and Stokes parameters related to output power level present on the Poincare sphere.
US10396896B2

The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
US10396890B2

An information processing apparatus includes a memory, and a processor coupled to the memory and configured to obtain function information indicating a hardware function of a first station-side device on a physical network and communication state information indicating a communication state of the first station-side device, based on the function information, generate setting information for switching a first communication between the first station-side device and a terminal device to a second communication between a second station-side device on a virtual network and the terminal device, specify, based on the communication state information, a time period in which the first communication is not executed, specify switching time which is in the identified time period and at which the first communication is to be switched to the second communication, and cause, based on the setting information and the specified switching time, the second station-side device to start the second communication.
US10396885B2

Various embodiments are generally directed to techniques to dynamically configure a modular antenna array (MAA) for multiple independent uses. An MAA may include a plurality of antenna modules, each of the antenna modules comprising an array of antenna elements coupled to a radio frequency (RF) beamforming circuit, the RF beamforming circuit to adjust phase shifts associated with the antenna elements to generate an antenna beam associated with the antenna module, a dynamic configuration unit to receive an indication of a usage for a one of the plurality of antenna modules, and a main beamforming unit coupled to the dynamic configuration unit and each of the antenna modules, the main beamforming unit to generate signal adjustments relative to the one of the plurality of antenna modules to control the antenna beam associated with the one of the plurality of antenna modules based at least in part on the usage.
US10396874B1

A device that implements proactive beamforming while in motion may include at least one processor configured to establish communication with a first base station via a first beam. The at least one processor may be configured to monitor motion of at least one of: the device, the first base station, or a second base station. The at least one processor may be configured to determine that the device is approaching a second base station based at least in part on the monitored motion. The at least one processor may be configured to form a second beam in a direction of the second base station. The at least one processor may be configured to establish communication with the second base station via the second beam and terminate the first beam with the first base station upon establishing communication with the second base station via the second beam.
US10396871B2

Various embodiments disclosed herein provide for a base station device that can determine which layers should be mapped to codewords in a multi-layer, multi-antenna transmission. The base station device can transmit reference signals to a user equipment device, with each reference signal associated with a respective codeword to layer mapping combination, and the user equipment can send channel state information associated with each reference signal back to the base station device, and the base station device can rank each combination in terms of spectral efficiency or capacity and/or throughput. The base station device can inform the user equipment of the ranked combinations by sending a bit map with the ranked combinations to the user equipment device.
US10396867B2

A method for reducing complexity of downlink signal demodulation in a multiuser (MU) multiple-input-multiple-output (MIMO) wireless communication system includes a base station acquiring uplink (UL) channel state information (CSI) of a MIMO channel between the base station and a user equipment (UE), deriving downlink (DL) CSI from the UL CSI, and transmitting orthogonal frequency-division multiplexing (OFDM) radio subframes using MIMO pre-equalization based on the DL CSI. The UE performs downlink reciprocity correction of the OFDM subframes received from the base station using a single complex phasor estimate and performs downlink data demodulation of the downlink reciprocity corrected OFDM subframes without performing additional MIMO equalization.
US10396854B2

A method for providing galvanic isolation between an input or trunk interface (30) and multiple outputs or spur interfaces (38) for connecting field devices (14) to a trunk (20) of a two-wire (44a, 44b) process control network (10) includes connecting multiple sets of multiple spur interfaces to respective isolating elements (34). Each isolating element (34) connects a respective set of outputs or spur interfaces (38) to the trunk interface (30) and galvanically isolates (40, 42) the respective set of spur interfaces (38) from the trunk interface (30). Field devices (14) attached to different sets of spur interfaces are also galvanically isolated from one another.
US10396837B2

An electronic device includes an antenna including a ground part, a feeding part, and a radiator and a first switch interposed between the feeding part and the radiator. A signal supplied through the feeding part is transmitted through a first path, a second path, or a third path that connects the feeding part to the radiator. The first switch is configured to change a connection state of the second path and the third path, and the third path includes a variable capacitor.
US10396835B2

Systems and methods for reducing effects of time-division multiplexing noise in mobile communications devices. When cellular communication with time-division multiplexing is detected, such as Global System for Mobiles (GSM) communication with Time Division Multiple Access (TDMA) protocol, total energy and energy at a repetition frequency of the time division multiplexing is measured in audio signals received from several microphones located in the device. A control signal indicating microphones affected by TDMA noise is provided to signal processing subsystems that receive audio signals from the microphones. A beam former circuit may combine two or more audio signals to produce beam formed signals. The control signal may further indicate beam formed signals affected by TDMA noise based on a ratio of the energy from the repetition frequency to the total energy in the beam formed signals.
US10396831B2

An apparatus and method are provided for converting broad spectrum electromagnetic energy to useful, narrow bands of electromagnetic energy. The broad spectrum electromagnetic energy may be from the Sun or from combustion, and output from the apparatus may be bands of visible light, infrared, microwaves, or a combination thereof. The apparatus can function as part of a highly efficient plant growing system or may function as part of a heating or warming system.
US10396829B2

A digital filter for interpolation or decimation and a device incorporating the digital filter is disclosed. The digital filter includes a filter block, a first transformation circuit coupled to the filter block and an input stream coupled to provide input values to a component selected from the filter block and the first transformation circuit. The filter block includes a pair of sub-filters having respective transformed coefficients, the respective transformed coefficients of a first sub-filter of the pair of sub-filters being symmetric and the respective transformed coefficients of a second sub-filter of the pair of sub-filters being anti-symmetric. The first transformation circuit is coupled to perform a first transformation; the filter block and the first transformation circuit together provide suppression of undesired spectral images in final outputs of the digital filter.
US10396825B2

An operation method of a memory controller may include performing a first decoding operation to a message of an internal region included in a codeword received from a semiconductor memory device by using an internal parity, wherein the message and the internal parity are included in the internal region in a matrix form; and performing a second decoding operation to the internal region, to which the first decoding operation is performed, by using an outer parity of an outer region.
US10396820B2

A modulator and a modulation method using a non-uniform 16-symbol signal constellation are disclosed. The modulator includes a memory and a processor. The memory receives a codeword corresponding to a low-density parity check (LDPC) code having a code rate of 3/15. The processor maps the codeword to 16 symbols of the non-uniform 16-symbol signal constellation on a 4-bit basis.
US10396818B2

A transmitter is provided. The transmitter includes: a segmenter configured to segment information bits into a plurality of blocks based on one of a plurality of preset reference values; an outer encoder configured to encode each of the plurality of blocks to generate first parity bits; and a Low Density Parity Check (LDPC) encoder configured to encode each of the plurality of blocks and the first parity bits to generate an LDPC codeword including second parity bits, wherein the one of the preset reference values is determined depending on at least one of a code rate used to encode each of the plurality of blocks and the first parity bits and whether to perform repetition of at least a part of the LDPC codeword in the LDPC codeword.
US10396817B2

A low-density parity-check decoder utilizes information about hard errors in a storage medium to identify bit locations to flip log-likelihood ratios while attempting to decode codewords. The decoder iteratively flips and saturates log-likelihood ratios for bits at hard error locations and re-decodes until a valid codeword is produced. The decoder also identifies variable nodes associated with trapping sets for iterative log-likelihood ratio bit flipping.
US10396815B1

High efficiency amplitude DACs (Digital-to-Analog Converters) and RFDACs (Radio Frequency DACs) employing such amplitude DACs are discussed. One exemplary embodiment is a DAC comprising a plurality of DAC stages, wherein each DAC stage of the plurality of DAC stages is associated with a respective predetermined voltage of a plurality of predetermined voltages, wherein each DAC stage of the plurality of DAC stages can receive a digital signal at the respective predetermined voltage associated with that DAC stage when the respective predetermined voltage of that DAC stage is a selected predetermined voltage, wherein the selected predetermined voltage is based on an amplitude of the digital signal, and wherein each DAC stage of the plurality of DAC stages can generate a respective analog signal associated with that DAC stage based on the digital signal received at that DAC stage when the respective predetermined voltage of that DAC stage is the selected predetermined voltage.
US10396792B2

An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
US10396791B2

The present disclosure relates to an integrated circuit output driver, e.g. operating in class-D, for driving an audio transducer. The integrated circuit output driver comprises a first half-bridge driver comprising a first PMOS transistor and a first NMOS transistor connected in series between positive and negative supply voltage rails. A first body terminal is connected to a body of the first PMOS transistor for receipt of a first back bias voltage and a second body terminal connected to a body of the first NMOS transistor for receipt of a second back bias voltage. The integrated circuit output driver comprises a bias voltage generator configured to adjust at least one of the first back bias voltage and the second back bias voltage to control on-resistance of the first PMOS transistor and/or the first NMOS transistor. The integrated circuit output driver is well-suited for hearing aids, headsets and other audio devices.
US10396785B2

A touch sensitive capacitive keypad system (100) is provided with an analog-to-digital converter, a keypad sensing electrode (114) coupled to measure capacitance voltages using a configurable electrode scan rate, and a controller (120) configured to provide scan-rate independent capacitance voltage measurements from the keypad sensing electrode to the analog-to-digital converter when there is a change in the configurable electrode scan rate by repetitively sampling a capacitance voltage measurements (e.g., 524a-f) from the keypad sensing electrode over a plurality of sequential electrode scan cycles and then discarding a predetermined number of the capacitance voltage measurements (e.g., 524a-b) to generate the scan-rate independent capacitance voltage measurements (e.g., 524c-f) that are provided to the analog-to-digital converter.
US10396783B2

An optical module includes a substrate, a lid, a light-emitting component, a first sensor and a second sensor. The lid is disposed on a surface of the substrate. The lid defines a first opening, a second opening and a third opening. The second opening is between the first opening and the third opening. The light-emitting component is disposed on the surface of the substrate and in the first opening. The first sensor is disposed on the surface of the substrate and in the second opening. The second sensor is disposed on the surface of the substrate and in the third opening.
US10396782B2

A technique relates to a microwave switch. A first nondegenerate device includes a first port and a second port. A second nondegenerate device includes another first port and another second port, the second port being coupled to the another second port, where the first nondegenerate device and the second nondegenerate device are configured to receive a phase difference in microwave drives. A first input/output port is coupled to the first port and the another first port. A second input/output port is coupled to the first port and the another first port, where communication between the first input/output port and the second input/output port is based on the phase difference.
US10396781B2

A switching circuit includes a bridge rectifier to receive voltage inputs and an optical isolator to receive a logic input signal and generate an output signal based on the logic input signal. The high speed switching circuit also includes a field effect transistor (FET) with a source connected to a negative output of the bridge rectifier, a drain connected to a positive output of the bridge rectifier through a load, and a gate driven by the output signal of the optical isolator. First and second resistors connect the voltage inputs to the gate of the FET through first and second diodes. The first and second resistors and the first and second diodes limit current flowing to the gate of the FET. A Zener diode connected to the gate of the FET limits voltage to the gate of the FET below a maximum voltage rating of the FET.
US10396775B2

Provided is a semiconductor device capable of preventing a malfunction of a high-side gate driver circuit that is caused by a negative voltage surge. A diode is connected between a p-type bulk substrate configuring a semiconductor layer, and a first potential (GND potential), and a signal is transmitted from a control circuit that is formed in an n diffusion region configuring a first semiconductor region through a first level down circuit and a first level up circuit to a high-side gate driver circuit that is formed in an n diffusion region configuring a second semiconductor region. As a result, a malfunction of the high-side gate driver circuit that is caused by a negative voltage surge can be prevented.
US10396760B1

A differential pair contact resistance asymmetry compensation system includes a board with a differential trace pair. A receiver device is coupled to the differential trace pair via a receiver device connector interface, and a transmitter device is coupled to the differential trace pair via a transmitter device connector interface. The transmitter device transmits a contact resistance compensation data stream to the receiver device via the differential trace pair. The transmitter device then adjusts an impedance provided by the transmitter device to compensate for a contact resistance asymmetry in the transmitter device connector interface. When the transmitter device determines that differential trace pair signal transmission capabilities for the differential trace pair in transmitting the contact resistance compensation data stream have improved in response to the adjustment of the impedance provided by the transmitter device, it sets the impedance provided by the transmitter device.
US10396751B2

An acoustic wave filter device includes a lower electrode disposed between a substrate and a piezoelectric layer, an upper electrode disposed on the piezoelectric layer, and an insulating layer disposed on the upper electrode. The insulating layer exposes portions of the upper electrode.
US10396749B2

A radio-frequency module utilizing carrier aggregation includes a switch circuit that includes one input terminal and three or more output terminals and that simultaneously connects the input terminal and each of two or more output terminals selected from the output terminals, signal paths that propagate signals of corresponding frequency bands, band pass filters in the signal paths, and variable matching circuits in the signal paths. The circuit states of the variable matching circuits are changed in accordance with a combination of two or more signal paths simultaneously connected to the input terminal.
US10396746B2

A method of forming an integrated resonator apparatus includes depositing alternating dielectric layers of lower and higher acoustic impedance materials over a substrate. First and second resonator electrodes are formed over the alternating dielectric layers, with a piezoelectric layer located between the first and second resonator electrodes. A mass bias is formed over the first and second resonator electrodes. The mass bias, first and second electrodes, piezoelectric layer, and alternating dielectric layers may be encapsulated with a plastic mold fill.
US10396744B2

Some embodiments of the invention are directed to enabling a user to easily identify the frequency range(s) at which sound masking occurs, and addressing the masking, if desired. In this respect, the extent to which a first stem is masked by one or more second stems in a frequency range may depend not only on the absolute value of the energy of the second stem(s) in the frequency range, but also on the relative energy of the first stem with respect to the second stem(s) in the frequency range. Accordingly, some embodiments are directed to modeling sound masking as a function of the energy of the stem being masked and of the relative energy of the masked stem with respect to the masking stem(s) in the frequency range, such as by modeling sound masking as loudness loss, a value indicative of the reduction in loudness of a stem of interest caused by the presence of one or more other stems in a frequency range.
US10396734B1

Disclosed is a differential transimpedance amplifier. The differential transimpedance amplifier includes a common gate amplifier configured to receive an electrical signal from an input node, and a common source amplifier configured to have a feedback resistor and receive the electrical signal form the input node. An output signal of the common gate amplifier and an output signal of the common source amplifier form a differential signal pair. The common gate amplifier and the common source amplifier each includes a load having a transformer which removes an effect of parasitic capacitance.
US10396724B1

In a general aspect, a system can include a fully differential amplifier circuit that includes a first amplifier, and first and second feedback paths. The first feedback path can provide a feedback path from a positive output of the first amplifier to a negative input of the first amplifier. The second feedback path can provide a feedback path from a negative output of the first amplifier to a positive input of the first amplifier. The system can include a chopper clock circuit configured to output a variable duty cycle chopper clock signal. The system can include a common mode loop circuit including a second amplifier and chopper switches. The common mode loop circuit can be configured as a local feedback loop for the first amplifier. The chopper switches can be configured to receive the chopper clock signal and control current flow into the positive and negative inputs.
US10396716B2

An amplifier may include control circuitry that may track a first input signal parameter and, in response, adjust a value of a second input parameter. Input parameter tracking and adjustment may facilitate control of output parameters for the amplifier. For example, an envelope-tracking amplifier may track input signal amplitude and adjust other input parameters in response. The adjustments may facilitate control of output parameters, such as gain or efficiency. The amplifier may further include calibration circuitry to determine adjustment responses to various tracked input parameters.
US10396712B2

A transformer feed-back quadrature voltage controlled oscillator (QVCO) includes a first VCO; a second VCO; and a dynamic phase error correction circuit, having a plurality of coupling capacitors connected between the first and second VCOs, wherein the capacitances of the coupling capacitors are varied according to a digital control signal to correct a phase error of local oscillating (LO) signals of quadrature phases output by the first and second VCOs.
US10396709B2

Some embodiments of the present invention describe an apparatus that includes an oscillator, a ramp generator, and an inverter. The apparatus includes an oscillator, an inverter, and a ramp generator. The oscillator is configured to generate a waveform comprising a low time and a high time. The inverter is configured to receive the waveform generated by the oscillator, and invert the waveform. The ramp generator configured to increase a gate control voltage of a transistor connected to a solar cell, and rapidly decrease the gate control voltage of the transistor. During the low time of the waveform, a measurement of a current and a voltage of the solar cell is performed as the current and voltage of the solar cell are transmitted through a first channel and to a second channel. During the high time of the waveform, a measurement of a current of a shorted cell and a voltage reference is performed as the current of the shorted cell and the voltage reference are transmitted through the first channel and the second channel.
US10396705B2

A system for mounting flexible photovoltaic (PV) modules on ribbed rooftops (e.g., purlin bearing rib-style roofs) may include a pair of mating mounting brackets, one affixed to the PV module and the other affixed to a rib of the roof. The PV module may have a concave-down profile when installed, with standoffs installed on a bottom side of the module and hold-down ridge caps installed on adjacent ribs of the roof.
US10396699B2

An anomaly diagnosing device diagnoses an anomaly in a single motor driven by multiple motor drive units. The multiple motor drive units supply AC currents to multiple multi-phase windings of the motor to drive the motor. The anomaly diagnosing device includes: a power consumption calculator for calculating power consumption in each of the multi-phase windings; a power difference calculator for calculating a difference in power consumption between the multi-phase windings; and a determination unit for determining that an anomaly is occurring when the absolute value of the difference has exceeded a threshold for a predetermined period of time.
US10396687B2

A mechanical system is provided for maintaining a desired gap between a stator electrode array and a rotor electrode array by employing repelling magnets on the inner surface of the rotor and on movable carts that support azimuthally segmented stator arrays.
US10396682B2

A method for operating an electrical network comprising a first subnetwork and a second subnetwork that are connected to one another via a transformer and are DC isolated from one another by said transformer, wherein a primary side of the transformer having a first number of turns is assigned to the first subnetwork and a secondary side of the transformer having a second number of turns is assigned to the second subnetwork, wherein the first subnetwork has a multilevel converter having a plurality of single modules, wherein each single module has an electrical energy store, wherein the multilevel converter provides at least one first incoming AC voltage that is modulated with at least one second incoming AC voltage, wherein a voltage resulting therefrom is provided to the transformer and is transformed by the transformer to an outgoing voltage that is provided to the second subnetwork.
US10396681B1

A device, method, and non-transitory computer readable medium that determines a multilevel inverter circuitry comprising Nsource DC voltage sources and at least 2Nsource+5 controlled switching devices. The number of output voltage levels and the maximum output voltage of the multilevel inverter circuitry can be variable and depend on a trade-off among voltage rating of switches, variety of DC sources, and control strategy. A hybrid modulation scheme is employed to reduce the total harmonic distortions.
US10396670B1

A device and method for controlling a power supply. The method includes: a first correction signal is generated according to a down-slope waveform and a second correction signal is generated according to an up-slope waveform, in a period of the switching element. Therefore, two kinds of corrections can be performed by using an oscillator, while the area of the circuit can be reduced and the cost of the integrated circuit can be decreased.
US10396669B2

A power converter controller and methods for its operation are provided that can control a self-oscillating power converter that uses a Bipolar Junction Transistor (BJT) as a switch by manipulating the current flowing in a control winding. The controller is able to determine the optimum time to remove a short circuit applied to the control winding, as well as being able to determine the optimum time to pass current through the control winding. The controller can further draw power from the power converter using the control winding. The controller is capable of maintaining the midpoint voltage of the power converter in the case that the converter has more than one switch. The controller estimates the output power of the converter without requiring a connection to the secondary side of the converter transformer. The controller further controls entry and exit into a low-power mode in which converter oscillations are suppressed.
US10396668B1

A power converter disclosed herein may include power conversion circuits connected in parallel and a cutoff switch provided in each of the power conversion circuits. The cutoff switch may be configured to cut off connection of corresponding one of the power conversion circuits from other power conversion circuit. In the power converter disclosed herein, the cutoff switches of the power conversion circuits may be housed in a first module.
US10396657B2

An electronic device includes: a clock booster configured to generate a boosted intermediate voltage greater than a source voltage, wherein the clock booster includes: a controller capacitor configured to store energy for providing a gate signal, wherein the gate signal is for controlling charging operations to generate the boosted intermediate voltage based on the source voltage, and a booster capacitor configured to store energy according to the gate signal for providing the boosted intermediate voltage, wherein the booster capacitor has greater capacitance level than the controller capacitor; and a secondary booster operatively coupled to the clock booster, the secondary booster configured to generate an output voltage based on the boosted intermediate voltage, wherein the output voltage is greater than both the source voltage and the boosted intermediate voltage.
US10396652B1

The examples include methods and apparatuses to control power adjustments. Controlling power adjustments can include receiving, from the sensor, a measurement of the power, comparing the measurement of the power to a pre-defined threshold, responsive to determining that the measurement is outside the scope of the threshold, calculating an adjustment to the consumption of the power by a load, and providing the adjustment to a power supply of the load to adjust the power consumed by the power supply.
US10396644B2

A vibration motor includes a stationary portion including a base and an annular coil; a vibrator including a magnet, and supported to be capable of vibrating in one direction with respect to the stationary portion; and an elastic member arranged between the stationary portion and the vibrator. The base includes a columnar portion arranged to project upward in a vertical direction perpendicular to the one direction. An outside surface of the columnar portion is arranged opposite to an inside surface of the coil.
US10396643B2

A motor includes a rotational shaft, a bearing supporting the rotational shaft, a magnet including plural magnetic poles in a circumferential direction, a rotor core disposed inside the magnet, and a magnetic sensor. The magnet includes a projection portion projecting toward a side of the bearing with respect to the rotor core in a direction of the rotational shaft. The magnetic sensor is positioned between the rotor core and the bearing in the direction of the rotational shaft and is positioned inside an inner peripheral surface of the projection portion.
US10396639B2

A method for manufacturing a coil of an electrical machine includes providing a laminated core having a first and a second slot, and inserting a first winding segment in the first slot to a first region having a first end portion and a second winding segment in the second slot to a second area having a second end portion. The method includes adhering the first end portion by inserting in a first recess a bending device and by positioning of a retaining element into a locking position in the first recess, and holding the second end portion by inserting in a second recess of the bender. The method includes bending the first and the second range in a bending direction to a first bending angle. The method also includes releasing the first end portion, and turning the second region in the bending direction to a second bending angle.
US10396630B2

A system for cooling windings of generator rotor is presented. The system includes a cooling passage including inlet and outlet radial bores radially extending into rotor shaft extension, inlet and outlet axial bores axially extending within rotor shaft extension, first and second radial bores radially extending from cavities under two retaining rings into rotor shaft extension, and an axial passage through windings from cavity under retaining ring at turbine end side to cavity under retaining ring at excitation end side. A coolant flows through the cooling passage and directly cools windings by traveling through entire windings. The system uses non-explosive fluid as coolant eliminating using hydrogen as coolant and provides sufficient direct cooling of windings of a high power density generator rotor without extensive piping.
US10396629B1

An electric motor comprising a gearbox housing containing a gearbox, a sump, a first-stage shaft rotatably mounted in the gearbox housing, and a rotatably-mounted motor shaft coupled to the first-stage shaft of the gearbox. The first-stage shaft has an internal passageway defined along the longitudinal axis of the first-stage shaft and extending between opposite first and second ends thereof. At the second end the internal passageway communicates with the sump. The rotatably-mounted motor shaft is coupled to the first end of the first-stage shaft. The motor shaft has an internal passageway defined along the longitudinal axis of the motor shaft and extending between opposite first and second ends thereof. At the second end thereof, the internal passageway of the motor shaft communicates with the internal passageway of the first-stage shaft at the first end thereof. The internal passageways of the motor shaft and first-stage gearbox shaft define a coolant path for liquid coolant, the coolant path beginning at the first end of the motor shaft and proceeding entirely through the internal passageways of the motor shaft and the first-stage shaft, and the coolant path terminating at the sump, where coolant exiting the internal passageway of the first-stage shaft at the second end thereof collects.
US10396625B2

A protector for preventing motor damage is revealed. The protector includes a link member linked to a driving part of a motor and having a mounting groove and a first insertion hole, an elastic damping member that is placed in the mounting groove and disposed with a second insertion hole, and a driver member arranged with a projecting block and used for driving a passive member. One surface of the driver member is covered on the mounting groove to form a receiving space. The projecting block is mounted in the second insertion hole whose inner edge is closely attached to an outer edge of the projecting block. The damping member is compressed in the receiving space so that an outer edge thereof is tightly attached to an inner edge of the mounting groove and the driver member. Thereby the motor operates normally no matter the passive member is locked.
US10396622B2

An electromagnetic actuator including: an outer tubular member and an inner axial member connected by an elastic member; a coil member attached to the outer tubular member generating electromagnetic force through energization thereto; a magnet member attached to the inner axial member and subjected to the electromagnetic force to exert axial driving force between the inner axial member and the outer tubular member; a first support section provided at the outer tubular member to axially clamp and securely support the coil member; a synthetic resin annular member housed within the outer tubular member including a power feed terminal to the coil member; and a second support section provided at the outer tubular member to axially clamp and securely support the annular member in such a parallel structure that clamping force by the first support section is not exerted on the second support section.
US10396619B2

An electric motor includes a conductive shaft extending along an axis of rotation and passing through a back yoke to be fixed to one of a stator and a rotor. At least one bearing includes a conductive inner ring fixed to the shaft and a conductive outer ring rotatably coupled to the inner ring. A conductive bearing housing extends so as not to be located in a first area at one side with respect to the stator along an axial direction extending along the axis of rotation but to be located in a second area at the opposite side along the axis direction. The bearing housing is fixed to the outer ring of the bearing and to the other of the stator and the rotor. An electric motor is configured to be oppositely spaced from a plate electrically grounded in the axial direction.
US10396607B2

In the present invention, single-phase bus rings have single-phase-side rounded regions that are disposed at intervals on a circle smaller than a neutral-point bus ring and are positioned so that its circumferential edges are displaced in the circumferential direction relative to neutral-point-side connecting regions of the neutral-point bus ring and are positioned in a second axial position that is farther from a stator than a first axial position on which the neutral-point bus ring is partially positioned, and a pair of single-phase-side projections that extend radially outward from the circumferential edges of adjacent single-phase-side rounded regions beyond portions of the neutral-point-side rounded regions positioned in the first axial position, and are connected to each other at distal ends.
US10396602B2

The wireless power transmission is a system for providing wireless charging and/or primary power to electronic/electrical devices via microwave energy. The microwave energy is focused to a location by a power transmitter having one or more adaptively-phased microwave array emitters. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and/or for primary power.
US10396601B2

A radio frequency power system is provided that includes bias modules, a switch, a matching network, and a control module. The bias modules are configured to generate respectively DC bias voltages. The switch is configured to (i) receive current from the bias modules, and (ii) control flow of the current from the bias modules to generate a radio frequency bias voltage signal. The matching network is configured to (i) receive the radio frequency bias voltage signal, and (ii) based on the radio frequency bias voltage signal, supply at least a portion of a radio frequency output voltage signal to an electrode of a substrate support in a processing chamber. The control module is connected to the switch and configured to control a state of the switch based on the radio frequency output voltage signal to shape a waveform of the radio frequency bias voltage signal.
US10396599B2

A wireless power transmission method of a wireless power transmission apparatus having a plurality of power transmission schemes can include a first detection step including transmitting a first detection signal for a first power transmission scheme and detecting a first response signal corresponding to the first detection signal during a first predetermined time period; a second detection step including transmitting a second detection signal for a second power transmission scheme and detecting a second response signal corresponding to the second detection signal during a second predetermined time period; a determination step determining a power transmission scheme of an wireless power reception apparatus between the first power transmission scheme and the second power transmission scheme; and a power transmission step transmitting a power to the wireless power reception apparatus through the power transmission scheme.
US10396597B2

The present disclosure relates to a driving circuit and a wireless power transmitter including the same. In view of the fact that a transmitter-side coupling circuit exhibits a high resistance when an AC current having a frequency far away from its operating frequency is applied to input terminals, the present disclosure connects a plurality of transmitter-side coupling circuits which operates at different operating frequencies in parallel at output terminals of the same inverting circuit. The controller controls an operating frequency of the AC current output from the inverting circuit to drive different one of the transmitter-side coupling circuits to operate. Thus, one driving circuit can drive the transmitter-side coupling circuits which operate at different operating frequencies or under different technical standards to supply electric energy. The driving circuit is compatible with wireless power receivers which operate at different operating frequencies, and thus has improved compatibility.
US10396589B2

In a storage-battery control system, an insulating communication unit couples a controller to a battery module constituting a storage battery unit that outputs a predetermined high voltage value. A power supply line is further provided for supplying electric power output from a controller DC/DC, i.e., a controller-side voltage converter for the controller, to the battery module, so that electric power is collectively supplied via the power supply line to a module CPU and a module-side insulating circuit both consuming electric power in the battery module. A secondary battery in the battery module supplies electric power to only a cell-voltage detector.
US10396583B2

A wireless mobile communication device having short range functionality that is designed to always be capable of short range functionality, including secure short range functionality by having a first and second energy source where charging of the second energy source may be achieved by the voltage induced by the received short range signal.
US10396566B2

Disclosed are various approaches for determining a location using guided surface waves. A guided surface wave is received. A field strength of a guided surface wave is identified. A phase of the guided surface wave is identified. A distance from a guided surface waveguide probe that launched the guided surface wave is calculated. A location is determined based at least in part on the distance from the guided surface waveguide probe.
US10396563B2

A system and process of its operation for monitoring and managing load circuits connected to a renewable energy generation system are disclosed. A programmable load manger circuit continuously monitors the available energy from the generation system and manages the load circuits connected to the system in a manner such that the energy demand from the active load circuits is below the level of available energy. The load circuits can be prioritized and programmed such that the lower priority loads are deactivated prior to the higher priority loads when the available energy from the generation system is not sufficient to satisfy demand from all the active load circuits. When the renewable energy generation system incorporates more than one generator, a load balancing control algorithm, continuously monitoring the load connected to the system and allocates the load in a balanced manner to each of the generators in the system.
US10396554B2

A method is disclosed for controlling power distribution from a plurality of inverters to one or more loads. The method comprises determining, using one or more computer processors, a plurality of possible combinations of the plurality of inverters to meet load demands corresponding to the one or more loads. Each possible combination of the plurality of possible combinations includes a respective set of one or more inverters of the plurality of inverters. The method further comprises accessing, from a memory coupled with the one or more computer processors, one or more predefined efficiency functions associated with the one or more inverters; selecting, based on the one or more predefined efficiency functions, a combination from the plurality of possible combinations; and transmitting control signals to the set of one or more inverters corresponding to the selected combination to thereby power the one or more loads.
US10396547B2

To realize a reduction in the number of parts in a system including a driver IC (semiconductor device). A high potential side power supply voltage is applied to a power supply application area. A high side area is formed with a circuit which includes a driver driving a high side transistor and is operated at a boot power supply voltage with a floating voltage as a reference. A low side area is formed with a circuit operated at a power supply voltage with a low potential side power supply voltage as a reference. A first termination area is disposed in a ring form so as to surround the power supply application area. A second termination area is disposed in a ring form so as to surround the high side area.
US10396540B2

A power cable termination assembly can include a cable end; a connector end; a longitudinal axis that extends between the cable end and the connector end; a cable securing mechanism; a dielectric material space that includes a volume where the dielectric material space is disposed axially at least in part between the cable securing mechanism and the connector end; and a movable component that moves responsive to a pressure differential where movement of the movable component alters the volume of the dielectric material space.
US10396535B2

A while-in-use cover assembly includes a hood and a base connected to the hood. The base includes a first side wall and a first back wall forming a first cavity with a first opening opposite the first back wall. The hood covers the first opening, the first side wall includes a first side wall edge and a second side wall edge opposite the first side wall edge. The first side wall edge is proximate to the first opening, and the second side wall edge is proximate to the first back wall. The first back wall includes a second opening to a second cavity. A second side wall defines the second cavity and extends from the first back wall from the first opening. The first cavity and the second cavity provide access through the first opening and the second opening to an electrical device coupled to the second side wall.
US10396534B2

A modular cable protector can be removably connected in series with like cable protectors by complementary male and female end connectors. A number of openings extend downward along the peripheral walls of the adjacent end connectors to define a pattern of gaps and regions of contact between adjacent end connectors. Preferably, undercuts extend from the lower portions of the openings. A tool can be used to removably engage these openings and undercuts, thereby allowing a user to exert an upward force to disengage the end connectors on adjacent cable protectors.
US10396530B2

An air negative ion generating apparatus realized by bumping against a collision surface by a high-pressure gas flow carrying water molecules includes a liquid container and a cover body snapped onto a top opening end of the liquid container, and the cover body is provided with a high-pressure gas inlet pipe; a core assembly is provided inside the cover body, and the core assembly (4) includes a liquid flow chamber, a collision component and a liquid flow inlet; and a lower port of the high-pressure gas inlet pipe faces the collision component, the liquid flow inlet is located between the lower port of the high-pressure gas inlet pipe and the collision component, the liquid flow inlet is communicated with the liquid chamber, and a lower port of the liquid flow chamber is fixedly connected with a liquid conduit extending downwards.
US10396526B2

A display apparatus is provided. The display apparatus is a retinal scanning type display apparatus, and includes a low output laser whose operational current is less than that of a standard output laser; a shunting element that is connected in parallel with the low output laser; and a drive circuit that supplies a current to the low output laser and the shunting element. The drive circuit is a drive circuit for the standard output laser capable of adjusting a current value on a discrete basis in a range of an operational current that is higher than the operational current of the low output laser.
US10396521B2

A laser includes a traveling wave laser cavity with an active section, a pulse stretcher, and a pulse compressor. The pulse stretcher is coupled to the waveguide before the active section and the pulse compressor is coupled to the waveguide after the active section.
US10396520B2

A method for calibrating a mounting-device used for automatically mounting a contact-part attached to an electrical line with a connector-housing includes the steps of providing the mounting-device, marking a plurality of marking-points, capturing an image of the plurality of marking-points, and determining the positions of the plurality of marking-points. The mounting-device comprises a holder for the connector-housing, a positioning-device that includes a moveable-gripper that includes a marking-device, a camera configured to capture an image of a portion of the holder, and a control unit in communication with the positioning-device, the camera, and the moveable-gripper. The control unit determines the positions of the marking-points based on the image. The positions are indicative of an actual insertion-position of the contact-part into the connector-housing by the moveable-gripper. The control unit stores the positions of the marking-points in a memory of the control unit.
US10396509B2

To allow a fit-in state between electrical connectors to be firmly maintained, elastic arm-shaped members provided to a conductive shell member so as to elastically displace to a direction orthogonal to a fit-in direction of a mating connector are each provided with an engaging piece having a connector contact surface which the mating connector faces from the depth in the fit-in direction and a shell contact surface which a part of the conductive shell member faces from the front in the fit-in direction. When an external force is applied to the mating connector in a fit-in state to a removing direction opposite to the fit-in direction, the engaging piece is brought into a state of being interposed between the mating connector and the conductive shell member. This avoids a situation in which the engaging piece is removed from the mating connector to cause a lock release.
US10396498B2

A power adapter, comprising an adapter body, a power cord and a snap-fitting cover, the adapter body is provided with a socket, the power cord is provided with a plug plugged in and connected with the socket, and the snap-fitting cover includes the snap-fitting portion and the fixing portion, the fixing portion is movably connected to the end of the adapter body, the snap-fitting portion is provided with a groove which is shapely matched with the plug, and a groove is snap-fitted to the outer side of the plug. The snap-fitting cover is connected with the plug and the adapter body at the same time to retain the plug and the adapter body, and the plug is not easily disengaged from the socket of the adapter body under the external forces, thereby making the use of the power adapter more stable and reliable.
US10396497B1

A lever assembly for mounting to a removable plug-in module for selectively engaging a lip of a rack for effecting an injection of the plug-in module into the rack, and related kit(s) and method(s). The lever assembly includes a lever handle, an elastic bias element mounted to the lever handle, a pivot arm pivotally mounted to the lever handle, a pawl pivotally mounted to the lever handle, and a pivot axle. The pivot arm and the pawl abut one another so that a rotational force applied to a forward free end of the pivot arm, urging the pivot arm to rotate away from a lower interior surface of the lever handle, is transmitted to the pawl so that a rearward tip of the pawl is urged to rotate upward.
US10396493B2

A connector plug comprises two or more pivotable nut members that are configured to engage one or more threads on a receptacle to secure the connector plug to the receptacle in a closed position. A lanyard or merely a pivoting mechanism is configured to cause pivoting of the nut member to disengage the one or more threads in an open position to allow disengagement of the connector plug from the receptacle.
US10396489B2

A grommet includes a body cylinder, an attachment cylinder, and a resilient retention portion. The body cylinder is configured such that a line shaped member is insertable therethrough. The attachment cylinder is provided at one end portion in an axis direction of the body cylinder and is configured to be attached to an opening formed at an attachment target. The resilient retention portion is provided between the body cylinder and the attachment cylinder, and is configured to resiliently deform to abut and retain the line shaped member.
US10396485B1

An electrical connector assembly includes a connector body having a plurality of terminal receiving cavities formed therein and a plurality of flexible retaining arms integrally formed with a cavity wall and projecting from the cavity wall into the terminal receiving cavity toward a centerline of the terminal receiving cavity. The retaining arm defining a lock surface extending from a first free end of the retaining arm in a direction toward the centerline of the terminal receiving cavity. The assembly also includes a plurality of terminals having an end configured to connect with a corresponding mating terminal and a second end configured to be secured to a wire. The end defines a lock edge. The terminal is received in the terminal receiving cavity such that the first lock surface and the second lock surface engages the lock edge, thereby inhibiting the terminal from being withdrawn from the terminal receiving cavity.
US10396484B2

An electrical connector includes: an insulative housing defining a receiving space; plural signal contacts secured to the insulative housing and exposed to the receiving space; a pair of holding members secured to two opposite ends of the insulative housing and exposed to the receiving space, each holding member having a base and a pair of arms bent from the base; and plural power contacts secured to the insulative housing, exposed to the receiving space, and disposed adjacent to the pair of holding members, wherein the pair of holding members act as power contacts, and the pair of arms of each holding member are integrally connected to adjacent power contacts.
US10396482B2

An electrical terminal assembly includes a contact member. The contact member includes a contact base. A plurality of contact arms extend from the contact base in an arm direction. The contact arms are arranged on opposed sides of a terminal plane. The electrical terminal assembly also includes a spring member. The spring member is supported on the contact member. The spring member includes a spring base. A plurality of spring arms extend from the spring base in the arm direction. The spring arms include respective spring contacts where the spring arms engage one of the contact arms. The spring arms include respective spring deflections between the spring base and the spring contact. Each spring deflection extends into a spring space between adjacent ones of the contact arms.
US10396478B2

An electrical connector has an insulative body, a group of first conductive terminals and a group of second conductive terminals fixed to the insulative body, a grounding metal plate and an outer shielding shell. A front part of the shell forms a first mating cavity and a rear part of the shell forms a second mating cavity. An insertion space is formed between elastic extending arms of the first terminal group and elastic extending arms of the second terminal group. An electrical connector combination, which includes the electrical connector and a circuit board, is further provided. An inserted portion of the circuit board can be correspondingly inserted into the insertion space and can be elastically interposed by the elastic extending arms of the first terminal group and the elastic extending arms of the second terminal group so as to be correspondingly electrically connected.
US10396476B2

A connection device for conductors has one or more single conductor terminals which are formed as direct plug connections. Each conductor terminal has a metal contact element such as a metal clamping cage, a spring support made of a non-conductive material such as plastic, and a clamping spring. Each of the spring supports is placed on at least one corresponding receiving element made of a non-conductive material.
US10396471B2

An antenna system is set in a substrate. The substrate includes a first floor, a second floor, a third floor, a fourth floor, and a ground plane. The antenna system further includes at least one radiation part, including a first radiation part, a second radiation part, and a third radiation part. The antenna system further includes at least one signal feed part set in the fourth floor, configured to feed electromagnetic wave signal. The feed part comprises a first feed part, a second feed part, and a third feed part. The antenna system 10 employs simple hierarchical structure, is low cost, and occupies a little space. The antenna system also has advantages of high gain, low loss, and high stability in 2.412 GHz˜2.472 GHz frequency band.
US10396465B2

An antenna system includes technological improvements for achieving improved surface accuracy of an antenna reflector during manufacturing and assembly, as well as maintaining the surface accuracy in response to wear and tear on the reflector. The antenna system includes a reflector, a plurality of mounting tabs, and a backing structure. The reflector has a front reflecting curved surface, an outer rim, and a back surface. The plurality of mounting tabs are positioned and secured around the outer rim of the reflector. Each of the plurality of mounting tabs is independently flexible with respect to the outer rim. The backing structure has a central mount, a plurality of attachment arms, and a feed arm attachment. The plurality of attachment arms are secured to the outer rim of the reflector via the plurality of mounting tabs.
US10396456B2

In a computerized method to reduce noise in phased-array signals from a set of receivers at different locations, time-series are received from the receivers, which time-series form phased-array signals. The time-series are ordered based on the different locations of the receivers and spatially phased series are obtained from the ordered time-series. Each of the spatially phased series obtained includes a series of signal values that are spatially phased. A noise component is identified in each of the spatially phased series obtained and removed from the spatially phased series to obtain denoised series. Related receiver systems and computer program products are also provided.
US10396455B2

An antenna assembly may include a right hand circularly polarized (RHCP) antenna, a left hand circularly polarized (LHCP) antenna, an RF nuller operably coupling the RHCP antenna and LHCP antenna to a difference element, and a digital nuller operably coupled to the difference element.
US10396454B2

Embodiments are directed towards an antenna mount that is configured with a self-plumbing mast for simplified peaking. The mounting system includes an elevation alignment joint that includes a first member and a second member, which are configured to rotate about a central axis and can be locked into a fixed rotation. A plumb is connected to the first member and an antenna mounting support is connected to the second member such that the antenna position is maintained at an elevation identified on the first member when in the fixed rotation. The mounting system also includes a base assembly that is configured to hold the elevation alignment joint such that the plumb weight self-orients in a vertical, plumb position with the antenna at the desired elevation. The base assembly also includes a compass for aligning the azimuth of the antenna.
US10396452B2

A dielectric substrate for transmitting a signal with a frequency f0 includes a dielectric and a copper film pattern arranged on a first surface of the dielectric. The copper film pattern has a first dimension L in a direction parallel to a propagation direction of an electromagnetic wave that has the frequency f0 and that propagates on the first surface, and the first dimension L is given by: L = 1 ɛ r - 1 ⁢ k ⁢ ⁢ λ 0 where εr represents a relative permittivity of the dielectric, k represents a constant in a range of 0.15 to 0.70, and λ0 represents a free space wavelength of the signal.
US10396448B2

An apparatus includes an end cap capable of supporting numerous antenna configurations and securing connectors without the use of additional hardware. An end cap assembly for connecting a cable to the end cap comprises the end cap including one or more flanges, wherein each of the one or more flanges includes a plurality of edges defining a cavity, the plurality of edges being configured to mate with a portion of a connector, and a flange nut including a first plurality of serrations configured to mate with a second plurality of serrations on an outside of the end cap, wherein the flange nut and the flange are formed so as to allow for attachment of the cable to the end cap.
US10396446B2

Various examples are provided for a helix antenna with dual functionality, in one embodiment, among others, a helix antenna includes a flexible substrate and a copper trace disposed on a side of the flexible substrate at a tilting angle (Θ). Turns of the helix antenna are formed from the copper trace by wrapping the flexible substrate. In another embodiment, a system includes a helix antenna, a radio frequency (RF) communication circuit coupled to a first end of the helix antenna, and a low frequency (LF) power transmission circuit coupled to the first end of the helix antenna. The RF communication circuit can process RF signals received by the helix antenna and the LF power transmission circuit can regulate LF voltage induced in the helix antenna.
US10396443B2

Disclosed is a cross loop antenna system for an aerial vehicle. In one embodiment, the cross loop antenna system includes a cross bar antenna and a ground plane. The cross bar antenna includes two thin coplanar perpendicular bars that intersect in the middle and are parallel to the ground plane. Each bar couples to the ground plane at each end, comprising an antenna loop. Thus, the cross loop antenna system comprises two intersecting single-fed loops. The antenna can operate at a wavelength that is approximately twice the length of the bars. In such an embodiment, the antenna system may be resonant. The distance between the bars and the ground plane may be relatively small, thus minimalizing the vertical profile of the antenna. The antenna may be operated as a dual-band antenna and may produce an omnidirectional radiation pattern. An aerial vehicle may include two such antennas.
US10396442B2

An ear-worn electronic device comprises an enclosure and electronics positioned in the enclosure. A power source is disposed in the enclosure and coupled to the electronics. An antenna is disposed in or supported by the enclosure and coupled to the electronics. The antenna comprises a dipole antenna combined with a loop antenna. An input impedance of the antenna remains substantially constant over a predetermined dielectric constant bandwidth and a predetermined frequency bandwidth.
US10396440B2

The invention consists of a novel energy harvesting antenna designed to receive radiation at frequencies of interest at high levels of efficiency and efficacy, and high power density. The antenna comprises what may be thought of as a flattened figure-eight (topologically a flattened-torus) comprising two or more overlapping conductive coils covered with and separated by thin, high-dielectric polymer materials. The two outputs of the device are connected to two points of the antenna that are at largely opposite points of phase, such that at any given time the voltage at these points (with respect to a ground at the center of the antenna) is of opposite polarity and of a maximal magnitude. The two coils formed by the figure-eight of the antenna will have opposite voltages impressed upon them, as well as additively summing the amperages at the output, due to the geometry of the device. Furthermore, the coils formed are also able to function inductively. Additionally, when the aforementioned overlapping conductive coils are separated by thin, ferroelectric or ferromagnetic polymer materials, Q is increased and the antenna gains further capability to harvest electrostatic and electromagnetic field energy.
US10396430B2

The present disclosure is applicable to the technical field of near field communication, and in particular, provides an NFC antenna-integrated touch screen, a terminal and a near field communication method thereof. The touch screen comprises a substrate, the substrate having a touch sensing region, a touch sensing electrode pattern being arranged in the touch sensing region; wherein a single-turn conductive wire is arranged on an outer side of the touch sensing region, the conductive wire being connected to an external near field communication manager as a screen antenna for near field communication.
US10396429B2

A compact wireless communication includes a first radiating element and a second radiating element, which define and function as a dipole antenna, a feeder circuit including a wireless IC chip coupled with the first and second radiating elements, and a feeder substrate that is provided with the wireless IC chip. The first radiating element is provided to the feeder substrate. The second radiating element is provided to a substrate other than the feeder substrate.
US10396427B2

A thin film, flexible, co-planar waveguide (CPW), dual-polarized antenna structure suitable to be mounted on vehicle glass and that has particular application for MIMO LTE applications in the frequency band of, for example, 0.46-3.8 GHz. The antenna structure includes two U-shaped antenna radiating elements that receive signals that are linearly polarized in two orthogonal horizontal (H) and vertical (V) directions, where the radiating elements are separated by a ground plane line.
US10396423B2

A device and a method for transmitting a high-frequency signal. The device is designed to include a carrier, through which a passage is formed; a transmitting element on a first surface of the carrier, to which the high-frequency signal may be applied; and a receiving element on a second surface of the carrier, which is galvanically isolated from the transmitting element, the high-frequency signal being transmittable as an electromagnetic wave through the passage to the receiving element with the aid of the transmitting element.
US10396422B1

In some embodiments, an apertured waveguide includes a wall comprising a plurality of apertures and an interior channel along which electromagnetic waves can propagate, the interior channel being defined at least in part by the wall.
US10396420B2

A ceramic resonator radio frequency filter includes a printed circuit board, one or more first coaxial resonators disposed on the printed circuit board, and one or more second coaxial resonators disposed over the one or more first coaxial resonators so that the one or more first coaxial resonators and one or more second coaxial resonators are arranged in a stacked configuration. The one or more first coaxial resonators and second coaxial resonators electrically connected to the printed circuit board.
US10396409B2

A heat sink and power battery system are provided. The heat sink includes a heat dissipation plate and a cover plate. The heat dissipation plate includes a bottom plate and a plurality of fins arranged on the bottom plate in a comb-like pattern. The cover plate is fixedly connected to the heat dissipation plate. The fins of the heat dissipation plate are disposed between the bottom plate and the cover plate, and an air duct is formed among the bottom plate, the fins, and the cover plate.
US10396406B2

A battery module includes: a first battery cell; a second battery cell, each of the first and second battery cells having first sides and second sides, the first sides being larger than the second sides; a holder between the first battery cell and the second battery cell; and a temperature measuring unit coupled to the holder, the temperature measuring unit contacting one of the first sides of at least one of the first and second battery cells, and being configured to measure a temperature of the at least one of the first and second battery cells.
US10396402B2

A battery includes first and second power generating elements laminated to each other. In the first power generating element, the inner layer of a first electrode current collector is in contact with a first electrode active material layer. In the second power generating element, the inner layer of a second electrode current collector is in contact with a second electrode active material layer. The outer layers of the first electrode current collector and the second electrode current collector are in contact with each other. The inner layer of the first electrode current collector contains a first material; the inner layer of the second electrode current collector contains a third material different from the first material; the outer layer of the second electrode current collector contains a second material different from the first material; and the outer layer of the first electrode current collector contains the second material.
US10396401B2

A stacking apparatus having a cylindrical conveyance drum holding and rotating to covey a separator and an electrode conveyance unit conveying a positive electrode in a tangential direction of the conveyance drum so that the positive electrode overlaps the separator. To the outer circumferential surface of the conveyance drum, there are defined a suction area for drawing the separator that is non-rotatably positioned on an upstream side of a rotation direction of the conveyance drum with respect to a location to which the positive electrode in conveyed and a non-suction area for removing the separator that is non-rotatably positioned on a downstream side of the rotation direction of the same. The separator in the suction area is conveyed to the non-suction area, is removed from the outer circumferential surface, and is transferred onto the positive electrode, thereby gradually stacking the separator on the positive electrode.
US10396389B2

A fuel gas supply path in a fuel cell stack includes in series a first path, a second path, and a third path. In the second path, two inlets of the fuel gas in each of power generating cells included in the second path are located at a first position PA and a second position PB, and the position of one outlet of the fuel gas in each power generating cell is located at a third position PC. In the third path, an inlet of the fuel gas in each of power generating cells included in the third path is located at a position coinciding with the third position PC when the power generating cells are viewed in the stacking direction, and an outlet of the fuel gas in each power generating cell is located at a position between the first position PA and the second position PB.
US10396382B2

An illustrative example cell stack assembly includes a plurality of fuel cells that each include a cathode electrode, an anode electrode and a matrix for holding a liquid acid electrolyte. The electrodes have lateral outside edges that are generally coplanar. A plurality of separator plates are respectively between the cathode electrode of one of the fuel cells and the anode electrode of an adjacent one of the fuel cells. The separator plates have lateral outside edges that are generally coplanar with the lateral outside edges of the electrodes. A plurality of barriers along at least one of the lateral outside edges of respective ones of the separator plates extend outwardly beyond the lateral outside edges of the electrodes and separator plates. The barriers inhibit acid migration between one of the electrodes on one side of the barrier and one of the electrodes on an opposite side of the barrier.
US10396372B2

An electrolytic solution circulation type battery includes a tank which stores an electrolyte to be circulated to a battery cell, and a pressure adjustment mechanism configured to adjust the pressure of a gas phase portion in the tank. The pressure adjustment mechanism includes a pressure adjustment bag which is provided outside the tank and expands or contracts in response to changes in pressure of the gas phase portion in the tank.
US10396366B2

The present disclosure is direct to a bipolar plate of an electrochemical cell. The bipolar plate may have a frame and a base. The bipolar plate may also have a polymeric coating applied to at least one of the frame and the base. The present disclosure is also directed to a method of assembling a bipolar plate for an electrochemical cell. The method may include compressing a frame and a base of the bipolar plate, at least one of the frame and the base has a polymeric coating. The polymeric coating may be an electrical insulator for the electrochemical cell, a seal for sealing one or more zones of the electrochemical cell, and a corrosion protection later of the electrochemical cell.
US10396365B2

The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
US10396363B2

An object of the present invention is to provide a copper foil inexpensive and sufficient in tensile strength even after heat treatment. The copper foil includes zinc in a content range of 0.02% by mass to 2.7% by mass in the total mass of the entire copper foil, and if the regions in thicknesses direction from both surfaces of the copper foil where occupies 5% by mass in the total mass of the entire copper foil are referred to as the respective external layers and a region between one external layer and the other external layer is referred to as an internal layer, the internal layer includes copper as a main element and includes 100 ppm or more of one or mixture of small amount-elements selected from carbon, sulfur, chlorine and nitrogen, and includes zinc at 10% or more in the total mass of zinc included in the entire copper foil.
US10396362B2

Provided is an electrode active material slurry including a clustered complex and a slurry, wherein the clustered complex includes an electrode active material, a solid electrolyte, a conductive material, and a first binder, and the slurry includes a solvent and a second binder.The electrode active material slurry may include the clustered complex including the first binder and the slurry including the second binder so as to decrease a surface area of the overall complex, such that adhesion property with the current collector may be sufficiently secured even by using a small amount of binder, and performance of the all-solid secondary battery may be further improved.
US10396357B2

A process for producing a layered lithium-manganese-nickel-cobalt oxide material, includes producing a raw layered lithium-manganese-nickel-cobalt oxide (‘LMNC’) material. Optionally, a dopant capable of enhancing the performance of the layered LMNC material when used as a cathode material in an electrochemical cell, is introduced during the production of the raw LMNC material. Before any annealing of the raw LMNC material is effected, it is subjected to microwave treatment. The resultant treated material is annealed to obtain the layered LMNC material.
US10396355B2

Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
US10396350B2

A method for manufacturing an electrode for a lithium ion battery is provided. A powder layer is formed by using a squeegee roll to squeegee powder including an electrode active material and supplied onto a substrate, and then compacted on the substrate by means of a pair of press rolls while conveying the substrate vertically downward to form an electrode sheet. The method includes: supplying the powder onto the substrate; leveling the powder supplied onto the substrate to form the powder layer using the squeegee roll which is disposed in a position so that a squeegee angle formed by a vertical line passing through the rotating axis of one of the press rolls and a line passing through said rotating axis and the rotating axis of the squeegee roll is 0° to 60°; and compacting the powder layer on the substrate using the pair of press rolls.
US10396341B2

A high energy density rechargeable (HEDR) battery employs a combined current limiter/current interrupter to prevent thermal runaway in the event of internal discharge or other disruption of the separator. The combined current limiter/current interrupter is interior to the battery.
US10396334B2

Disclosed are a battery module and a battery pack including the same, in which laser welding can be used for coupling three or more electrode leads to a single bus bar, thereby enhancing adhesion and improving the ease of a manufacturing process. The battery module includes: a plurality of secondary batteries, each including an electrode assembly, a case and an electrode lead; and a terminal bus bar having a plate-like coupling unit, wherein electrode leads of the same polarity provided in the three or more secondary batteries are coupled to the coupling unit, two or more electrode leads stacked to each other are in contact with one end of the coupling unit, and the other one or more electrode leads are in contact with the other end of the coupling unit.
US10396308B2

An organic electroluminescence (EL) display panel includes a multi-layered wiring laminate disposed on a substrate and including insulating layers and wiring disposed on at least one of the insulating layers and extending to a vicinity of an outer periphery of the wiring laminate; an organic EL element array disposed on the wiring laminate; a first inorganic insulating layer disposed on the array and extending outside the outer periphery of the wiring laminate in plan view; a resin sealing layer disposed on the first inorganic insulating layer, covering the array in plan view, and having an outer periphery above a resin insulating layer that is a highest layer among the insulating layers; a second inorganic insulating layer disposed on the resin sealing layer, extending outside the outer periphery of the resin sealing layer in plan view, and being in contact with the first inorganic insulating layer in a thickness direction.
US10396295B2

A condensed cyclic compound represented by Formula 1: Ar1-(L1)a1-Ar2  Formula 1 wherein, in Formula 1, a1, Ar1, Ar2, and L1 are the same as described in the specification.
US10396294B2

A carbazole compound represented by Formulae 1A or 1B: wherein in Formulae 1A and 1B, A, R1 to R4, and c1 to c3 are described in the specification.
US10396280B2

A semiconductor memory device includes a plurality of first interconnections extending in a first direction, and a second interconnection extending in a second direction different from the first direction. The device further includes a resistance change film provided between the plurality of first interconnections and the second interconnection, the resistance change film including (a) silicon and a semiconductor layer including one or more elements selected from among oxygen, carbon, nitrogen, phosphorus, boron, and germanium, or (b) a first layer containing the germanium and a second layer containing the silicon.
US10396267B2

A thermoelectric conversion element includes: a magnetic body having a magnetization; and an electromotive body formed of material exhibiting a spin orbit coupling and jointed to the magnetic body. The magnetic body has an upper joint surface jointed to the electromotive body. The upper joint surface has concavities and convexities.
US10396266B2

A thermocouple ribbon features a pair of flat conductors and first and second layers of a polyimide film covering the conductors. The polyimide film preferably is coated with a fluoropolymer, such as fluorinated ethylene propylene (FEP). During manufacture of the thermocouple ribbon, the first and second layers of polyimide film, with the pair of flat conductors positioned there between, are heated above the melting temperature of the FEP. The completed thermocouple ribbon is then cooled. A thermocouple connector may then be attached to a first end of the thermocouple ribbon, while a welded thermocouple junction may be formed at a second end of the thermocouple ribbon.
US10396264B2

An electronic module includes a first base layer and at least one via. The first base layer has a first surface and a second surface opposite the first surface, and defines at least one first hole. The first base layer includes a first metal. The via is disposed in the first hole of the first base layer. The via includes a thermoelectric material. A value of Z×T for the thermoelectric material is greater than a value of Z×T for the first metal, wherein Z is a thermoelectric figure of merit, T is temperature (in K), and the value of Z×T for the thermoelectric material is greater than 0.5.
US10396261B2

A method of manufacturing a light emitting device includes: providing a substantially flat plate-shaped base member which in plan view includes at least one first portion having an upper surface, and a second portion surrounding the at least one first portion and having inner lateral surfaces; mounting at least one light emitting element on the at least one first portion; shifting a relative positional relationship between the at least one first portion and the second portion in an upper-lower direction to form at least one recess defined by an upper surface of the at least one first portion that serves as a bottom surface of the at least one recess and at least portions of the inner lateral surfaces of the second portion that serve as lateral surfaces of the at least one recess; and bonding the at least one first portion and the second portion with each other.
US10396259B2

A radiation-emitting semiconductor component and a method for producing a plurality of semiconductor components are disclosed. In an embodiment the component includes a semiconductor chip comprising a semiconductor layer sequence, a front side and a rear side opposite the front side, and a molded body molded on to the semiconductor chip at least in some places. The component further includes a thermal connector located on a rear side of the semiconductor component, wherein the rear side of the semiconductor component is opposite the front side of the semiconductor chip, wherein the thermal connector extends to the rear side of the semiconductor chip, wherein at least one electrical connection surface is located on the front side of the semiconductor chip, and wherein the at least one electrical connection surface is electrically-conductively connected to an electrical contact surface of the semiconductor component via a contact path running on the molded body.
US10396250B2

An exemplary light emitting diode is provided to comprise: a first semiconductor layer; a mesa disposed on the first semiconductor layer and including an active layer and a second semiconductor layer disposed on the active layer; a ZnO transparent electrode disposed on the mesa; a first electrode disposed on the first semiconductor layer; and a second electrode disposed on the ZnO transparent electrode, and including a second electrode pad and at least one second electrode extending portion extending from the second electrode pad. The second electrode extending portion contacts the ZnO transparent electrode. The ZnO transparent electrode includes a first region and a second region. The first region protrudes from the top surface of the ZnO transparent electrode, includes a plurality of projecting portions arranged in a predetermined pattern, the thickness of the first region greater than the thickness of the second region.
US10396247B2

A light-emitting device package of the embodiments includes a package body; at least one light emitting device above the package body; an adhesive layer between the at least one light emitting device and the package body; and an adhesive-layer-accommodating portion disposed in the package body for accommodating the adhesive layer therein, wherein the adhesive-layer-accommodating portion has a side surface disposed to be inclined at a predetermined angle relative to an imaginary vertical plane that extends in a thickness direction of the package body.
US10396245B2

The present invention discloses a light emitting element and a fabrication method thereof. The light emitting element includes: an anode electrode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode electrode, all of the light emitting units are divided into a plurality of light emitting sets, each light emitting set includes at least two light emitting units and the light emitting units in a same light emitting set share a same electron transport layer and a same cathode electrode. In the technical solutions of the present invention, all of the light emitting units in a same light emitting set share a same electron transport layer and a same cathode electrode, thus effectively reducing the number of the cathode electrodes.
US10396240B2

A III-nitride semiconductor light emitting device incorporating n-type III-nitride cladding layers, indium containing III-nitride light emitting region, and p-type III-nitride cladding layers. The light emitting region is sandwiched between n- and p-type III-nitride cladding layers and includes multiple sets of multi-quantum-wells (MQWs). The first MQW set formed on the n-type cladding layer comprises relatively lower indium concentration. The second MQW set comprising relatively moderate indium concentration. The third MQW set adjacent to the p-type cladding layer incorporating relatively highest indium concentration of the three MQW sets and is capable of emitting amber-to-red light. The first two MQW sets are utilized as pre-strain layers. Between the MQW sets, intermediate strain compensation layers (ISCLs) are added. The combination of the first two MQW sets and ISCLs prevent phase separation and enhance indium uptake in the third MQW set. The third MQW set, as a result, retains sufficiently high indium concentration to emit amber-to-red light of high output power without any phase separation associated problems.
US10396237B2

A light-emitting diode substrate and a manufacturing method thereof, and a display device are provided. The manufacturing method of a light-emitting diode (LED) substrate, including: disposing a supporting substrate supporting a plurality of LED units to be opposed to a receiving substrate so that a side of the supporting substrate facing the receiving substrate supports the plurality of LED units; and irradiating a side of the supporting substrate away from the receiving substrate with laser, stripping the LED units from the supporting substrate, and transferring the LED units onto the receiving substrate. The manufacturing method of the LED substrate can better transfer LED units from the supporting substrate onto the receiving substrate.
US10396236B2

Disclosed is a semiconductor device comprising a thin film transistor and wirings connected to the thin film transistor, in which the thin film transistor has a channel formation region in an oxide semiconductor layer, and a copper metal is used for at least one of a gate electrode, a source electrode, a drain electrode, a gate wiring, a source wiring, and a drain wiring. The extremely low off current of the transistor with the oxide semiconductor layer contributes to reduction in power consumption of the semiconductor device. Additionally, the use of the copper metal allows the combination of the semiconductor device with a display element to provide a display device with high display quality and negligible defects, which results from the low electrical resistance of the wirings and electrodes formed with the copper metal.
US10396235B2

Indentation approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of alternating N-type and P-type semiconductor regions in or above a substrate. The method also includes locating a metal foil above the alternating N-type and P-type semiconductor regions. The method also includes forming a plurality of indentations through only a portion of the metal foil, the plurality of indentations formed at regions corresponding to locations between the alternating N-type and P-type semiconductor regions. The method also includes, subsequent to forming the plurality of indentations, isolating regions of the remaining metal foil corresponding to the alternating N-type and P-type semiconductor regions.
US10396212B2

A thin film transistor array panel according to an exemplary embodiment includes: a substrate; a metal pattern positioned on the substrate; a buffer layer positioned on the metal pattern; and a semiconductor layer positioned on the buffer layer and including a source region, a channel region, and a drain region, wherein the metal pattern overlaps at least one of the source region and the drain region, and the metal pattern does not overlap the channel region.
US10396199B2

A semiconductor device includes a body and a transistor fabricated into the body. Isolation material at least partially encases the body. Biasing is coupled to the isolation material, wherein the biasing is for changing the electric potential of the isolation material in response to an electrostatic discharge event.
US10396197B2

A semiconductor device includes a planar semiconductor layer formed on a substrate; a pillar-shaped semiconductor layer formed on the planar semiconductor layer; a gate insulating film surrounding the pillar-shaped semiconductor layer; a first metal surrounding the gate insulating film, the first metal being in contact with an upper portion of the planar semiconductor layer; a gate formed above the first metal so as to surround the gate insulating film, the gate being electrically insulated from the first metal; and a second metal formed above the gate so as to surround the gate insulating film, the second metal being electrically insulated from the gate, the second metal having an upper portion electrically connected to an upper portion of the pillar-shaped semiconductor layer.
US10396196B1

A semiconductor device includes a substrate, a semiconductor layer, a doped region, a device region, a first isolation structure, a second isolation structure and a terminal. The semiconductor layer is disposed over the substrate. The doped region is disposed in the semiconductor layer. The device region is disposed on the doped region and includes a source, a drain and a gate. The first isolation structure is disposed in the semiconductor layer and surrounds the doped region. The second isolation structure surrounds the first isolation structure and is spaced apart from the first isolation structure. The terminal is disposed between the first isolation structure and the second isolation structure, and is equipotential with the source.
US10396185B2

A method of forming a finFET transistor device includes forming a crystalline, compressive strained silicon germanium (cSiGe) layer over a substrate; masking a first region of the cSiGe layer so as to expose a second region of the cSiGe layer; subjecting the exposed second region of the cSiGe layer to an implant process so as to amorphize a bottom portion thereof and transform the cSiGe layer in the second region to a relaxed SiGe (rSiGe) layer; performing an annealing process so as to recrystallize the rSiGe layer; epitaxially growing a tensile strained silicon layer on the rSiGe layer; and patterning fin structures in the tensile strained silicon layer and in the first region of the cSiGe layer.
US10396183B2

In a fin-Field Effect Transistor (finFET), a recess is created at a location of a fin, the fin being coupled to a gate of the finFET, the recess extending into a substrate interfacing with the gate. The recess is filled at least partially with a first conductive material. The first conductive material is insulated from the gate. The fin is replaced with a replacement structure. The replacement structure is electrically connected to the first conductive material using a second conductive material. the second conductive material is insulated from a first surface of the finFET. A first electrical contact structure is fabricated on the first surface. A second electrical contact structure is fabricated on a second surface of the finFET, the second surface being on a different spatial plane than the first surface.
US10396180B2

A method and apparatus, the method comprising: forming at least two electrodes (23) on a release layer wherein the at least two electrodes are configured to enable a layer of two dimensional material (25) to be provided between the at least two electrodes; providing moldable polymer (27) overlaying the at least two electrodes; wherein the at least two electrodes and the moldable polymer form at least part of a planar surface (29).
US10396167B2

A resistive field plate including a spiral resistive element and meander resistive element is provided in an edge termination structure portion. The spiral resistive element is formed in a spiral planar layout, surrounding the periphery of a high-potential-side region to span from the high-potential-side region to a low-potential-side region. A spiral wire of the spiral resistive element includes a conductive film layer and a thin-film resistive layer connected to each other. The meander resistive element has ends positioned in the high-potential-side region and the low-potential-side region, and is provided in a meandering planar layout. The meander resistive element is provided at a same level as that of the thin-film resistive layer, and faces in the depth direction the conductive film layer of the spiral resistive element, sandwiching an interlayer insulating film therebetween. The conductive film layer of the spiral resistive element and the meander resistive element constitute a field plate.
US10396161B2

A semiconductor device having a silicon carbide (SiC) substrate, a SiC layer formed on a front surface of the SiC substrate, a first region selectively formed in the SiC layer at a surface thereof, a source region and a contact region formed in the first region, a gate insulating film disposed on the SiC layer and on a portion of the first region between the SiC layer and the source region, a gate electrode disposed on the gate insulating film above the portion of the first region, an interlayer insulating film covering the gate electrode, a source electrode electrically connected to the source region and the contact region, a drain electrode formed on a back surface of the SiC substrate, a first barrier film formed on, and covering, the interlayer insulating film, and a metal electrode formed on the source electrode and the first barrier film.
US10396158B2

Semiconductor devices are formed using a pair of thin epitaxial layers (nanotubes) of opposite conductivity type formed on sidewalls of dielectric-filled trenches. In one embodiment, a termination structure is formed in the termination area and includes a first termination cell formed in the termination area at an interface to the active area, the termination cell being formed in a mesa of the first semiconductor layer and having a first width; and an end termination cell being formed next to the first termination cell in the termination area, the end termination cell being formed in an end mesa of the first semiconductor layer and having a second width greater than the first width.
US10396150B2

Various improvements in vertical transistors, such as IGBTs, are disclosed. The improvements include forming periodic highly-doped p-type emitter dots in the top surface region of a growth substrate, followed by growing the various transistor layers, followed by grounding down the bottom surface of the substrate, followed by a wet etch of the bottom surface to expose the heavily doped p+ layer. A metal contact is then formed over the p+ layer. In another improvement, edge termination structures utilize p-dopants implanted in trenches to create deep p-regions for shaping the electric field, and shallow p-regions between the trenches for rapidly removing holes after turn-off. In another improvement, a dual buffer layer using an n-layer and distributed n+ regions improves breakdown voltage and saturation voltage. In another improvement, p-zones of different concentrations in a termination structure are formed by varying pitches of trenches. In another improvement, beveled saw streets increase breakdown voltage.
US10396144B2

Provided is an inductor structure. In embodiments of the invention, the inductor structure includes a first laminated stack. The first laminated stack includes layers of an insulating material alternating with layers of a first magnetic material. The inductor structure includes a laminated second stack formed on the first laminated stack. The second laminated stack includes layers of the insulating material alternating with layers of a second magnetic material. The second magnetic material has a greater permeability than does the first magnetic material.
US10396142B2

This disclosure discloses an array substrate comprising: a substrate; a driver chip, located on the substrate; a plurality of data lines, arranged in turn on the substrate, extended longitudinally and electrically connected to the driver chip; a plurality of high level lines; a metal block, located on the substrate and electrically connected to the high level lines, so that the high level lines at the same high level; wherein the data lines are electrically connected to driver chip through the area which the metal block is located in, and an insulating layer exists between the metal block and the data lines, a hollow area located in the metal block overlaps the data lines to reduce parasitic capacitance formed by the metal block and the data lines. This disclosure also discloses an AMOLED display device. Impact of resistor-capacitor delay and damage to components can be reduced by using this disclosure.
US10396132B2

A display device includes: a display element; a wavelength conversion element disposed on the display element and comprising a plurality of first wavelength conversion layers and a plurality of second wavelength conversion layers arranged in a first predetermined pattern; a transparent frame disposed on the wavelength conversion element and having a plurality of air gaps defined on a surface facing the wavelength conversion element, wherein the air gaps are recessed in a thickness direction; and a color filter element disposed on the transparent frame and comprising a plurality of first wavelength filter layers, a plurality of second wavelength filter layers and a plurality of third wavelength filter layers arranged in a second predetermined pattern, wherein the first and second wavelength filter layers are arranged to overlap the first and second wavelength conversion layers, respectively, and wherein the air gaps are arranged to overlap the first and second wavelength conversion layers.
US10396130B2

A method for manufacturing a display substrate is provided. The display substrate comprises a first electrode and a second electrode on a base substrate, the display substrate comprises a plurality of sub-pixels, the first electrode comprises a plurality of sub-electrodes corresponding to the plurality of sub-pixels respectively, when a first line extending in a first direction moves in a second direction within an area of each of the sub-electrodes, a distance between two crossing points of the first line and the sub-electrode changes, the first direction being perpendicular to the second direction. The method includes: forming an opaque pixel definition layer on the base substrate on which the plurality of sub-electrodes has been formed, wherein the pixel definition layer comprises light-transmissible openings corresponding to the sub-electrodes respectively, and a location of the pixel definition layer on the display substrate is controlled.
US10396128B2

A display apparatus includes a display panel configured to display an image. The display panel has a folding axis extending in a first direction. An optical film is disposed over the display panel. The optical film includes a circular polarizer including at least two phase retarders and one polarizer. Slow axes of each of the at least two phase retarders are located in the same quadrant of four quadrants of the optical film.
US10396124B2

Disclosed are memory cells that include a crosslinked mixture of a photoinitiator, a polyether-modified acrylate oligomer, a polyester acrylic resin, and a component selected from the group consisting of a silicone acrylate oligomer, and a fluorinated acrylate oligomer, and memory devices that contain a plurality of memory cells.
US10396120B2

A semiconductor epitaxial wafer production method that can increase the peak concentration of hydrogen in a surface portion of a semiconductor wafer after epitaxial layer formation is provided. A method of producing a semiconductor epitaxial wafer comprises: a first step of irradiating a surface of a semiconductor wafer with cluster ions containing hydrogen as a constituent element, to form a modifying layer formed from, as a solid solution, a constituent element of the cluster ions including hydrogen in a surface portion of the semiconductor wafer; a second step of, after the first step, irradiating the semiconductor wafer with electromagnetic waves of a frequency of 300 MHz or more and 3 THz or less, to heat the semiconductor wafer; and a third step of, after the second step, forming an epitaxial layer on the modifying layer of the semiconductor wafer.
US10396119B2

Provided are a unit pixel, an image sensor including the same, a portable electronic device including the same, and a method of manufacturing the same. The method of manufacturing includes: forming a photoelectric conversion region in a substrate; forming, in the substrate, a first floating diffusion region spaced apart from the photoelectric conversion region of the substrate, and a second floating diffusion region spaced apart from the first floating diffusion region; forming a first recess spaced apart from the first floating diffusion region and the second floating diffusion region by removing a portion of the substrate from a first surface of the substrate; filling the first recess to form a dual conversion gain (DCG) gate that extends perpendicularly or substantially perpendicularly from the first surface of the substrate; and forming a conductive layer to fill an inside of the first recess.
US10396112B2

An imaging apparatus includes: an interposer on which an image sensor including a light reception section is disposed; a translucent member that is provided on the light reception section; and a mold that is formed in sides of the interposer having a rectangular shape and bonded to the translucent member to support the translucent member, the mold including a seal surface that is bonded to the translucent member, the seal surface being provided with a protrusion.
US10396108B2

The present technology relates to a solid-state imaging element, a solid-state imaging element manufacturing method, and an electronic apparatus that make it possible to suppress both junction leakage and diffusion leakage of an FD in an FD storage sensor. The present technology includes a photodiode, a photoelectric conversion film, a diffusion layer, and an impurity layer. The photodiode and the photoelectric conversion film perform photoelectric conversion of incident light. The diffusion layer has a second polarity, which is different from a first polarity possessed by the photodiode, and stores an electric charge derived from photoelectric conversion by the photoelectric conversion film. The impurity layer includes impurities having the first polarity. The photodiode and the diffusion layer are disposed on an identical substrate in parallel with each other. The impurity layer is disposed below the diffusion layer. The present technology is applicable to solid-state imaging elements.
US10396106B2

A method for producing a semiconductor chip (100) is provided, in which, during a growth process for growing a first semiconductor layer (1), an inhomogeneous lateral temperature distribution is created along at least one direction of extent of the growing first semiconductor layer (1), such that a lateral variation of a material composition of the first semiconductor layer (1) is produced. A semiconductor chip (100) is additionally provided.
US10396099B2

Disclosed are an oxide thin film transistor (TFT), a method of manufacturing the same, and a display panel and a display device using the same, in which a first conductor and a second conductor are provided at end portions of a semiconductor layer formed of oxide semiconductor. The first conductor and second conductor are electrically connected to a first electrode and a second electrode, and covered by a gate insulation layer. The oxide TFT includes a semiconductor layer provided on a buffer and including an oxide semiconductor, a gate insulation layer covering the semiconductor layer and the buffer, a gate electrode provided on the gate insulation layer to overlap a portion of the semiconductor layer, and a passivation layer covering the gate and the gate insulation layer.
US10396098B2

A thin film transistor substrate according to an embodiment includes: a substrate; and a thin film transistor disposed on the substrate, wherein the thin film transistor includes a channel layer including a nitride-based semiconductor layer, a source electrode electrically connected to a first region of the channel layer, a drain electrode electrically connected to a second region of the channel layer, a gate electrode disposed on the channel layer, and a depletion forming layer disposed between the channel layer and the gate electrode.
US10396096B2

A transistor array panel includes a transistor which includes a gate electrode, a semiconductor layer on the gate electrode, and a source electrode and a drain electrode on the semiconductor layer. The semiconductor layer includes a first portion overlapping the source electrode, a second portion overlapping the drain electrode, and a third portion between the first portion and the second portion. The first portion, the second portion, and the third portion have different minimum thicknesses.
US10396092B2

Disclosed are vertical memory devices and methods of manufacturing the same. The vertical memory device may include includes a substrate, a gate stack structure and channel structure on the substrate, and a charge trap structure between the gate stack structure and the channel structure. The gate stack structure includes conductive structures and insulation interlayer structures that are alternately stacked on each other in a vertical direction on the substrate such that cell regions and inter-cell regions are alternately arranged in the vertical direction. The channel structure penetrates through the gate stack structure in the vertical direction. The charge trap structure and the conductive structures define memory cells at the cell regions. The charge structure is configured to selectively store charges. The charge trap structure includes an anti-coupling structure in the inter-cell region for reducing a coupling between neighboring memory cells adjacent to each other in the vertical direction.
US10396089B2

A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
US10396085B2

A circular printed memory device and a method for fabricating the circular printed memory device are disclosed. For example, the circular printed memory device includes a base substrate, a plurality of bottom electrodes arranged in a circular pattern on the base substrate, a ferroelectric layer on top of the plurality of bottom electrodes and a single top electrode on the ferroelectric layer that contacts each one of the plurality of bottom electrodes via the ferroelectric layer.
US10396083B2

Example embodiments relate to a semiconductor device. The semiconductor device includes a substrate including an active region extending in a first direction, a plurality of bit lines running across the active region in a second direction crossing the first direction, a first spacer on a sidewall of the bit line, and a storage node contact on the active region between adjacent bit lines. The first spacer includes a first part between the storage node contact and the bit line, a second part between the first part and the storage node contact, and a third part between the first and second parts. A minimum vertical thickness of the first part is greater than a maximum vertical thickness of the third part. The maximum vertical thickness of the third part is greater than a maximum vertical thickness of the second part.
US10396072B2

A semiconductor device is provided having a first region and a second region surrounding the first region includes a first electrode, a second electrode, a first semiconductor layer of a first conductivity type between the first electrode and the second electrode, a second semiconductor layer of the first conductivity type located over the first semiconductor layer, a third semiconductor layer of the second conductivity type on the second semiconductor layer in the first region, a fourth semiconductor layer of the first conductivity type between the third semiconductor layer and the second semiconductor layer, a fifth semiconductor layer of the second conductivity type on the second semiconductor layer in the second region, and a sixth semiconductor layer of the first conductivity type located between the fifth semiconductor layer and the second semiconductor layer, wherein the width of the fourth semiconductor layer is less than the width of the sixth semiconductor layer.
US10396063B2

In some embodiments, a first cell layout and a second cell layout are provided and combined into a third cell layout. Each of the first cell layout and the second cell layout includes a higher power line, a lower power line, an output pin, at least one up transistor and at least one down transistor formed to electrically couple the output pin to the higher power line and the output pin to the lower power line, respectively. The at least one up transistor and the at least one down transistor of the second cell layout include a gate line. For the combining, the gate line is non-selectively electrically coupled to the output pin of the first cell layout to form a first node. A design layout in which the third cell layout is used at different locations is generated.
US10396053B2

A reconfigured semiconductor logic device includes a semiconductor logic device comprising an active surface having a plurality of input/output (I/O) pads formed thereon and a redistribution layer. The redistribution layer includes an insulating layer disposed on the active surface of the semiconductor logic device and a patterned conductive layer comprising a plurality of discrete terminal pads formed atop the insulating layer. The plurality of discrete terminal pads are electrically coupled to respective I/O pads of the plurality of I/O pads by conductive vias formed through the insulating layer. The plurality of discrete terminal pads are larger than the plurality of I/O pads.
US10396042B2

An interconnect level is provided on a surface of a substrate that has improved crack stop capability. The interconnect level includes at least one wiring region including an electrically conductive structure embedded in an interconnect dielectric material having a dielectric constant of less than 4.0, and a crack stop region laterally surrounding the wiring region. The crack stop region includes a crack stop dielectric material having a dielectric constant greater than the dielectric constant of the interconnect dielectric material. The crack stop region may be devoid of any metallic structure, or it may contain a metallic structure. The metallic structure in the crack stop region, which is embedded in the crack stop dielectric material, may be composed of a same, or different, electrically conductive metal or metal alloy as the electrically conductive structure embedded in the interconnect dielectric material.
US10396033B1

Methods and apparatuses for efficiently providing supply voltages to a load circuit are provided. The apparatus includes a first plurality of first power buses extending in a first direction and within a first range. The first range extends in a second direction. A second plurality of first power buses extends in the first direction and within the first range. The first plurality of first power buses and the second plurality of first power buses are powered at a first supply voltage. A plurality of second power buses extends in the first direction within the first range and a second range. The second range extends in the first direction. The plurality of second power buses is powered at a second supply voltage. The first plurality of first power buses, the second plurality of first power buses, and the plurality of second power buses are in a conductive layer.
US10396028B2

Implementations of semiconductor packages may include: a prefabricated electrically conductive section; two or more metal oxide semiconductor field effect transistors (MOSFET) physically coupled together; and a back metal coupled to the two or more MOSFETs; wherein the electrically conductive section may be coupled to the back metal and may be configured to electrically couple the two or more MOSFETs together during operation of the two or more MOSFETs.
US10396027B2

Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
US10396026B2

Embodiments of the present invention provide a method for cuts of sacrificial metal lines in a back end of line structure. Sacrificial Mx+1 lines are formed above metal Mx lines. A line cut lithography stack is deposited and patterned over the sacrificial Mx+1 lines and a cut cavity is formed. The cut cavity is filled with dielectric material. A selective etch process removes the sacrificial Mx+1 lines, preserving the dielectric that fills in the cut cavity. Precut metal lines are then formed by depositing metal where the sacrificial Mx+1 lines were removed. Thus embodiments of the present invention provide precut metal lines, and do not require metal cutting. By avoiding the need for metal cutting, the risks associated with metal cutting are avoided.
US10396024B2

A wiring substrate includes a first insulating layer including a first through-hole formed through the first insulating layer in a thickness direction, a wiring layer formed on a lower surface of the first insulating layer, and a via wiring filled in the first through-hole and connected to the wiring layer, the via wiring having such a shape that it gradually becomes thinner from one side close to the lower surface of the first insulating layer toward the other side close to an upper surface of the first insulating layer, the via wiring including a first recess formed in an upper end surface of the via wiring. An upper end portion of the via wiring is an electrode pad for electric connection with an electronic component.
US10396020B2

A board includes a plate-shaped member having a first wiring pattern, a first resin layer formed on a first surface of the plate-shaped member, the first surface having the first wiring pattern, a second resin layer stacked on the first resin layer, and a component fixed to the second resin layer in which a second wiring pattern formed on a second surface of the component is buried.
US10396015B2

A semiconductor device includes a carrier, a semiconductor die and a die attach material arranged between the carrier and the semiconductor die. A fillet height of the die attach material is less than about 95% of a height of the semiconductor die. A maximum extension of the die attach material over edges of a main surface of the semiconductor die facing the die attach material is less than about 200 micrometers.
US10396011B2

The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the module substrate, a mold compound component, a thermally conductive film, and a thermally enhanced mold compound component. The mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally conductive film resides over at least the upper surface of the thinned flip chip at the bottom of the cavity. The thermally enhanced mold compound component resides over at least a portion of the thermally conductive film to fill the cavity.
US10396003B2

A semiconductor device assembly including a substrate, a semiconductor device, a stiffener member, and mold compound. The stiffener member is tuned, or configured, to reduce and/or control the shape of warpage of the semiconductor device assembly at an elevated temperature. The stiffener member may be placed on the substrate, on the semiconductor device, and/or on the mold compound. A plurality of stiffener members may be used. The stiffener members may be positioned in a predetermined pattern on a component of the semiconductor device assembly. A stiffener member may be used so that the warpage of a first semiconductor device substantially corresponds to the warpage of a second semiconductor device at an elevated temperature. The stiffener member may be tuned by providing the member with a desired coefficient of thermal expansion (CTE). The desired CTE may be based on the individual CTEs of the components of a semiconductor device assembly.
US10395999B1

A method for monitoring fin removal includes providing a substrate having a first region with first fins extending along a first direction and a second region with second fins extending along a second direction, wherein the first direction is perpendicular to the second direction; forming a material layer on the substrate to cover the first fins and the second fins; identically patterning the first fins and the second fins using a first pattern and a second pattern respectively for simultaneously removing parts of the first and second fins, thereby forming first fin features in the first region and second fin features in the second region, wherein the first pattern has a first dimension along the second direction, the second pattern has a second dimension along the second direction, and the second dimension is equal to the first dimension; and monitoring the first fin features using the second fin features.
US10395994B1

A method for fabricating a semiconductor device having a uniform spacer thickness between field-effect transistors (FETs) associated with regions of the device is provided. A first semiconductor material is epitaxially grown in a first source/drain region within a first region of the device associated with a first FET. A capping layer is selectively formed on the first semiconductor material by forming a layer over the first and second regions that reacts with the first semiconductor material to form the capping layer. A second semiconductor material is epitaxially grown in a second source/drain region within a second region of the device associated with a second FET. The capping layer caps the growth of the first semiconductor material during the epitaxial growth of the second semiconductor material to provide the uniform spacer thickness between the first and second FETs.
US10395988B1

A method is presented for reducing contact resistance and parasitic capacitance. The method includes forming a plurality of fins over a semiconductor substrate, forming a bottom source/drain region between the plurality of fins, forming a bottom spacer over the bottom source/drain region, forming high-k metal gates over the bottom spacers, and forming a top spacer over the high-k metal gates. The method further includes forming an interlayer dielectric (ILD) over the top spacer, recessing the ILD to expose top sections of the plurality of fins, depositing an epitaxial material over each of the top sections of the plurality of fins, forming a dielectric film over the epitaxial material such that air-gaps are created between the top sections of the plurality of fins and recessing the dielectric film to expose top sections of the epitaxial material and to deposit a silicide metal liner and a conductive material thereon.
US10395987B2

The disclosure is related to MV transistors with reduced gate induced drain leakage (GIDL) and impact ionization. The reduced GILD and impact ionization are achieved without increasing device pitch of the MV transistor. A low voltage (LV) device region and a medium voltage (MV) device region are disposed on the substrate. Non-extended spacers are disposed on the sidewalls of the LV gate in the LV device region; extended L shaped spacers are disposed on the sidewalls of the MV gate in the MV device region. The non-extended spacers and extended L shape spacers are patterned simultaneously. Extended L shaped spacers displace the MV heavily doped (HD) regions a greater distance from at least one sidewall of the MV gate to reduce the GIDL and impact ionization of the MV transistor.
US10395981B2

The present disclosure relates to semiconductor devices and manufacturing techniques in which topography-related contact failures may be reduced by providing a dielectric fill material in a late manufacturing stage. In sophisticated semiconductor devices, the material loss in the trench isolation regions may result in significant contact failures, which may be reduced by levelling the device topography, thereby tolerating a significant lateral overlap of contact elements with trench isolation regions.
US10395980B1

The present disclosure relates to semiconductor structures and, more particularly, to a dual airgap structure and methods of manufacture. The structure includes: a lower metal line; a plurality of upper metal lines; and a first airgap between the lower metal line and at least one upper metal line of the plurality of upper metal lines.
US10395968B2

During a detection position calibrating operation and a substrate transport operation, a detection coordinate calculator calculates detection coordinates of an outer periphery of a reference substrate or a substrate placed at a reference position on a hand. During the detection position calibrating operation, an offset calculator calculates offsets of a plurality of detectors based on detection coordinates and design coordinates. During the substrate transport operation, a detection coordinate corrector corrects the detection coordinates based on the offsets of the plurality of detectors, and a coordinate information corrector corrects coordinate information based on the corrected detection coordinates. A movement controller controls an up-and-down direction driving motor, a horizontal direction driving motor and a rotation direction driving motor and controls an upper hand advancing retreating driving motor and a lower hand advancing retreating driving motor, such that the substrate is transported from a reception position to a placement position based on the corrected coordinate information.
US10395966B2

In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device. A patterned release layer and, optionally, a capping layer are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate with a bonding layer. The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
US10395951B2

In a method of cleaning a substrate, a protecting liquid may be sprayed to a surface of the substrate from a first position in a first spray direction. Cleaning droplets may be injected on to the surface of the substrate. The protecting liquid may be sprayed to the surface of the substrate from a second position different from the first position in a second spray direction. For example, the protecting liquid may be always sprayed from the central portion toward the edge portions in the substrate so that the protecting liquid on the substrate may have a uniform thickness.
US10395950B2

A substrate processing apparatus performs: a pressure raising process of raising a pressure within the processing container to a processing pressure higher than a critical pressure of the processing fluid, after the substrate is accommodated in the processing container; and a circulation process of supplying the processing fluid to the processing container and discharging the processing fluid from the processing container while keeping a pressure at which the processing fluid is maintained in the supercritical state, within the processing container. In the pressure raising process, the supply of the processing fluid from the second fluid supply unit is stopped and the processing fluid is supplied from the first fluid supply unit into the processing container until at least the pressure within the processing container reaches the critical pressure. In the circulation process, the processing fluid is supplied into the processing container from the second fluid supply unit.
US10395947B2

A surface boundary is formed between a sealed surface of a thermosetting resin member and a thermoplastic resin member to seal the sealed surface. A newly formed surface is formed at the surface boundary by removing a surface layer in the sealed surface. A functional group in the newly formed surface is chemically bound to a functional group in a functional group-containing additive added to a constituent material of the thermoplastic resin member.
US10395936B2

A wafer element fabrication method is provided. The wafer element fabrication method includes forming a device element on a substrate such that the device element includes an upper surface and a sidewall extending from the upper surface to the substrate. The wafer element fabrication method further includes forming an adjusted print resolution assist feature (APRAF) on the substrate such that the APRAF is smaller than the device element in at least one dimension. In addition, the wafer element fabrication method includes depositing surrounding material, which is different from materials of the APRAF, to surround the APRAF and to lie on the upper surface in abutment with the sidewall of the device element.
US10395929B2

Small size chip handling and electronic component integration are accomplished using handle fixturing to transfer die or other electronic components from a full area array to a targeted array. Area array dicing of a thinned device wafer on a handle wafer/panel may be followed by selective or non-selective de-bonding of targeted die or electronic components from the handle wafer and optional attachment to a carrier such as a transfer head or tape. Alignment fiducials may facilitate precision alignment of the transfer head or tape to the device wafer and subsequently to the targeted array. Alternatively, the dies or other electronic elements are transferred selectively from either a carrier or the device wafer to the targeted array.
US10395928B2

Embodiments of the disclosed technology include depositing a passivation layer onto a surface of a wafer that may include a graphene layer. The passivation layer may protect and isolate the graphene layer from electrical and chemical conditions that may damage the graphene layer. As such, the passivation layer may further protect the graphene sensor from being damaged and impaired for its intended use. Additionally, the passivation layer may be patterned to expose select areas of the graphene layer below the passivation layer, thus creating graphene wells and exposing the graphene layer to the appropriate chemicals and solutions.
US10395926B1

Methods of self-aligned multiple patterning. A mandrel line is formed over a hardmask layer, and forming a block mask is formed over a first portion of the mandrel line that is linearly arranged between respective second portions of the mandrel line. After forming the first block mask, the second portions of the mandrel line are removed with an etching process to cut the mandrel line and expose respective portions of the hardmask layer. A second portion of the mandrel line is covered by the block mask during the etching process to define a mandrel cut in the mandrel line.
US10395920B2

A method and composition for producing a low k dielectric film via chemical vapor deposition is provided. In one aspect, the method comprises the steps of: providing a substrate within a reaction chamber; introducing into the reaction chamber gaseous reagents including at least one structure-forming precursor comprising a silacyclic compound, and a porogen; applying energy to the gaseous reagents in the reaction chamber to induce reaction of the gaseous reagents to deposit a preliminary film on the substrate, wherein the preliminary film contains the porogen, and the preliminary film is deposited; and removing from the preliminary film at least a portion of the porogen contained therein and provide the film with pores and a dielectric constant of 2.7 or less.
US10395918B2

A plasma processing system and a method for controlling a plasma in semiconductor fabrication are provided. The system includes a remote plasma module configured to generate a plasma. The system further includes a compound mixing member configured to receive the plasma. The system also includes a processing chamber configured to receive the plasma from the compound mixing member for processing. In addition, the system includes a detection module configured to monitor the plasma in the compound mixing member.
US10395916B2

Methods to selectively deposit a film on a first surface (e.g., a metal surface) relative to a second surface (e.g., a dielectric surface) by exposing the surface to a pre-clean plasma comprising one or more of argon or hydrogen followed by deposition. The first surface and the second surface can be substantially coplanar. The selectivity of the deposited film may be increased by an order of magnitude relative to the substrate before exposure to the pre-cleaning plasma.
US10395911B2

The invention generally relates to systems and methods for relay ionization of a sample. In certain aspects, the invention provides systems that include an ion source that generates ions, a sample emitter configured to hold a sample, and a mass spectrometer. The system is configured such that the ions generated by the ion source are directed to interact with the sample emitter, thereby causing the sample to be discharged from the sample emitter and into the mass spectrometer.
US10395905B2

Certain embodiments described herein are directed to ion detectors and systems. In some examples, the ion detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the ion detectors are also described.
US10395901B2

Apparatus for use with a vessel used to generate plasma are provided. One apparatus includes a first comb structure configured to partially wrap around a circumference of the vessel. The first comb structure has a first end and a second end, and a first separation is defined between the first end and the second end. The first comb structure defines a first plurality of fingers oriented perpendicular to the circumference of the vessel. The first comb structure is configured to be connected to a first end of a radio frequency (RF) coil. Also provided is a second comb structure configured to partially wrap around the circumference of the vessel. The second comb structure has a first end and a second end. A second separation is defined between the first end and the second end the second comb structure. The second comb structure defines a second plurality of fingers oriented perpendicular to the circumference of the vessel. The second comb structure is configured to be connected to a second end of the RF coil. Further, ends of the first plurality of fingers and ends of the second plurality of fingers are configured to face each other and maintain a third separation.
US10395897B1

A virtual impedance auto matching method includes (a) deciding an input parameter of an RF generator and a load condition parameter of a plasma chamber, (b) applying an RF ON signal to an impedance matcher, (c) determining whether initial preset positions of a load vacuum variable capacitor and a tuning vacuum variable capacitor constituting the impedance matcher are within a matching range, (d) applying the RF OFF signal to the impedance matcher and generating an alarm signal indicating deviation from the matching range, when step (c) is not satisfied, (e) starting matching by operating the impedance matcher when step (c) is satisfied, and (f) deciding the initial preset positions of the load vacuum variable capacitor and the tuning vacuum variable capacitor by analyzing a magnitude error and a phase error with respect to 50+j0 according to an impedance change, when the matching is completed.
US10395890B2

An ion implantation apparatus includes: a multistage linear acceleration unit including a plurality of stages of high-frequency resonators and a plurality of stages of focusing lenses; a first beam measuring unit disposed in the middle of the multistage linear acceleration unit and configured to allow passage of a beam portion adjacent to a center of a beam trajectory and measure a current intensity of another beam portion blocked by an electrode body outside a vicinity of the center of the beam trajectory; a second beam measuring unit disposed downstream of the multistage linear acceleration unit and configured to measure a current intensity of an ion beam exiting from the multistage linear acceleration unit; and a control device configured to adjust a control parameter of the plurality of stages of focusing lenses based on measurement results of the first and second beam measuring units.
US10395889B2

A system and method for controlling an ion implantation system as a function of sampling ion beam current and uniformity thereof. The ion implantation system includes a plurality of ion beam optical elements configured to selectively steer and/or shape the ion beam as it is transported toward a workpiece, wherein the ion beam is sampled at a high frequency to provide a plurality of ion beam current samples, which are then analyzed to detect fluctuations and/or nonuniformities or unpredicted variations amongst the plurality of ion beam current samples. Beam current samples are compared against predetermined threshold levels, and/or predicted nonuniformity levels to generate a control signal when a detected nonuniformity in the plurality of ion beam current density samples exceeds a predetermined threshold. A control system can be configured to generate a control signal for interlocking the ion beam transport in the ion implantation system or for varying an input to at least one beam optical element to control variations in beam current.
US10395882B1

A tunable photocathode for use in vacuum electronic devices includes a nanostructured photoemission layer including quantum confined nanostructures, such as quantum dots. The quantum confined nanostructures can be tuned (e.g., prepared to have various characteristics or parameters) in order to independently optimize various characteristics of the electron beam emitted by the photocathode. For example, by changing the material composition, size and geometry of the quantum confined nanostructures, the energy levels of the quantum confined nanostructures in the photoemission layer can be tuned to provide a photocathode having a high quantum efficiency, low emittance, fast response time to incident light pulses, long operational lifetime, and increased environmental stability compared with conventional photocathodes and cathodes in vacuum electronic devices.
US10395880B2

Embodiments include a vacuum device, comprising: an enclosure configured to enclose a vacuum, the enclosure including an external base including an opening; an internal base within the enclosure; and an adjustable support assembly adjustably coupling the internal base to the external base and extending through the opening, the adjustable support assembly comprising: a threaded shaft extending along a longitudinal axis and coupled to the internal base; a threaded hole component threadedly engaged with the threaded shaft and coupled to the external base such that the threaded hole component is axially constrained in a direction along the longitudinal axis relative to the external base independent of the threaded shaft; and a flexible component coupled to the external base and the threaded shaft and sealing the opening.
US10395871B1

An electrical switching apparatus includes a housing member, a printed circuit board assembly having a board including a first side and a second side facing away from the first side, and a barrier member coupled to each of the housing member and the first side of the board. The barrier member substantially encapsulates the first side of the board.
US10395870B2

The present invention relates to a relay (1), having a first terminal (2), a second terminal (3), a contact (4) which in a closed state brings about an electrical connection between the first and second terminals (2, 3) and which in an opened state electrically disconnects the first and second terminals (2, 3), a first electromagnet (5) which is configured in such a way that it places the contact (4) in the closed state if the first electromagnet (5) is switched on, and a second electromagnet (6) which is configured in such a way that it keeps the contact (4) in the closed state if the contact (4) is in the closed state and the second electromagnet (6) is switched on.
US10395860B2

A transmitter device incorporating a strain gauge proportional push button is disclosed. The transmitter device includes a printed circuit board including one or more electrical components thereon and a proportional push button having a flexible membrane, a dome switch positioned beneath the flexible membrane and attached to the printed circuit board, the dome switch being proximate to the flexible membrane such that depression of the flexible membrane causes the dome switch to snap down and thereby form a closed circuit in the dome switch, and a strain gauge formed on or applied to the printed circuit board and positioned adjacent the dome switch, the strain gauge generating an electrical output proportional to an amount of deflection of the printed circuit board caused by pressure exerted thereon by depression of the flexible membrane and the dome switch.
US10395859B2

A switch case includes a metal plate having a first surface and a second surface that is at a side opposite to the first surface, and a resin case embedding a part of the metal plate. The resin case includes a housing portion having an opening disposed on a surface of the resin case. The metal plate includes a terminal portion, a contact portion, and an intermediate portion positioned between the terminal portion and the contact portion. The terminal portion is exposed from the surface of the resin case, and the intermediate portion is embedded in the resin case. The intermediate portion is provided with first and second through-hole each penetrating the first surface and the second surface. A hole diameter of the first through-hole at the second surface is larger than a hole diameter of the first through-hole at the first surface.
US10395853B2

An electrode, process for preparing the electrode and devices thereof. An electrode comprising at least one metal deposited on a substrate; and at least one electrically conducting polymer. The devices comprising the electrode for energy storage and molecular separation.
US10395843B2

An electrical connection contact (5) for a ceramic component (2) is specified. The connection contact (5) comprises a first material (M1) and a second material (M2) arranged thereon, wherein the first material (M1) has a high electrical conductivity and the second material (M2) has a low coefficient of thermal expansion.
US10395839B1

A multilayer ceramic electronic component includes a ceramic body including dielectric layers and first and second internal electrodes, first and second external electrodes disposed on first and second external surfaces of the ceramic body, respectively, the first and second external electrodes each including first and second base electrode layers having at least a portion in contact with first and second external surfaces of the ceramic body, respectively, and first and second plating layers, and a water repellent layer including a portion disposed to cover a gap between the ceramic body and the first and second plating layers, having a first thickness and a portion disposed to cover a surface of the ceramic body, to having a second thickness, smaller than the first thickness.
US10395838B2

In a multilayer ceramic capacitor, A>B is satisfied by an atomic concentration ratio B of Si to Cu in a first organic layer disposed on a first base electrode layer located on a first end surface, an atomic concentration ratio A of Si to Cu in the first organic layer disposed on the first base electrode layer located on a first principal surface and a second principal surface, and an atomic concentration ratio A of Si to Cu in the first organic layer located directly on the first principal surface and the second principal surface.
US10395835B2

A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The pair of insulating coating portions extends in a laminating direction between each of the pair of second external electrodes and the first external electrode on a second principal surface, from the second principal surface to respective portions of a first side surface and a second side surface. As viewed from at least one direction in the laminating direction, an end of the first external electrode and pair of second external electrodes, which is located closest to a first principal surface, is located closer to the first principal surface than an end of the pair of insulating coating portions, which is located closest to the first principal surface.
US10395834B2

A multilayer capacitor includes a ceramic body including a plurality of dielectric layers stacked to be disposed perpendicularly to a mounting surface of the ceramic body, and first and second internal electrodes alternately disposed, with respective dielectric layers interposed therebetween, the first and second internal electrodes being exposed to the mounting surface of the ceramic body and first and second end surfaces of the ceramic body opposing each other, respectively; first and second external electrodes disposed on the ceramic body to be connected to the first and second internal electrodes, respectively; and an insulating layer disposed on the mounting surface of the ceramic body and covering portions of the first and second internal electrodes exposed to the mounting surface but not in contact with the first and second external electrodes.
US10395833B2

In a laminated ceramic electronic component, a side-surface outer electrode includes a first electrode portion including side-surface electrode portions located on first and second side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the first electrode portion to portions of third and fourth side surfaces; and a second electrode portion including side-surface electrode portions located on the third and fourth side surfaces and wrap-around electrode portions arranged to extend around from the side-surface electrode portions of the second electrode portion to portions of the first and second side surfaces. The wrap-around electrode portions of the second electrode portion reach regions covering portions of outermost inner electrodes located at an outermost side portion among inner electrodes, which portions are exposed in the first and second side surfaces.
US10395829B2

A dielectric resin composition for a film capacitor is a mixture containing an organic material A and an organic material B. The organic material A includes at least two kinds of organic material components A1, A2, . . . having reactive groups (for example, OH, NCO) that cross-link each other. The organic material B does not have a reactive site capable of reacting with the organic material A and has a dielectric loss tan δ of 0.3% or less at a temperature of 125° C. The mixture has a glass transition temperature of 130° C. or higher and preferably 280° C. or lower.
US10395821B2

Disclosed herein is a rotary type magnetic coupling device including first and second coils magnetically coupled to each other used for a rotator. Each of the first and second coils is a loop-shaped having an opening surrounding a rotary axis of the rotator. Each of the first and second coils includes first and second wiring parts extending in a peripheral direction of the rotator, a third wiring part bent in the rotary axis direction from one end of the first and second wiring parts, and a fourth wiring part bent in the rotary axis direction from other end of the first and second wiring parts. At least one of the first and second coils is configured such that the third and fourth wiring parts match or overlap each other when viewed in a radial direction substantially orthogonal to the rotary axis.
US10395818B2

A noise filter (10) is equipped with plural conductors (20) having respective winding portions (21) and a ring-shaped core which is inserted through the winding portions of the plural conductors and made of a magnetic material. The ring-shaped core has a core main body (40) having a pair of extension portions (41) and (42) that are connected to each other at one end and a link core (50) which is attached to the core main body at the other end and thereby connects the extension portions and. At least one of the extension portions and of the core main body is straight. The plural conductors are arranged in a row in a state that the straight extension portion is inserted through the winding portions of the plural conductors.
US10395813B2

The present invention provides a magnetic core which can be produced with improved productivity without increasing a material cost and has required magnetic and mechanical properties and a process for producing the same. The magnetic core is produced by compression molding and thereafter thermally hardening iron-based soft magnetic powder having resin films formed on surfaces of particles thereof. The resin film is an uncured resin film formed by dry mixing the iron-based soft magnetic powder and epoxy resin containing a latent curing agent with each other at a temperature not less than a softening temperature of the epoxy resin and less than a thermal curing starting temperature thereof. The iron-based soft magnetic powder having the resin films formed on the surfaces of the particles thereof is compression molded by using a die to produce a compression molded body. The compression molded body having the resin films formed on the surfaces of the particles thereof is thermally hardened at a temperature not less than the thermal curing starting temperature of the epoxy resin.
US10395807B2

There is provided a grain-oriented electrical steel sheet stably having excellent magnetic characteristics and coating adhesion even when a rapid heating is conducted in a primary recrystallization annealing (decarburization annealing). Concretely, it is a grain-oriented electrical steel sheet provided on its sheet surface with a tension-applying type insulation coating constituted with a coating layer A formed on a steel sheet side and mainly composed of an oxide and a coating layer B formed on a surface side and mainly composed of glass, characterized in that a ratio R (σB/σA) of a tension σB of the coating layer B on the surface side applied to the steel sheet to a tension σA of the coating layer on the steel sheet side A applied to the steel sheet is within a range of 1.20-4.0.
US10395798B2

The present invention provides an insulated wire having a heat-resistant insulating layer, wherein heat-resistant particles are contained in the insulating layer, and the heat-resistant particles are densely dispersed in a surface region of the insulating layer. For example, the concentration of heat-resistant particles included in a layer thick portion of 0.5 μm from the surface of the insulating layer is two times the concentration of heat-resistant particles included in a central portion of the insulating layer. An electrodeposition liquid used to form the insulating layer is formed by dispersing the heat-resistant particles in a suspension in which resin particles are dispersed, the viscosity is 100 cP or less, and the turbidity is 1 mg/L or more.
US10395797B2

A self-supporting electric power cable is disclosed. The electric power cable includes an outer jacket portion and a core portion. The core portion includes at least one insulated conductor and at least one supporting cord. The at least one insulated conductor includes a number of individual wires, and the at least one supporting cord includes synthetic fibers. The number of individual wires, individually or arranged in bundles, are arranged in a first lay direction. The at least one insulated conductor and the at least one supporting cord are arranged in a second lay direction. The at least one supporting cord is arranged as a separate unit in a cross sectional sector of the self-supporting electric power cable. Thus flexible and durable power cable for sea use is provided. Also an offshore arrangement is disclosed herein.
Patent Agency Ranking