US10390627B2
A bed frame includes legs, bars and wooden slats. Each leg has first and second sides that meet each other at an edge. A first slot is disposed on the first side adjacent to the edge, and a second slot is disposed on the second side adjacent to the edge. Each bar has two wedge inserts. A first wedge on a lateral bar fits into the first slot, and a second wedge on a longitudinal bar fits into the second slot. The lateral bar is perpendicular to the leg while the first wedge is lodged in the first slot, and the longitudinal bar is perpendicular to the leg while the second wedge is lodged in the second slot. The first slot and the second slot are disposed between the lateral bar and the longitudinal bar while the first and second wedge inserts are lodged in the first and second slots.
US10390626B2
An assemblable mattress support can be shipped with all of its components compactly packed into the headboard. The mattress support includes a foldable longitudinal bar, a lateral bar, side panels, wooden slats, block legs and a footboard, all of which fit inside a compartment in the headboard. In an assembled state of the mattress support, a first connector at one end of the longitudinal bar attaches to a third connector on the outside of the headboard. A second connector at the other end of the longitudinal bar attaches to a fourth connector on the footboard. The middle of the lateral bar connects to the middle of the longitudinal bar. The block legs are attached to the bottom sides of the headboard and footboard. The slats are attached to one another by fabric ribbons and are placed in parallel over the longitudinal bar and support ledges on the side panels.
US10390625B2
A device comprising: a bed frame comprising a platform frame and a headboard frame, wherein the platform frame is T-shaped as defined via a leg portion and a platform portion, wherein the platform portion comprises a spine portion extending longitudinally over the leg portion, wherein the headboard frame defines a U-shaped channel, wherein the spine portion extends through the U-shaped channel and the headboard frame is non-perpendicularly oriented to the platform portion when the headboard frame spans between a wall and a floor, the platform portion is secured to the wall cantileveredly, and the headboard frame is secured to the wall distal to the floor.
US10390615B2
A closet apparel organizer includes a label plate having a first surface and a second surface, a first body member connected to a first location of the label plate, a second body member connected to a second location of the label plate, and a reception member connected to the first body member and the second body member. The reception member is configured to engage with a closet rod and includes an entrance opening. The first surface is facing in an outward direction away from the first and second body members and the second surface is facing in an inward direction towards the first and second body members.
US10390611B2
A table arrangement includes connection mechanisms height adjustable tabletops so that the tabletops are independently moveable while a privacy screen is positionable between the tabletops. Embodiments of the table arrangement can be configured so that different height adjustable tabletops can be arranged to accommodate different users' preferences.
US10390598B2
An elastic textile is treated with a microencapsulated substance and a graspable pull mechanism is attached to the elastic textile. When a consumer pulls the pull mechanism to stretch the elastic textile from a natural relaxed state or a semi-stretched state microencapsulated substance is released. The microencapsulated substance can be fragrance, insect repellant, deodorant or a variety of other substances or combination of substances that are desirable to be released on demand by stretching the elastic textile.
US10390596B2
Disclosed is fabric taped aluminum plates multifunctional hair straightener, relating to hairdressing apparatus field. Lower battens are clamped on two sides of lower aluminum plate with lower fabric on surface and lower aluminum plate stopper at one end, lower cover plate and lower cover plate stopper fixedly connected with other side of lower body via several first screws are installed on other side of lower body, one end of the lower cover plate is clamped with that of the lower cover plate stopper; upper clamping spring, upper elastic sheet, upper silicone pad, FUSE, second MCH, second manganese steel sheet and upper aluminum plate are installed inside one side of upper body; upper battens are clamped on two sides of the upper aluminum plate with upper fabric on surface. The hairdressing apparatus having fabric-coated aluminum plates keeps users' hair softer, and is antistatic and silk-like, thereby avoiding water vaporization.
US10390595B2
In one form, a security handbag is provided that includes an interior security panel assembly with a matrix of wires secured between a pair of material layers. The interior security panel assembly can be positioned intermediate the bag outside wall and a lining of the bag. A strap with security cable and a carabiner attachment device can be attached to the handbag. Methods for forming such security panel assemblies are also provided.
US10390592B2
In various embodiments, a carry (or carrying) bag is provided that includes an interior, substantially cut-resistant security panel assembly with a matrix of wires secured between or on one or more flexible material layers. Also in various embodiments, the security panel assembly may be positioned intermediate the bag outside wall and a lining of the bag, and in other embodiments, may also take the form of an expansion panel. Second or secondary locking fasteners are also provided to lock first or primary fasteners to or within the carrying bag, to provide security for compartments and pockets. A strap with one or more security cables, and various locking fasteners, may be attached to the carry bag. Methods for forming such security panel assemblies, expansion panels, and carrying straps are also disclosed.
US10390587B2
Provided is a device for insertion into a high heel shoe, having a rear region positioned to underlying a wearer's calcaneal tuberosity, the rear region being shaped to accommodate a planer surface of the wearer's calcaneal tuberosity, an upper surface of said rear region having a raised portion underlying an area of the wearer's calcaneus immediately forward of the wearer's calcaneus tuberosity; and a forward region positioned to underlie at least a portion of the shafts of the wearer's metatarsals, the second upper surface of said forward region having a raised portion which gradually rises to an apex position to underlie the shafts of the wearer's second and third metatarsals.
US10390582B2
A protective headgear for equestrian use provides a traditional style cowboy hat with protective features to allow it to comply with prevailing equestrian helmet standards. The hat includes interior protective padding in the top of the dome, exterior protective padding below the crown of the dome, and exterior protective padding on the rear of the hat below the brim. The protective padding may be secured to the hat by adhesive, stitching, or mechanical fasteners. A chin strap securement system comprising mutually connectable strap-and-buckle assemblies is optionally provided.
US10390571B2
A garment, such as a bra, may include a frame, support structure, casing and/or housing. The frame may be adapted to fit underneath a wearer's breasts and partially wrap around her torso. The support structure be coupled to the frame and may include a volumetric cup positioned thereon, which may be a cantilever projection from the frame adapted so that a portion of a wearer's breasts may be inserted therein. The frame and/or support structure may be encased in a casing. Casing may increase the size of volumetric cup to cover a larger portion of the wearer's breast. Casing may also provide padding or other mechanisms to increase the comfort of wearing the frame, support structure, and/or casing for the wearer. The casings (one for each side of the wearer) may be housed in a housing that wraps around the wearer's torso thereby enabling the wearer to wear the garment.
US10390566B2
The present disclosure relates to a heating device for an electronic cigarette. The heating device includes a heating part, a first conductive part, and a second electrically conductive part. The heating part has a hollow metallic tube wound in a spiral form. The first conductive part is electrically connected to a first end of the metallic tube. The second electrically conductive part is electrically connected to an opposite second end of the metallic tube.
US10390564B2
An electrically heated smoking system includes a secondary unit capable of receiving a smoking article having an aerosol-forming substrate. The secondary unit includes at least one heating element and an interface for connection to a primary power supply for supplying electrical power to the at least one heating element during a pre-heating mode, to increase the temperature of the aerosol-forming substrate to an operating temperature. The secondary unit further includes a secondary power supply arranged to supply electrical power to the at least one heating element during a smoking mode, to maintain the temperature of the aerosol-forming substrate at substantially the operating temperature. The secondary unit also includes secondary circuitry. The electrically heated smoking system optionally includes a primary unit.
US10390560B2
An insert comprising a substrate and a flavoring agent, wherein the flavoring agent is present in an amount from 50 to 500 mg per cm3 volume of the substrate. The insert is used for introducing a flavor, or increasing the level of flavor applied, to one or more smoking articles in a package of smoking articles, by enclosing the insert within such a package.
US10390559B2
A pipe comprises a combustion chamber with vents, the combustion chamber able to receive a cigarette; an inhalation path for drawing smoke from the combustion chamber through the bowl vents during inhalation; an exhalation filter; and an exhalation path for channeling exhaled smoke through the exhalation filter during exhalation.
US10390554B2
Provided herein is a continuous production line for a dressed proteinaceous patties with a solid food grade particulate using a coordinated volumetric toothed dispensing cylinder and variable speed conveyor for precisely controlled introduction of the particulate to a stream of proteinaceous material which is then formed into a patty.
US10390552B2
A method forms a gel from a highly-refined cellulose by: providing a composition of highly refined cellulose fiber as at least about 0.5% weight/weight highly refined cellulose to water; adding at least one buffering agent to the composition to maintain the pH of the composition at a pH below 9.5; bringing the buffered composition to an elevated temperature such as a boil; stirring the buffered composition; and cooling the buffered composition to below 25° C. to form a gel, such as a stable gel.
US10390548B2
The present invention relates to a method for extracting and purifying pea proteins. Hereto, according to the invention, peas are subjected to fermentation, preferably by lactic acid bacteria, prior to milling. Preferably the method for extracting pea proteins comprises the steps of: (a) subjecting an aqueous composition comprising peas to fermentation; (b) milling said peas; (c) fractionating said milled peas so as to obtain at least one protein comprising fraction; and (d) isolating pea proteins from said at least one protein comprising fraction. Also described are food or feed products comprising the pea proteins obtained according to the invention.
US10390547B2
A low cariogenic, low-laxation hard candy product having acceptable clarity and cold flow stability, contains a bulking sweetener agent, comprising isomaltulose, trehalose, erythritol or combinations thereof and a doctoring agent, comprising inulin, indigestible dextrin, sucromalt, polydextrose, or combinations thereof; wherein the bulking sweetener agent to doctoring agent ratio is 70/30 to 40/60 dry solids wt. %.
US10390546B2
One embodiment of an apparatus with mobile reusable airtight container assembly (10) which utilizes pressurized inert gas or CO2 gas for long term preservation of the freshness of roasted coffee beans or grounds in terms of aroma and taste, utilizes a system of an electronic controller (250), pressure switch (170), gas delivery valve (180), check valve (50) and vent valve (160) to create a pressurized environment of inert gas or CO2 gas and low residual oxygen and moisture concentrations within the airtight container assembly (10). An airtight lid (20) with pressure seal (220) covers the airtight container assembly (10) and creates a reusable system whereby the user can remove a portion of the roasted coffee beans or grounds as often as needed in order to brew coffee without degrading the long term freshness of the roasted coffee beans or grounds stored within the airtight container assembly (10). A two stage opening mechanism (40) prevents uncontrolled opening of the airtight lid (20) while the airtight container assembly (10) is pressurized. The check valve (50) enables the mobile aspect whereby the airtight container assembly (10) can be removed from and replaced back on a control system (260) as many times as desired by the user, while maintaining the optimum storage condition of pressurized inert gas or CO2 gas with low residual oxygen and moisture concentrations.
US10390521B2
This application provides a novel mouse model (PLA2g6 KOEx2) in which genetic deletion of the N terminus of PLA2g6 results in a loss of dopaminergic (DA) neurons in substantia nigra (SN), and development of PD-like motor deficits that can be significantly improved by L-DOPA. Based in part on experimental results demonstrated with this model, this disclosure provides genetically modified animals and genetically modified animal cells that comprise a mutant allele of PLA2g6 and in which store-operated Ca2+ entry (SOCE) is impaired and ER Ca2+ stores are depleted. This disclosure also provides methods of screening a compound for an effect on the SOCE pathway and/or ER Ca2+ by administering the compound to such a genetically modified animal or genetically modified animal cell. This disclosure also provides methods of treating or preventing PD-related deficit(s) in an animal by characterizing a compound as a SOCE activator using the screening methods and then administering an effective amount of the compound to an animal. This disclosure also provides methods of restoring normal store-operated Ca2+ entry (SOCE) pathway and ER Ca2+ in a cell, comprising introducing a caspase-3 cleavage-resistant PLA2g6 protein into the cell. This disclosure also provides methods of treating or preventing a PD-related deficit(s) in an animal, comprising administering a caspase-3 cleavage-resistant PLA2g6 protein to the animal.
US10390519B2
An animal restraint device includes an elongated member with an interior surface, an exterior surface, a posterior length, and a remaining length. A first connector is at a first end and a third connector is positioned at the second end of the elongated member. A second connector is positioned at a first distance from the first end. A fourth connector is positioned at a second distance from the second end. The fourth connector can be releasably attached to the third connector. A collar loop is formed from the posterior length through attachment of the first connector to the second connector. The elongated member is configurable in a storage configuration in which concentric loops are wrapped around the collar loop in a single rotational direction and affixed to the collar loop or a concentric loop and the second end is connected to the exterior surface of an outer-most concentric loop.
US10390515B2
A bolus that communicates with an external transceiver by way of radio waves produced by an electrically small H-antenna is described. The electrically small H-antenna is connected to a conductive cylindrical antenna that houses a battery and chipset that includes a transceiver, identification information and at least one sensor. The H-antenna and the conductive cylindrical antenna are arranged so that electrical currents that produce the radio waves are essentially always aligned to work together. The bolus is essentially a hermetically sealed capsule containing the antennas that is meant to be ingested by a cow or other ruminant animal. The bolus is configured to transmit radio waves in essentially an omnidirectional pattern more efficiently when the boluses inside of a cow stomach than when the boluses outside of the cow.
US10390513B1
A soybean cultivar designated S170107 is disclosed. The invention relates to the seeds of soybean cultivar S170107, to the plants of soybean cultivar S170107, to the plant parts of soybean cultivar S170107, and to methods for producing progeny of soybean cultivar S170107. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar S170107. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar S170107, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar S170107 with another soybean cultivar.
US10390502B2
An integrated actuator coil and decoder module for use in decoder-based irrigation control systems, and related methods of manufacture and installation, are provided herein. In one implementation, an irrigation control device comprises a body, decoder circuitry located within the body, a coil located within the body and coupled to the decoder circuitry, the coil adapted to develop an electromagnetic flux sufficient to cause actuation of a device controlling irrigation equipment in response to signaling from the decoder circuitry. Also included is an electrical connection coupled to the decoder circuitry and adapted to couple to a control wire path of a decoder-based irrigation control system. The decoder circuitry and the coil are integrated into a single device.
US10390499B2
A device for maple sap harvesting, which includes an assembly of a tubular sleeve which is removably mounted inside a tubular section of a tap. The tubular sleeve may be molded from a food-grade, anti-bacterial material. The tubular sleeve is inserted into the tap before the tap is driven into a maple tree. When the tap is removed from the tree at the conclusion of the sap harvest period, the sleeve may be discarded. The next season, a new sleeve is placed in the tap, with the new sleeve containing no residual bacterial contamination from the previous season of use.
US10390493B2
An apparatus is disclosed that is connectable to a conventional chain saw to extend the operable reach of the chain saw. This apparatus includes a support assembly to provide support against a user's leg or body portion when cutting an elevated item. The apparatus helps to elevate and control a chain saw, while cutting or trimming objects with the chain saw. The apparatus includes operationally secure mounting means to firmly engage the handles of the chain saw, and to maintain the saw in proper operative alignment and position. The apparatus reliably and securely engages a chain saw handle without requiring modification of the original chain saw equipment. The apparatus provides a mounting assembly which does not engage or otherwise adversely contact fragile plastic parts of the chain saw, such as the engine housing. The apparatus provides an assembly for remotely operating a throttle or a trigger of the chain saw.
US10390489B2
An agricultural cart for transporting different particulate materials includes a transport container a row of hoppers for containing agricultural product such as harvested grain to be carried away from the field and seed and fertilizer for filling a seeder during seeding. The cart includes a transport tube with across a bottom of the hoppers and a discharge tube extending upwardly and outwardly to one side, each including an auger flight. An air blower is mounted on a front end of the cart for generating a stream of air and a nozzle mounted on the cart and arranged to direct the stream of air into the cart and particularly into the transport tubes toward the discharge end to clean them out. The transport tube includes inlet doors which can be closed and there is provide a closure gate between the transport tube and the discharge tube.
US10390483B2
A robot lawnmower includes a robot body, a drive system, a localizing system, a teach monitor, and a controller in communication with one another. The drive system is configured to maneuver the robot lawnmower over a lawn. The teach monitor determines whether the robot lawnmower is in a teachable state. The controller includes a data processing device and non-transitory memory in communication with the data processing device. The data processing device executes a teach routine when the controller is in a teach mode for tracing a confinement perimeter around the lawn as a human operator pilots the robot lawn mower, when the robot lawnmower is in the teachable state, the teach routine stores global positions determined by the localizing system in the non-transitory memory, and when the robot lawnmower is in the unteachable state, the teach routine issues an indication of the unteachable state.
US10390475B1
A vehicle light guard for protecting from damage an exposed vehicle light mounted on a fender of a tractor or on a fender of a similar type of vehicle. The light guard includes a tubular-shaped housing. The housing is adapted for receipt around the tractor light. The housing has sufficient width and diameter to cover the tractor light. The housing includes a light cord slit opening and a housing post hole adapted for receiving a threaded post attached to the tractor light and an electrical cord connected to a tractor battery. The post hole is center on a bottom portion of the housing. The threaded post and electrical cord are attached to a bottom of the vehicle light. The light cord slit opening and the housing post hole eliminate the need to disconnect the threaded post from the electrical cord, when attaching the tubular-shaped housing around the tractor light.
US10390474B2
A path planning system for a work vehicle includes a controller configured to determine an initial path between an end point of a first swath and a starting point of a second swath. In addition, the controller is configured to identify a restricted region positioned along the initial path and to determine, in response to identifying the restricted region positioned along the initial path, a first bounding point of the restricted region. Furthermore, the controller is configured to determine a first waypoint based on the first bounding point and to determine an updated path that intersects the first waypoint. The controller is also configured to output signal(s) indicative of the updated path and/or instructions to direct the work vehicle along the updated path.
US10390471B2
An agricultural tillage blade having a central opening is adapted to be disposed on a shaft for rotation to cut trash and penetrate into the soil. The blade has an outer periphery substantially in the shape of a sine curve formed about a circle. The outer periphery of the blade is sharpened to more easily penetrate the soil and cut trash.
US10398070B2
A suction nozzle includes a suction pad portion at a tip of an air pipe formed to be larger than the air pipe, in which a resistance cavity which causes resistance and decreases air flow speed when a positive pressure is applied is formed between a flow path and a cavity portion. In the suction nozzle, since the resistance cavity is formed, a positive pressure is applied by the air whose flow speed is suppressed and the suction release of the component is performed. The resistance cavity may be a cavity having a slit shape.
US10398062B2
A heat exchanger includes a chassis, and a mounting opening and an outer outlet formed at the bottom of the chassis. The cooling core is installed in the chassis and disposed above the mounting opening. The external circulation fan module is installed from the mounting opening into the chassis. The cover covers the mounting opening. External air flows through the cooling core and exchanges heat with the cooling core to simplify the method of mounting the external circulation fan module.
US10398060B1
A system for storing data includes a discrete cooling module that can enable discrete cooling of mass storage devices installed in the chassis interior of a data storage module coupled to a rack. The discrete cooling module includes an air moving device and an air cover. The air moving device can induce and airflow through the chassis interior of the data storage module to remove heat from heat producing components of mass storage devices installed in the chassis interior. The air cover directs the airflow through the chassis interior. The discrete cooling module can isolate rotational vibrations generated by the air moving device from the mass storage devices installed in the chassis. Partial isolation can include indirectly coupling the discrete cooling module to the chassis via directly coupling with the rack.
US10398057B1
A fixing system, in particular a signal transmission fixing system, includes at least one fixing unit, at least one mounting element for holding the fixing unit, the mounting element having at least one reception region for the reception of at least one part of the fixing unit, the mounting element fixing the fixing unit in at least one first direction and in at least one second direction being oriented at least substantially antiparallel to the first direction.
US10398054B1
A server includes a casing, a plurality of tensile elements and a plurality of modules. The casing has an opening and a chamber communicating with each other. The tensile elements are disposed on the casing and at least partially cover the opening. Each of modules is configured to abut against the corresponding tensile element, such that the corresponding tensile element at least partially extends elastically towards the chamber. The modules penetrate through the opening and enter into the chamber in order to fix the modules to the casing.
US10398039B2
An electronic device is provided. The electronic device includes an outer housing including a first plate, a second plate oriented in an opposite direction of the first plate, and a side member at least partially surrounding a space between the first plate and the second plate and a mid-structure disposed in the outer housing, including a first surface facing the first plate, a second plate facing the second plate, and a third plate facing at least a portion of the side member, and at least partially surrounded by the side member, wherein at least a portion of a side surface of the first plate may be surrounded by the at least a portion of the side member while spaced apart at a first interval, wherein at least a portion of the third surface of the mid-structure may be positioned adjacent to at least another portion of the side member while spaced apart from a second interval, and wherein the second interval may be smaller than the first interval.
US10398037B2
An electronic component is mounted on the mounting face of a printed wiring board and a plurality of terminals arranged on the mounting face of the printed wiring board are respectively bonded to a plurality of terminals arranged on the bottom surface of the electronic component by means of solder. Solder paste containing powdery solder and thermosetting resin is provided to the plurality of terminals on the mounting face, then the electronic component is mounted on the mounting face of the printed wiring board, and subsequently the solder paste is heated to bond the corresponding terminals by means of molten solder. Thereafter, the molten solder is allowed to solidify and the thermosetting resin separated from the solder paste is allowed to cure in a state where it is held in contact with metal members arranged separately relative to the terminals.
US10398034B2
A method of making a device patterned with one or more electrically conductive features includes depositing a conductive material layer over an electrically insulating surface of a substrate, depositing an anti-corrosive material layer over the conductive material layer, and depositing an etch-resist material layer over the anti-corrosive material layer. The etch-resist material layer may be deposited over the anti-corrosive material layer, and the anti-corrosive material layer forming a bi-component etch mask in a pattern resulting in covered portions of the conductive material layer and exposed portions of the conductive material layer, the covered portions being positioned at locations corresponding to one or more conductive features of the device. A wet-etch process is performed to remove the exposed portions of the conductive material layer from the electrically insulating substrate, and the bi-component etch mask is removed to expose the remaining conductive material. Systems and devices relate to devices with patterned features.
US10398031B2
An aspect includes one or more board layers. A first chip cavity is formed within the one or more board layers, wherein a first Josephson amplifier or Josephson mixer is disposed within the first chip cavity. The first Josephson amplifier or Josephson mixer comprises at least one port, each port connected to at least one connector disposed on at least one of the one or more board layers, wherein at least one of the one or more board layers comprises a circuit trace formed on the at least one of the one or more board layers.
US10398024B2
The stretchable circuit board (100) includes: a stretchable base (10); a stretchable wiring portion (20) formed on the stretchable base (10); a reinforcement base (30) having in-plane rigidity higher than that of the stretchable base (10); a draw-out wiring portion (40) formed on the reinforcement base (30), and electrically continuous with the stretchable wiring portion (20); and an elastomer layer (50) formed on the reinforcement base (30). The reinforcement base (30) overlaps with a partial area (10a) of the stretchable base (10). An other area (10b) of the stretchable base (10) is exposed from the reinforcement base (30). The stretchable wiring portion (20) extends on the other area (10b) and over the partial area (10a). The elastomer layer (50) and the stretchable base (10) are layered and joined with each other.
US10398020B2
A circuit assembly that includes a heat generator; a circuit board, which has a conduction path, and to which the heat generator is mounted, a heat dissipating member arranged facing the circuit board, an insulating film arranged in a region that is overlapped by the heat generator between the circuit board and the heat dissipating member, an adhesive or sticky first heat conductor that is arranged between the circuit board and the insulating film and is in contact with the circuit board and the insulating film, and an adhesive or sticky second heat conductor that is arranged between the insulating film and the heat dissipating member and is in contact with the insulating film and the heat dissipating member.
US10398019B2
A circuit structure that includes: an insulating heat transfer member that transfers heat from a bus bar to a heat dissipating member, is insulating, and is provided between the bus bar and the heat dissipating member; and a restricting member that restricts movement of the insulating heat transfer member that is caused by an increase in the temperature of the insulating heat transfer member, and is provided between the bus bar and the heat dissipating member. The restricting member is provided with heat transfer openings for bringing the insulating heat transfer member into contact with the bus bar, and, the insulating heat transfer member 80 has a smaller area than an opening area of the heat transfer openings, in a state of being in contact with the bus bar.
US10398015B2
An ion generator including a vacuum chamber; an anode in the chamber, and two movable cathodes in the chamber whereby the distance of the cathodes relative to the anode can be varied. A servo actuated motor can be operably connected to each movable cathode to move the cathodes in the chamber and modify the plasma generated.
US10398011B2
An apparatus and method for actively managing the current provided to an X-ray filament is provided. A feedback measurement of the actual filament current supplied to an X-ray filament is provided into a current manager and feedback system. An error amplifier compares the feedback measurement to a filament reference command indicating the appropriate current amount to be supplied to the X-ray filament, and the output of the error amplifier runs a pulse width modulator to provide a signal to an inverter to supply a voltage to the X-ray filament transformer. When a comparator senses sufficient high voltage is supplied to the X-ray tube, a second error amplifier is allowed to add to the filament current command an amount sufficient to make the X-ray tube's emission current match the commanded emission current. Additional circuitry and electronic switches are provided to allow the apparatus to operate in a dual-filament system.
US10398003B2
A control gateway for colored or color-changing lighting fixtures to allow access to local and remote control systems with real time control with power backup for security triggering using an established color code to indicate the nature of the emergency.
US10397994B2
This invention discloses a LED backlight driving circuit including: a first and a second LED strings; a first and a second capacitors; a boosted circuit, an input of which is connected to the power source and an output of which is connected to the first and the second capacitors, and the first and the second LED strings; an LED controller, electrically connected to the boosted circuit, in the first period is used for controlling the boosted circuit to supply power to the first branch and to charge the first capacitor and the same as to the second branch and the second capacitor; in the second period it is used for controlling the boosted circuit to cut off the first branch to make the first capacitor charge to the first branch and the same as to the second branch and the second capacitor. This invention also discloses a liquid crystal display.
US10397992B2
In a power converter, a circuit determines an average value of an inaccessible current from an average value of an accessible current and a value of the operating duty cycle of the converter. A method of measuring an average value of an inaccessible current from a measured value of a current, in a power converter, by a duty cycle of a pulse width modulation (PWM) signal, representing a duty cycle of the power converter. Coupling a voltage representing the measured value to an input of a low pass filter during a time period (D) and coupling the input of the low pass filter to a reference voltage during a time period (1−D).
US10397989B1
The oven with a temperature probe measures the temperature of food being cooked within the oven to provide real time feedback for determining a status of the food being cooked, such as, for example, indications that the food is fully cooked, partially cooked or uncooked. The oven with a temperature probe is similar to a conventional oven, but with a telescopic tube which selectively extends into the cooking chamber of the oven. An upper end of the telescopic tube is mounted within an open interior of a hollow upper wall of the oven, and a lower end of the telescopic tube defines a probe tip, containing a temperature sensor for measuring an internal temperature of the food being cooked. When not in use, the telescopic tube collapses fully within the open interior of the hollow upper wall. A display indicates cooking status of the food, based on the measured temperature.
US10397986B2
Disclosed herein is a heat generation apparatus using permanent magnets. The heat generation apparatus using permanent magnets includes: a plurality of rotors fixedly mounted on a rotating shaft, and configured such that they are rotatable along with the rotating shaft with permanent magnets disposed thereon at predetermined intervals; a heat generation part configured such that the rotors are contained therein to thus form a predetermined gap between the heat generation part and the rotors, and adapted to generate heat while the permanent magnets are being rotated; a motor configured to serve as a source for the rotation of the rotating shaft; and a power transmission means configured to transfer the rotation force of the motor to the rotating shaft.
US10397984B2
A slide-in or drop-in cooking range includes an upper cooktop in the form of a module suspended above an oven cavity. For installation purposes, the upper cooktop can be vertically repositioned relative to the oven cavity to assure proper alignment with the countertop and avoid damage to the cooktop as a result of combined thermal and mechanical stresses over time. The disclosure is particularly applicable to ranges employing glass cooktops having a periphery designed to rest upon edge portions of a countertop and contemplates various mechanisms to perform the cooktop repositioning function, including select mechanisms for locking, ratcheting and biasing the cooktop to establish a desired vertical position for the cooktop.
US10397981B2
The present application is disclosed an atomizing component and an electronic cigarette. The atomizing component comprises a light-permeable e-liquid storage sleeve. An atomizing core is detachably connected to an end of the e-liquid storage sleeve. A fastening element for restricting radial expansion of the e-liquid storage sleeve is sleeved at where the e-liquid storage sleeve is insertedly connected to the atomizing core. An end of a ventilation pipe opposite to the atomizing core is a smoke emitting outlet in communication with a suction nozzle. An e-liquid filler hole is extended from the end of the ventilation pipe provided with the smoke emitting outlet. The smoke emitting outlet and the e-liquid filler hole are located on planes of different heights; while e-liquid is being added, the outer circumferential wall of the ventilation pipe blocks the e-liquid splashed accidentally, thus preventing the e-liquid from being splashed into the ventilation pipe.
US10397979B2
There is provided a communication method for a coordinator communication device, including generating a first scheduling element to be used by a first communication device and a second scheduling element to be used by a second communication device; and transmitting the first and second scheduling elements to the first and second communication devices. The second scheduling element includes a second allocation indicating a time-frequency resource allocated to the second communication device. The first scheduling element includes a first allocation indicating a time-frequency resource allocated to the first communication device and optionally includes a first virtual allocation that is a duplicate of the second allocation. The first communication device performs communication in accordance with a first communication system using a first frequency band, and the second communication device performs communication in accordance with the first communication system or a second communication system using a second frequency band that includes the first frequency band.
US10397959B2
A method and apparatus for performing a random access procedure in a wireless communication system is provided. A user equipment (UE) determines one random access configuration from a first random access configuration for a normal type of UE and a second random access configuration for a specific type of UE, and transmits a random access preamble based on the second random access configuration to an eNodeB (eNB) if the UE is a specific type of UE. Also, a method and apparatus for establishing, by a UE, a connection in a wireless communication system is provided. The UE transmits a connection request message including bandwidth related information to the eNB.
US10397958B2
Method and apparatus for a backoff mechanism applied for a random access procedure for a user equipment (UE) (e.g. mobile phone) in a wireless communication system are disclosed herein. The UE applies different backoff times for random access procedures based on different factors applicable to the UE. The UE may adjust the backoff time by an offset or a weighted value, and may derive an adjusted backoff time based on different backoff parameter values.
US10397956B2
A method for transmission and reception in parallel on dual channels includes, when detecting that a first channel is occupied by CSMA contention, determining, by an AP, first transmission duration of a first channel data packet. The method additionally includes determining, by means of CCA detection, that a second channel is idle, where the second channel is used to transmit a second channel data packet whose transmission direction is opposite to a transmission direction of the first channel. The method additionally includes determining, by using the first transmission duration, second transmission duration for transmitting the second channel data packet, and transmitting the second channel data packet according to the second transmission duration, where an end time of transmission of the second channel data is not later than an end time of transmission of the first channel data.
US10397949B2
Provided are a PUCCH resource configuration method in carrier aggregation and equipment thereof. According to one implementation, provided is a Physical Uplink Control Channel (PUCCH) resource configuration method executed by a base station, including: configuring PUCCH resources comprising a first parameter and a second parameter for a first antenna port, wherein the first parameter indicates PUCCH resource values allocated to the first antenna port, and the second parameter indicates the number of continuous PRBs for PUCCH resources which are allocated to the first antenna port; and sending the PUCCH resource configuration to user equipment.
US10397946B2
Provided is an uplink reference signal transmitting method for a terminal configured to support a length of a transmission time interval (TTI) in a wireless communication system according to an embodiment of the present invention. The method is performed by a terminal and may comprise the steps of: receiving configuration information associated with an uplink reference signal for a plurality of TTIs from a base station; and transmitting an uplink reference signal in at least one TTI from among the plurality of TTIs, using the received configuration information, wherein the configuration information may be included in signaling that schedules at least one TTI from among the plurality of TTIs.
US10397938B2
In the present disclosure, a method for transmitting and receiving uplink (UL) data performed by a base station in a wireless communication system includes transmitting a UL grant to a first user equipment (UE); transmitting a fast UL grant in relation to an urgent message transmission to at least one of the first UE or a second UE; and receiving the urgent message from the second UE through a UL resource allocated by the fast UL grant, and the UL resource allocated by the fast UL grant is a resource withdrawn from a resource allocated to the first UE by the UL grant.
US10397935B2
Embodiments of an evolved Node B (eNB) and methods for radio link failure handling for dual connectivity are generally described herein. A method performed by circuitry of a User Equipment (UE) may include connecting at a UE, to a Master eNB (MeNB) and connecting to a Secondary eNB (SeNB). The method may include determining at the UE, that one of the connections has a Radio Link Failure and determining at the UE, that the other of the connections remains connected to the UE. The method may include refraining from initiating a Radio Resource Control (RRC) re-establishment procedure while at least one of the connections does not have a radio link failure.
US10397907B2
The present application discloses a method for allocating a network resource, a method for connecting to a target device in a network, a base station, and a terminal device. In the method for allocating a network resource, a base station receives request information sent by a first terminal device, where the request information is configured to request the base station to allocate a network resource; the base station sends, to the first terminal device, allocation information of the network resource allocated by the base station, where the allocation information is configured to indicate the network resource allocated by the base station; the first terminal device is a terminal served by a cell of the base station, and the second terminal device is a terminal that accesses the target device by using the first terminal device. Thus, a problem of network resource waste is reduced, and user experience is improved.
US10397906B2
The present invention relates to a wireless communication system and, more particularly, to a method and an apparatus therefor, the method comprising: a step of acquiring a periodically allocated PUSCH resource, wherein the periodically allocated PUSCH resource is used for a transmission of a first PUSCH; a step of performing a procedure for transmitting uplink control information if transmission of the uplink control information is required at the transmission timing of the first PUSCH; and a step of transmitting the uplink control information, wherein if an aperiodically allocated second PUSCH does not exist at the transmission timing of the first PUSCH, the uplink control information is transmitted via the first PUSCH, and if the aperiodically allocated second PUSCH exists at the transmission timing of the first PUSCH, the uplink control information is transmitted via the second PUSCH.
US10397905B2
The present invention provides a method and apparatus for transmitting uplink control information (UCI) by user equipment in a wireless communication. The user equipment performs channel coding on information bits of the UCI to generate encoding information bits; performs modulation on the thus generated encoding information bits to generate complex modulation symbols; spreads the complex modulation symbols block-wise to a plurality of single carrier-frequency division multiple access (SC-FDMA) symbols based on an orthogonal sequence; and transmits the spread complex modulation symbols to a base station.
US10397904B2
Various aspects of the disclosure relate to communicating uplink control information. As one example, a user equipment may send uplink control information to a base station. In some aspects, the number of symbols used to communicate the uplink control information may be based on a link gain associated with the UE and/or based on a payload size of the uplink control information. As another example, the user equipment may send channel information for a number of beams to the base station. In some aspects, the number of beams may be based on the type of channel that is used to send the uplink control information.
US10397900B2
A communication control method includes: a step A of receiving, by UE 100-1 in a coverage of the mobile communication system, broadcast information transmitted from eNB 200; a step B of transferring, by the UE 100-1, the broadcast information to UE 100-2 outside the coverage of the mobile communication system; and a step C of receiving, by the UE 100-2, the broadcast information transferred from the UE 100-1.
US10397896B2
Systems and methods of the present disclosure provide a way to pinpoint where a target device associated with an IP address is physically located within a geographical region. Network-communication delays between landmark devices and the target device are determined and used to generate sequences capturing relative delay relationships between the landmark devices and the target device. The sequences are used to determine a ranking via a sequence-matching approach. For each pair of landmark devices, a geographical boundary that divides the geographical region into a target partition and a second partition is determined. The target partition includes a first landmark device of the pair and the second partition includes a second landmark device of the pair. The target device is located where the target partitions for the pairs overlap. Network tomography can be applied to increase accuracy.
US10397893B2
A method is provided. The method includes allocating a specified time period for receiving an uplink reference signal to each node, receiving an uplink reference signal that is received in the specified time period and forwarded by each node, obtaining power or a signal-to-noise ratio of the uplink reference signal forwarded by each node, selecting a time period corresponding to an uplink reference signal with maximum power or a maximum signal-to-noise ratio as a positioning time period, obtaining a corresponding positioning node according to the positioning time period and the specified time period for receiving an uplink reference signal, and determining a location of the mobile terminal according to a location of the positioning node.
US10397889B2
A method for receiving system information in a wireless communication system supporting a Narrow Band (NB)-Internet of Things (IoT), the method performed by a terminal comprising: receiving a narrowband synchronization signal (NBSS) through a narrowband (NB) from a base station; acquiring, based on the NBSS, time synchronization and frequency synchronization with the base station; and receiving the system information related to the NB-IoT through a narrowband physical broadcast channel (N-PBCH) from the base station, wherein the system information includes at least one of operation mode information indicating an operation mode of an NB-IoT system or control information indicating an index of a legacy CRS (cell-specific reference signal) sequence, and wherein the control information is associated with a PRB (physical resource block) index of a PRB to which the legacy CRS is transmitted.
US10397888B2
Phase compensation in a new radio (NR) coordinated multipoint (CoMP) environment is discussed. A base station may synchronize the phase between one or more additional base stations in a CoMP group serving one or more user equipments (UEs). A base station estimates an uplink channel based on a sounding reference signal (SRS) received from a given UE. The base station transmits a phase synchronization reference signal (PSRS) modulated using the uplink channel estimate. The UE can measure the phase and/or timing drift from the PSRS and then will report the compensation information for the phase and timing drift back to the base station. The base station may then use the compensation information to adjust transmission characteristics for the CoMP group.
US10397884B2
The application provides a method for power determining. UE is configured with multiple cells, a first subframe of a first cell corresponds to multiple second subframes of a second cell, and the method includes: calculating a first power requirement on the first subframe, and calculating multiple second power requirements on the multiple second subframes; calculating a power indicator on the multiple second subframes according to the multiple second power requirements; and determining transmit powers on the first subframe and the multiple second subframes according to a magnitude relationship between a maximum transmit power and a sum of the first power requirement and the power indicator. In the application, the power indicator is determined for multiple subframes of the second cell.
US10397878B2
A method and network entity for enabling higher order modulation (HOM) mode support for HOM capable wireless devices. The method includes determining a legacy mode power offset value for HOM mode capable wireless devices in legacy modulation mode and calculating a power headroom value for sending downlink data to the HOM mode capable wireless devices. When the power headroom value exceeds a threshold value, the HOM mode support for the HOM mode capable wireless devices is enabled using the identified legacy mode power offset value. When the power headroom value does not exceed the threshold value, and a HOM mode power offset value is available, the HOM mode power offset value being less than the legacy modulation mode power offset value, the HOM mode support for the HOM mode capable wireless devices is enabled using the HOM mode power offset value.
US10397875B2
In embodiments, a mobile device includes a primary battery as a power source to power components of the mobile device, and includes a secondary battery as an additional power source to power the components of the mobile device. A sensor is implemented to detect a free-fall of the device that indicates an impending secondary battery disconnect event due to the mobile device being dropped. A battery controller is implemented to receive a sensor input of the detected free-fall from the sensor. The battery controller can then switch from the secondary battery to the primary battery as the power source based on the detected free-fall of the mobile device. The battery controller can switch back from the primary battery to the secondary battery as the power source based on a lack of acceleration of the mobile device.
US10397863B2
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for activating or deactivating a cell in a wireless communication system, the method comprising: receiving an A/D MAC CE on a specific cell among the plurality of cells, wherein all of values of Ci fields of the A/D MAC CE are set to a same value, and performing activation or deactivation of the specific cell according to the same value.
US10397862B2
Provided is a wireless communication method performed at an access point to enhance the transmission efficiency in a wireless local area network (WLAN) system, the method including scheduling a transmission time of an enhanced traffic indicator map (TIM) frame based on a type of a station, and transmitting a second beacon including the enhanced TIM frame to the station at a point in time aside from a transmission point in time of a first beacon.
US10397846B2
A method and an apparatus relate to the communications field, used for determining a target cell, where the method includes obtaining, by a terminal, a historical camped-on cell list of the terminal and a neighboring cell list of a serving cell of the terminal, determining, by the terminal, that a first cell list is the neighboring cell list of the serving cell and the historical camped-on cell list when a signal strength of the serving cell of the terminal is less than or equal to a first preset value, performing, by the terminal, measurement for a cell in the first cell list to obtain a measurement result, and determining, by the terminal, a target cell from the first cell list according to the measurement result.
US10397839B2
A method is provided for improving handover in a mobile station configured to operate a time division multiple access, TDMA, protocol in a global system for mobile communications, GSM, telecommunication network. The method comprises the steps of receiving a handover command requesting that the mobile station perform a handover operation from a serving cell to a target cell, and configuring the mobile station to transmit and receive user plane data with the serving cell and the target cell during a time period between receiving the handover command and the handover operation being completed.
US10397832B2
The present invention provides a device-to-device (D2D) operation method performed by a relay terminal in a wireless communication system, the D2D operation method receiving data from a remote terminal, wherein the data includes a source ID of the data, filtering a packet of the data, and relaying the filtered data to a network, wherein the data is filtered on the basis of the source ID of the data.
US10397831B1
Systems and methods are described for load balancing between frequency bands based on bandwidth capacity. A load for a first frequency band and a load for a second frequency band may be determined, wherein a cell communicates with wireless devices over the first and second frequency bands. The determined loads may be adjusted based on a channel width for each frequency band and a duplexing scheme for each frequency band. And the adjusted loads may be balanced between the first frequency band and the second frequency band by instructing wireless devices in communication with the cell to change frequency bands used for communicating with the cell.
US10397827B2
An apparatus for managing deterministic and synchronous multi-channel extension (DSME) network fluctuations in an industrial wireless sensor network includes: a network congestion rate measurer configured to measure a network congestion rate on the basis of a number of times an association request message is received and a number of times carrier sensing is performed, a DSME-guaranteed time slot (GTS) allocation information collector configured to continuously collect DSME-GTS allocation information using coordinators, a DSME-GTS maintenance determiner configured to determine whether to maintain or collect DSME-GTSs on the basis of collected network information, a slot reallocation determiner configured to determine whether data is received without collision from two nodes to which a slot is redundantly allocated and transmit a DSME-GTS expiration request to a sensor node for reallocation of empty slots.
US10397815B2
Monitoring devices, which in some cases may comprise smartphones, are placed at base stations of a cellular communications network to report base station information. This may be performed in some cases without relying on communications with the base station, such as by monitoring sensors of the monitoring device and by analyzing signals transmitted by the monitored base stations. Status information regarding a monitored base station and/or anomalies detected at the base station are communicated to a central support service using the wireless capabilities of the monitored base station itself. In cases where the monitored base station is inoperative, the monitoring device can communicate through a neighboring base station.
US10397812B2
Outage detection and recovery in heterogeneous networks may benefit from sub-cell level, multi-layer degradation detection, diagnosis, and recovery. For example, cell outage detection and cell outage compensation may benefit from appropriate use of sub-cell level and multi-layer diagnosis and recovery techniques applied to degradation and outage scenarios. A method can include self-healing at least one first cell in a network or at least one second cell in the network. The network includes the at least one first cell and the at least one second cell. The at least one first cell and the at least one second cell have at least partially overlapping coverage. The self-healing can include a network device, such as a network management device, applying at least one of multi-layer reasoning to integrate information of different cell layers or sub-cell level reasoning to consider fine-granular location information. The self-healing can be based on location information.
US10397810B2
A processor implemented method of identifying a root cause of degraded network quality in a wireless network. The method includes accessing historical network performance data, the performance data including a time sequenced measure of performance indicators for the network. The method evaluates the historical performance data to determine regularly occurring associations between indicators to define a set of rules characterizing the associations of the wireless network, and stores the set of rules in a data structure. The wireless network is monitored by accessing analysis data reporting time sequenced performance indicator data. Next, anomalies are detected in a performance indicator in the analysis data and matched to at least one rule in the set of rules. The method outputs an indication of a cause of degradation in the wireless network resulting from the anomaly in the performance indicator.
US10397806B2
[Object] To provide a communication control device, a base station, a terminal device, a communication control method, and a wireless communication method which are capable of improving user throughput by performing more flexible frequency control. [Solution] Provided is a communication control device including: a communication unit configured to communicate with a base station of a wireless communication system in which one or more frequencies are used; a setting unit configured to set an event and set a frequency to be used by the base station using occurrence of the set event as a trigger; and an acquiring unit configured to acquire information for the setting by the setting unit.
US10397796B2
Techniques are described for wireless communication. One method of wireless communication includes receiving, at a first user equipment (UE), a first communication over a shared radio frequency spectrum band from a first base station. The first communication includes a pre-grant communication associated with a downlink transmission or a grant of uplink resources associated with an uplink transmission. The method further includes determining, based at least in part on receiving the first communication, whether a channel reservation signal is detected over the shared radio frequency spectrum band; and transmitting a second communication over the shared radio frequency spectrum band, to the first base station, based at least in part on the determining. The second communication includes an approval of the downlink transmission or the uplink transmission.
US10397792B2
A channel assignment apparatus includes an interfered amount processing unit that represents a value group by a symmetric matrix, the value group including, as an element, an amount of interference that occurs in each of wireless access points, performs a row exchange and a column exchange in the symmetric matrix based on magnitude of the amount of interference, and generates one of the upper triangular matrix and the lower triangular matrix from the symmetric matrix in which the row exchange and the column exchange are performed, an assigning unit that assigns a frequency channel to each of the wireless access points by using one of the upper triangular matrix and the lower triangular matrix in accordance with a predetermined algorithm for selecting an optimal assignment candidate corresponding to the magnitude of the amount of interference from among a plurality of assignment candidates for the frequency channel.
US10397780B2
Provided is a method for operating an authentication server for authenticating a user who is communicating with an enterprise via a network. The method include receiving, via the network, a first authenticator including first information from a low energy wireless device received via a user device wirelessly, and storing the first authenticator. When the authentication service later receives, from the enterprise, a request to authenticate the user, the authentication server transmits an authentication request to the user device via the network requesting that the user read information from the low energy wireless device using the user device. The information received from the low energy wireless device in response to the authentication request is then used authenticate the user by comparing the information received from the low energy wireless device due to the authentication request with the stored first authenticator.
US10397779B2
Techniques disclosed herein are generally directed toward providing at least one security feature for an FTM session. More specifically, an initiating STA can include a security feature in an initial FTM request (iFTMR), determine whether a received FTM frame contains information responsive to the at least one security feature, and complete the FTM session accordingly (including terminating the FTM session if the FTM frame does not contain correct information responsive to the at least one security feature). Embodiments may include a security feature such as nonce values and/or generated (or partially-generated) media access control (MAC) addresses.
US10397778B2
A computer system may include a smart card reader, a credential management system (CMS) server, an enrollment server connected with the CMS server on an internal LAN, and a mobile device associated with a user and configured to initiate enrollment with the enrollment server via an internal enrollment port inaccessible outside of the internal LAN. The CMS server may cooperate with the smart card reader to authenticate a smart card associated with the user, and generate a secure credential(s) that is stored on the mobile device based upon authentication of the smart card. The enrollment server may collect the secure credential(s) from the mobile device via the internal enrollment port, cooperate with the CMS server to verify the secure credential(s), and enroll the mobile device to access the enrollment server from outside of the internal LAN based upon verification of the secure credential(s).
US10397774B2
An information processing apparatus activates an access point for executing direct wireless communication with a communication terminal through a SSID complying with a specific setting method from among a plurality of setting methods upon condition that a network setting of the information processing apparatus is executed. The information processing apparatus also activates an access point through an SSID complying with a different setting method, based on a user operation for executing setting of the information processing apparatus through a setting method different from the specific setting method from among the plurality of setting methods wherein a network setting to be used by the information processing apparatus is received from the communication terminal through the direct wireless communication.
US10397771B2
Representative embodiments described herein set forth techniques for provisioning bootstrap electronic Subscriber Identity Modules (eSIMs) to mobile devices. According to some embodiments, a mobile device can be configured to issue, to an eSIM selection server, a bootstrap eSIM request that includes (i) metadata associated with the mobile device, and (ii) metadata associated with an electronic Universal Integrated Circuit Card (eUICC) included in the mobile device. In turn, the eSIM selection server selects and binds a particular bootstrap eSIM to the mobile device, and provides information to the mobile device that enables the mobile device to obtain the particular bootstrap eSIM from one or more eSIM servers. When the mobile device obtains the particular bootstrap eSIM, the mobile device can interface with a mobile network operator (MNO) and obtain a complete eSIM that enables the mobile device to access services provided by the MNO.
US10397764B2
Disclosed are an electronic device and a method of controlling wireless communication thereof. The electronic device includes: a first antenna configured to support first short-range wireless communication and second short-range wireless communication; a second antenna; and a processor, wherein the processor is configured to determine information related to occupancy of the first antenna by the first short-range wireless communication or the second short-range wireless communication, to simultaneously or sequentially perform the first short-range wireless communication and the second short-range wireless communication through the first antenna when the information related to the occupancy satisfies a predetermined condition; and to perform one kind of short-range wireless communication selected from the first short-range wireless communication and the second short-range wireless communication through the second antenna and to perform the other kind of short-range wireless communication through the first antenna when the information related to the occupancy satisfies another predetermined condition.
US10397763B2
A communication device includes a wireless communication unit, a memory and a processor. The wireless communication unit is configured to perform wireless communication with an information display device. The processor is configured to perform operations including receiving first work data including first setting data from the information display device having the first work data by the wireless communication unit; and registering the first work data as storage data in a case where the memory stores second work data including second setting data and in a case where the first setting data and the second setting data are different from each other.
US10397762B2
An infrastructure equipment for forming part of a mobile radio network includes a transmit and receive unit, to transmit and receive data to and from mobile communications devices via a wireless access interface, and a controller processing requests for communications resources from the mobile communications devices. Plural associated communications devices are arranged to form a group, and each of the associated communications devices of the group includes a same common identifier, with respect to which communications sessions can be established to communicate data via the mobile radio network, and the controller is arranged in combination with the transmit and receive unit to respond to a request from one of the communications devices of the group to establish a communications bearer using the common identifier.
US10397759B1
A method of collecting inventory scan data at a mobile scanner includes: obtaining a location identifier corresponding to a location containing a plurality of inventory tags for wireless scanning; obtaining scan criteria corresponding to the location identifier, the scan criteria indicating a target position and a target orientation for the mobile scanner; determining whether a current position and a current orientation of the mobile scanner match the target position and the target orientation; when the determination is affirmative, initiating a wireless scan of the inventory tags; and collecting and storing inventory scan data from the inventory tags responsive to initiating the wireless scan.
US10397758B2
Systems, devices, and techniques described herein are directed to function selection based on utilization level in mobile networks. In particular, the systems, devices, and techniques can be implemented in fifth generation (5G) mobile networks to provide intelligent selection of a user plane function (UPF) based on utilization levels, capability information, and/or locality information. UPFs can provide indications of a utilization level to a network resource function (NRF), which can manage a database of the various utilizations levels of various UPFs. Based on a current, historical, or expected utilization of one or more UPFs, and/or based on the services requested and various locations of the services in a network, the NRF can select and provide, in part, a UPF to the UE, so that the UPF can carry user traffic associated with the UE.
US10397740B2
The present application involves systems, software, and computer-implemented methods for modifying triggered notifications associated with particular user profiles based on an analysis of a context of the user profile. One example system performs operations including identifying at least one satisfied notification rule for triggering notifications to a user device associated with at least one particular user profile. For each particular user profile, operations include accessing the particular user profile to identify at least one user-specific contextual rule corresponding to the at least one notification modification rules and identifying a current user context associated with the particular user profile. In response to the current user context satisfying the user-specific contextual rule, the triggered notification for the particular user profile can be modified based on the satisfied user-specific contextual rule. If the context does not satisfy the rule, the triggered notification can be transmitted to a user device associated with user profile.
US10397731B2
According to one embodiment, a method of controlling a sprinkler system is provided. An example method includes receiving an access request to grant control of the sprinkler system to a device, responsive to receiving the access request, transmitting an authorization including a first digital security token, storing a local copy of the first digital security token, receiving a request to control the sprinkler system from the device, wherein the request includes a second digital security token, comparing the second digital security token to the local copy of the first digital security token to determine whether the second digital security token matches the local copy of the first digital security token, and responsive to determining that the second digital security token matches the local copy of the first digital security token, granting control of the sprinkler system to the device based.
US10397730B2
Method and system for providing virtual surround sound on headphones using input audio. Embodiments herein relate to sound processing and more particularly to providing surround sound on headphones. Embodiments herein disclose a method and system for simulating surround sound on a headphone, by emulating multiple speakers in 3D space by processing audio using Head Related Transfer Function (HRTF) filters and other audio processing filters, wherein the input to the headphone is stereo input.
US10397727B1
A method clusters audio sources in virtual environments. The method is performed at a virtual-reality device displaying a virtual environment. The device identifies two audio sources in the virtual environment. For each of the two audio sources, the device determines a bounding box in the virtual environment. Each bounding box includes termination points for a respective plurality of rays emanating from a point in the virtual environment corresponding to the audio source. The device applies an overlap test to the bounding boxes to determine whether the two audio sources are in a same room. The device forms an angle according to rays from the location of the listener to the audio source points. When the two audio sources are in the same room and the angle is less than a predetermined threshold angle, the device clusters the two audio sources together, including rendering combined audio for the two audio sources.
US10397720B2
Audio signals are received. The audio signals include left and right surround channels. The audio signals are played back using far-field loudspeakers distributed around a space having a plurality of listener positions. The left and right surround channels are played back by a pair of far-field loudspeakers arranged at opposite sides of the space having the plurality of listener positions. An audio component coinciding with or approximating audio content common to the left and right surround channels is obtained. The audio component is played back using at least a pair of near-field transducers arranged at one of the listener positions. Associated systems, methods and computer program products are provided. Systems, methods and computer program products providing a bitstream comprising the audio signals and the audio component are also provided, as well as a computer-readable medium with data representing such audio content.
US10397718B2
A vibration diaphragm and a manufacturing method thereof are provided. The vibration diaphragm comprises an annular support member, a first vibration diaphragm layer and a circuit layer. The first vibration diaphragm layer is fixedly connected to a support body of the annular support member. The circuit layer is positioned on a surface of the first vibration diaphragm layer that is adjacent to a vibrating voice coil and is fixedly connected to the first vibration diaphragm layer and the support body. The circuit layer is provided with a circuit area, a capacitance area, and a capacitance solder pad. The capacitance area is a capacitance electrode plate formed on the first vibration diaphragm layer. The capacitance area is communicated with the capacitance solder pad by means of the circuit area. The solder pad corresponds to the support body. The reliability of capacitance data acquisition is improved.
US10397705B2
Multi-layer composites and methods of using the composites as a membrane for electroacoustic transducers. The composites and methods comprise at least one first and one second outer layer, wherein at least one of the cover layers being made from a polypropylene sulfide-plastic having a halogen content not exceeding 550 ppm.
US10397701B2
A system includes a class D amplifier and a current steering digital-to-analog converter (DAC) directly connected to the class D amplifier. The system also includes a common mode servo circuit coupled to a node interconnecting the current steering DAC to the class D amplifier. The common servo circuit amplifies a difference between a common mode signal determined from the node and a reference voltage and generates a feedback current to the node based on the amplified difference. A feed-forward common-mode compensation circuit is included to reduce an alternating current (AC) ripple from the class D amplifier. The feed-forward common-mode compensation circuit includes first and second resistors coupled to respective outputs of the class D amplifier. A current mirror is coupled to the first and second resistors and is configured to sink a current from the node to ground that approximates a common mode feedback current of the class D amplifier.
US10397676B2
The present invention discloses a speaker module, comprising: a speaker assembly, a module shell and a front cover. The module shell is configured to bear the speaker assembly, and comprises a first shell and a second shell, wherein the first shell is doped with a thermally conductive filler. The front cover is configured to cooperate with the module shell to encapsulate the speaker assembly. The speaker module provided by the present invention can quickly discharge heat generated by the speaker assembly during operation through the module shell to prevent overheat of the speaker assembly, thereby avoiding performance loss of a speaker due to high temperature.
US10397672B2
An optical access network includes an optical hub having at least one processor. The network further includes a plurality of optical distribution centers connected to the optical hub by a plurality of optical fiber segments, respectively, and a plurality of geographic fiber node serving areas. Each fiber node serving area of the plurality of fiber node serving areas includes at least one optical distribution center of the plurality of optical distribution centers. The network further includes a plurality of end points. Each end point of the plurality of end points is in operable communication with at least one optical distribution center. The network further includes a point-to-point network provisioning system configured to (i) evaluate each potential communication path over the plurality of optical fiber segments between a first end point and a second end point, and (ii) select an optimum fiber path based on predetermined path selection criteria.
US10397667B2
A mobile communication device consistent with the present disclosure may automatically fold itself in order to reorient an antenna within the device housing. This reorientation may result in changes in antenna power efficiency and/or signal strength. As another example, the same or a similar device may automatically fold itself such that an onboard camera fixed to the device may be dynamically reoriented to, e.g., track a subject, record a panoramic image or video, account for motion of a subject or of the device, etc. The automatic self-folding nature of these or other devices is particularly advantageous in that it does not require manual manipulation by a user. Folding may be performed by inducing a torque about a pivot axis using one or more torque mechanisms (e.g., motors).
US10397661B2
Systems, methods, and computer-readable storage media are provided for providing target content, such as advertisements, based on one or more selected video frames. A set of video frames and target content is received. The target content is to be presented upon detection of a playback of the set of video frames. The playback of the set of video frames is detected. In response to the detection of the playback of the set of video frames, the target content is communicated for presentation.
US10397658B1
A media system employs techniques to identify relevant gameplay content in a game environment using a vector-space framework. These techniques include generating a user query based on feature-values for features associated with a user frame of a user stream, mapping the user query to a user vector in a vector-space, selecting relevant content streams from a plurality of content streams based on a proximity between the user vector and position vectors mapped to the plurality of content streams, and presenting at least a portion of the relevant content streams.
US10397636B1
An electronic device has one or more processors, a display, and memory. The memory stores one or more programs configured for execution by the one or more processors. The device receives, from a content delivery network, a program manifest including one or more video segments of a video. The electronic device parses the program manifest to identify a timeline for the video that spans the video segments. The electronic device receives, from a social-networking server, a playback offset for the video. In accordance with the playback offset and the timeline for the video, the electronic device determines a designated video segment and a playback position within the designated video segment. The electronic device then plays the video segments sequentially on the electronic device, commencing at the playback position within the designated video segment.
US10397630B2
The present invention relates to an apparatus for providing, editing, and playing video contents and the method thereof, which provide an application program allowing a user to produce contents made by one's own producing and editing and also playing the video contents; a video contents provision platform for selling and purchasing the video contents based on social network services; and a device of controlling the playback of the original video content file and the method thereof, being capable of storing the video content editing information as an additional data file while keeping the original video content stream intact.
US10397622B2
Digital files are compressed using a process including Schmidt decompositions of matrices using an algorithm, termed ‘BSD’ herein, which is based on an algebraic method generalizing QR decomposition. Software analyzes an input file and initially identifies a matrix M, with entries within a predefined set of integers, within the file. Next, essential entries are defined, extracted from M, that contain sufficient information to recover M using BSD. The compressed file includes the essential entries and their positions within M. To achieve an encryption process, software encrypts the pattern matrix that includes the positions of the essential entries of M. To achieve a lossy compression, software identifies essential entries that contain sufficient information to recover an approximation to M for which the quality is determined by an error threshold. For a more efficient lossy compression, software uses singular value decomposition, BSD, and other signal processing of M.
US10397615B2
A deblocking filtering control comprises checking whether pixel values of four pixels (12, 22) in a line (15) of pixels (12, 22) in a block (10) of pixels (12) and in a neighboring block (20) of pixels (22) form an approximate line. If the pixel values of the four pixels (12, 22) in the line (15) of pixels (12, 20) in both the block (10) of pixels (12) and in the neighboring block (20) of pixels (22) form an approximate line the deblocking filtering control selects to apply strong deblocking filtering to pixel values in the line (15) of pixels (12, 22). The subject and objective quality of the deblocking filtering is thereby improved by applying strong deblocking filter to areas where the signal in a picture (1) not only has the form of a flat line but also form a ramp.
US10397614B2
The present disclosure relates to an image processing apparatus and a method that can easily improve encoding efficiency. A setting unit configured to set additional information including packing information related to packing processing of rearranging each pixel data of RAW data that is image data before demosaicing processing is performed according to the degree of correlation, and an encoding unit configured to encode the RAW data subjected to the packing processing, and generate a bit stream including obtained encoded data and the additional information set by the setting unit are included. The present disclosure can be applied to image processing apparatuses such as an image encoding device that encodes the RAW data and an image decoding device that decodes the encoded data that is encoded RAW data.
US10397610B2
There is provided a slice header prediction method and apparatuses for 3D video encoding and decoding. In some example embodiments the following features can be derived from the header prediction method. Any decoding order of texture and depth view components may be supported. Also flexible prediction of syntax elements from any slice header appearing earlier in decoding order within the same access unit is allowed. The prediction can be turned on or off on view component basis. The syntax elements of the slice header may be categorized in a few sets and the use of the prediction as well as the prediction source for each set can be individually controlled. By using some example embodiments of the method all syntax elements of the slice header may be predicted.
US10397598B2
A method for decoding an image according to the present invention comprises the steps of: restoring a residual block by performing inverse quantization and inverse transformation for the entropy-decoded residual block; generating a prediction block by performing intra prediction for a current block; and restoring an image by adding the restored residual block to the prediction block, wherein the step of generating the prediction block further comprises a step for generating a final prediction value of a pixel to be predicted, on the basis of a first prediction value of the pixel to be predicted, which is included in the current block, and of a final correction value that is calculated by performing an arithmetic right shift by a binary digit I for a two's complement integer representation with respect to an initial correction value of the pixel to be predicted. The operational complexity during image encoding/decoding can be reduced.
US10397597B2
A predictive coding system performs predictive encoding by determination of an optimum prediction mode from prediction methods for a pixel signal of a target block. A predicted signal is generated according to the determined mode, and a residual signal is determined. The residual signal and the optimum prediction mode are encoded to generate a compressed signal, which is decoded. The decoded signal is stored as a reconstructed picture sample. During encoding, a candidate prediction mode list is generated that contains elements of optimum prediction modes of previously-reproduced blocks neighboring the target block. A flag indicating whether the list contains an element corresponding to the optimum prediction mode is encoded, and an index to the corresponding element is encoded if the corresponding element is included in the list. The optimum prediction mode can be encoded based on identifying the elements in the list, unless no corresponding element appears on the list.
US10397596B2
In one embodiment, a method including dividing a reference mask into a plurality of reference mask divisions, determining a plurality of motion vectors respectively associated with a plurality of slice divisions, wherein the plurality of reference mask divisions respectively correspond to the plurality of slice divisions, modifying a blurring kernel in accordance with the plurality of motion vectors, yielding a plurality of modified blurring kernels that are respectively associated with the plurality of slice divisions, and performing at least one action to yield an altered reference mask, including for the plurality of reference mask divisions and the plurality of modified blurring kernels: convolving a reference mask division with a weighted function of at least a modified blurring kernel associated with a slice division, of the plurality of slice divisions, to which the reference mask division corresponds.
US10397594B2
A method is provided for real-time processing of IoT data. For example, a first physical processor of an edge computing device may receive a set of data from a first IoT device communicably coupled to the edge device. The first physical processor may split the set of data into a set of individual data packets. A second physical processor of the edge device process the set of individual data packets by: concurrently applying, by a plurality of instances of the second physical processor of the edge computing device, a learning model to each of a corresponding plurality of data packets from the set of individual data packets; and annotating, by a subset of the plurality of instances of the second physical processor, a corresponding subset of the plurality of data packets with a corresponding output from the concurrent application of the learning model.
US10397589B2
The present invention relates to a method for predicting an inter-layer of an image having a plurality of layers including at least one temporal sub-layer. The method according to present invention comprises the steps of: acquiring information on a temporal sub-layer for inter-layer prediction; inducing a reference picture used for predicting an inter-layer of a current picture on the basis of the information on the temporal sub-layer; and predicting the inter-layer of the current picture on the basis of the reference picture.
US10397588B2
A method and apparatus of sharing an on-chip buffer or cache memory for a video coding system using coding modes including Inter prediction mode or Intra Block Copy (IntraBC) mode are disclosed. At least partial pre-deblocking reconstructed video data of a current picture is stored in an on-chip buffer or cache memory. If the current block is coded using IntraBC mode, the pre-deblocking reconstructed video data of the current picture stored in the on-chip buffer or cache memory are used to derive IntraBC prediction for the current block. In some embodiments, if the current block is coded using Inter prediction mode, Inter reference video data from the previous picture stored in the on-chip buffer or cache memory are used to derive Inter prediction for the current block. In another embodiment, the motion compensation/motion estimation unit is shared by the two modes.
US10397587B2
Image data of a format in which pixel data having a value of one color component among a predetermined plurality of color components is regularly arranged is converted to a data format in which each item of pixel data has values of the plurality of color components. After performing resizing processing on this image data, the image data is returned to the original data format. Thus, it is possible to perform resizing with a magnification ratio that is not limited to one divided by an integer.
US10397584B2
A method of decoding a image according to an embodiment of the present invention, which supports a plurality of layers, may comprise the steps of: receiving information on a reference layer used to decode a current picture for inter-layer prediction; inducing the number of valid reference layer pictures used to decode the current picture on the basis of the information on the reference layer; and performing inter-layer prediction on the basis of the number of valid reference layer pictures.
US10397580B2
The present invention discloses a method and apparatus for encoding or decoding a video signal. The method for processing a video signal according to the present invention uses a merging mode in which prediction information on a neighbor unit is used instead of transmitting prediction information on the present unit, so as to improve coding efficiency. In this case, the number of available candidate units for merging among the units in a predetermined position is determined, and information for the merging mode is acquired on the basis of the number of the available candidate units for merging. The unit to be merged is determined using the information for the merging mode, and prediction information on the unit to be merged is acquired. The prediction value for the present unit is acquired using the prediction information on the unit to be merged, and the present unit is restored using the acquired prediction value.
US10397577B2
This disclosure describes techniques for coding transform coefficients associated with a block of residual video data in a video coding process. Aspects of this disclosure include the selection of a scan order for both significance map coding and level coding, as well as the selection of contexts for entropy coding consistent with the selected scan order. This disclosure proposes a harmonization of the scan order to code both the significance map of the transform coefficients as well as to code the levels of the transform coefficient. It is proposed that the scan order for the significance map should be in the inverse direction (i.e., from the higher frequencies to the lower frequencies). This disclosure also proposes that transform coefficients be scanned in sub-sets as opposed to fixed sub-blocks. In particular, transform coefficients are scanned in a sub-set consisting of a number of consecutive coefficients according to the scan order.
US10397575B2
An image coding method for an image coding apparatus configured to divide an image into divisional blocks of a plurality of sizes and to perform coding on the image while controlling image quality according to a parameter value in units of divisional blocks includes acquiring a block size of a target block to be coded, acquiring a minimum block size used to control the parameter value, acquiring a state of division of the target block, acquiring the parameter value, determining whether the target block is divided according to the state of division of the target block, determining whether the block size of the target block is greater than or equal to the minimum block size, determining whether the block size of the target block is equal to the minimum block size, and coding the acquired parameter value.
US10397573B2
In a video processing system, a method and system for generating a transform size syntax element for video decoding are provided. For high profile mode video decoding operations, the transform sizes may be selected based on the prediction macroblock type and the contents of the macroblock. A set of rules may be utilized to select from a 4.x.4 or an 8.x.8 transform size during the encoding operation. Dynamic selection of transform size may be performed on intra-predicted macroblocks, inter-predicted macroblocks, and/or direct mode inter-predicted macroblocks. The encoding operation may generate a transform size syntax element to indicate the transform size that may be used in reconstructing the encoded macroblock. The transform size syntax element may be transmitted to a decoder as part of the encoded video information bit stream.
US10397569B2
A method and apparatus for video coding using template-based Intra prediction are disclosed. According to one method, the template-based Intra prediction searches N template matching candidates to reduce the complexity. In another method, the template-based Intra prediction assigns different weights for different pixel locations of template or uses different pixel precision for interpolation filter during cost evaluation among template matching candidates. In yet another method, truncated template size is used to reduce the complexity. In yet another method, the left and top templates may have different sizes for non-square block. In yet another method, inverse templated-based Intra prediction is used.
US10397564B2
An image monitoring apparatus, includes: an abnormality detecting part configured to detect an abnormal output from an imaging device based on frame data input to a display driving device that displays the frame data output from the imaging device on a display device; and a signal output part configured to output an abnormality detection signal when the abnormal output is detected.
US10397557B2
A display backlight comprises an edge-lit lightguide having an array of light out-coupling structures to enable light to escape from the lightguide at the location of the light out-coupling structures. A light source arrangement is used for providing light into the lightguide at one or both of the opposite side edges. The light source arrangement is controllable to provide a selected one of at least first and second light outputs into the lightguide, the two light outputs having a different angle to the general plane of the lightguide and resulting in light which escapes from the lightguide with a different range of exit angles. In this way, a directional backlight output is enabled, based on the way light is coupled into a lightguide. This provides a simple structure only requiring control of the light provided to the lightguide. The backlight may for example enable an auto stereoscopic display to be formed without the need for a lenticular array.
US10397555B2
An electronic communications method includes receiving, by a device, electronic information associated with a two-dimensional image. The electronic communications method also includes analyzing, by the device, the electronic information. The electronic communications method includes generating, by the device, a three-dimensional electronic image based on the electronic information.
US10397547B2
An image pickup unit, an image pickup device, a picture processing method, a diaphragm control method, and program are capable of suppressing deterioration in quality of a stereoscopic picture. A parallax detection pixel receives object light by a plurality of photodetectors covered with one microlens, to generate a signal used for detecting parallax. G pixels, an R pixel, and a B pixel each receive the object light to generate a signal used for generating a planar picture. A parallax detection section detects parallax based on the signal generated by the parallax detection pixels. A 2D picture generation section generates a planar picture based on a signal generated by picture generation pixels. A 3D picture generation section adjusts a position of each object image included in the planar picture, based on the detected parallax, to generate a stereoscopic picture.
US10397538B2
Methods and apparatus for supporting the capture of images of surfaces of an environment visible from a default viewing position and capturing images of surfaces not visible from the default viewing position, e.g., occluded surfaces, are described. Occluded and non-occluded image portions are packed into one or more frames and communicated to a playback device for use as textures which can be applied to a model of the environment where the images were captured. An environmental model includes a model of surfaces which are occluded from view from a default viewing position but which maybe viewed is the user shifts the user's viewing location. Occluded image content can be incorporated directly into a frame that also includes non-occluded image data or sent in frames of a separate, e.g., auxiliary content stream that is multiplexed with the main content stream which communicates image data corresponding to non-occluded environmental portions.
US10397537B2
The present invention relates to a video signal transmission device and the like that can support a variety of system specifications. The device includes a packer unit, an encoder unit, and a serializer. The packer unit generates, from a video signal of one or more pixels, a plurality of block signals having a packet configuration of size corresponding to the number of pixels and the number of tone bits of a color signal constituting a video signal. At this time, a control signal including a pulse having a width corresponding to the number of pixels and the number of tone bits is also generated. The encoder unit applies encoding processing having encoding efficiencies that are different between a first period and a second period of a control signal that are distinguished depending on existence or non-existence of a pulse to the block signals.
US10397535B2
An optical micro-projection system comprising the following components: at least one laser light source (200, 400, 402, 600); at least one movable mirror (102, 103, 203) for deviating light from said light source to allow generation of images on a projection surface (104, 301, 303, 306, 603); a self mixing module for measurement of the distance (604) between the projection source and a projection surface, said self mixing module comprising: —at least one photodiode (401, 601) for monitoring the light emission power of the laser light source; —an optical power variation counter for counting optical power variations (605); successive displacements of said mirror allowing the self mixing module providing successive projection distance measurements of a plurality of points of said projection surface. A projection method for optical micro-projection system and a distance measurement method are also provided.
US10397528B2
Systems and methods for communicating in a network using share signals in accordance with various embodiments of the present disclosure are provided. In one embodiment, a method for communicating in a network may include receiving, from a first client device, a share signal including image data captured by a camera of a first audio/video (A/V) recording and communication device; transmitting, to a second A/V recording and communication device, a secondary device state request signal; receiving, from the second A/V recording and communication device a secondary device update signal that includes a status of the at least one secondary device in network communication with the second A/V recording and communication device; and generating and transmitting an alert to a second client device associated with the second A/V recording and communication device, wherein the alert includes the image data and the status of the at least one secondary device.
US10397524B1
A three-dimensional around view monitoring system of a vehicle includes a fisheye image correction setting module, configured to receive fisheye image data generated by photographing a correction plate; correct the fisheye image data into corrected image data to generate a fisheye correction lookup table and rotate and translate radiate vertical reference lines presented as straight lines in the corrected image data in a neighborhood into overlaps having a same radiation angle to generate a rotation and translation lookup table; and a static three-dimensional stitched image generation module, configured to generate a stitched image lookup table according to the rotation and translation lookup table and the fisheye correction lookup table, calculate a pixel value of each pixel in the corrected image data by using a pixel value of each pixel in fisheye image data, and perform image stitching on the neighboring corrected image data to generate static stitched image data.
US10397523B1
A system and method for controlling and selecting sources in a room on a network. The system allows a remote viewer to create a virtual presence within the room by providing the available displays, corresponding to the sources, to the remote viewer. The system includes a standardizing technique for improving the communication and overall switching of data for streaming on a network. The system can include a recording server for performing dual recording of the video files in each of a local database and a remote database. A graphical user interface (GUI) display is provided to guide a local user through a medical procedure in the standardized system.
US10397516B2
A method for post-processing to synchronize audio data with vehicle data includes generating an artificial sound data based on time-series vehicle data. The method includes determining an offset that maximizes cross-correlation between the artificial sound data and recorded audio data. The method also includes shifting one or more of the time-series data and the recorded audio data relative to each other in time based on the offset. The shift may be used to generate or render a synchronized set of time-series data and recorded audio data.
US10397511B2
This application provides a method for method for television (TV) remote keypress response based on Android operating system (OS) and a TV thereof, and includes: creating a first process when the Android OS is being initialized; executing the first process to obtain a key value of a remote keypress event; and performing a remote keypress operation according to the key value. The method creates and executes the first process during the initialization of the Android OS, thereby realizing responding to remote keypress during TV start-up, greatly enhancing user experience.
US10397505B2
One embodiment provides a method, including: receiving a plurality of communication events associated with a pixel of an imaging device; identifying a frequency associated with the communication events, wherein the identifying a frequency comprises determining a number of communication events occurring within a predetermined time interval or determining a mean time interval between the communication events; determining, from a plurality of pixels neighboring the pixel, a frequency range comprising an upper frequency limit and a lower frequency limit; resolving, from the identified frequency and the determined frequency range, whether the pixel comprises a non-conforming pixel; and masking, if the pixel comprises a non-conforming pixel, subsequent communication events from the non-conforming pixel. Other aspects are described and claimed.
US10397501B2
A solid-state image sensor includes a pixel array including a plurality of pixel sub-arrays arranged in a main scanning direction, each of the pixel sub-arrays having a plurality of pixels two-dimensionally arranged to form a plurality of rows along the main scanning direction and a plurality of columns along the sub-scanning direction. The solid-state image sensor further includes control lines, signal lines, a pixel control circuit, and a read out circuit. The pixel control circuit applies a control signal to each pixel of each of the plurality of pixel sub-arrays through each of the plurality of signal lines, to cause each pixel to generate a pixel signal having a phase difference between the plurality of pixel sub-arrays. The readout circuit reads the pixel signal from each pixel of each of the plurality of pixel sub-arrays such that the pixel signal has a phase difference between the plurality of pixel sub-arrays.
US10397499B2
There is provided an imaging device configured to acquire an image with the restrained influence of the blinking state of a light source while ensuring synchronicity of charge accumulation. For a plurality of pixels arranged in a plurality of rows, the imaging device intermittently turns on a first transfer switch at a same timing a plurality of times to transfer electric charges from a photoelectric conversion unit to a holding unit a plurality of times. The imaging device row-sequentially turns on a second transfer switch of the plurality of pixels to transfer electric charges transferred a plurality of times to and held by the holding unit, to an amplifying unit on a row basis.
US10397496B2
An imaging device includes a light source, an image sensor, and a controller. Each pixel of the image sensor includes first and second accumulators and a discharger. The controller, while a component of light from the light source reflected by the surface of a target is incident on the image sensor, causes the accumulators to accumulate signal charge not discharged to the discharger, by setting the image sensor so that signal charge is discharged to the discharger, while a component having scattered inside the target is incident on the image sensor, causes the first accumulator to accumulate signal charge by setting the image sensor so that signal charge is not discharged to the discharger and signal charge is accumulated in the first accumulator, and causes the image sensor to generate first and second signals that are respectively based on signal charge accumulated in the first and second accumulators.
US10397494B2
Embodiments described herein enable a switching device to automatically select AV port(s) coupled to electronic device(s) that a user would like to use to watch and/or listen to content. The AV port(s) may be automatically selected based on receiving a command, determining that a particular remote control device is being used, and/or determining that a particular piece of content has been selected. Upon detection of such events, a source device for providing content is identified from among a plurality of source devices. Thereafter, an AV port from among a plurality of AV ports to which the identified source device is connected is identified. The identified AV port is then selected so that the identified source device becomes connected to an AV port to which a sink device is connected. In this way, the switching device can provide content from the identified source device to the sink device for presentation thereby.
US10397492B2
The imaging device includes a camera body, a first imaging unit, a display unit, a second imaging unit and a controller. The first imaging unit is fixedly disposed on the camera body and generates a first image data by capturing a subject image. The display unit is rotatable with respect to the camera body via a hinge unit. The second imaging unit is variably disposed on a side different from the hinge unit across the display face of the display unit and generates a second image data by capturing a subject image. The controller causes the display unit to display a superimposed image obtained by superimposing an image represented by the second image data on an image represented by the first image data. The image represented by the second image data is displayed on a side of the second imaging unit on the image represented by the first image data.
US10397489B2
[Object] To improve the quality of an acquired image by detecting each piece of color information of red (R), green (G), and blue (B) components to effectively utilize the dynamic range of the image sensor while using a single-plate image sensor.[Solution] Provided is a light source control device including: a light source control unit configured to cause a plurality of narrowband light sources including at least a red light source, a green light source, and a blue light source to emit light on a time division basis; and a light quantity setting unit configured to set an output of each of the narrowband light sources on the basis of image information that is frame-sequentially detected by a monochrome single-plate image sensor configured to capture a reflected image of a subject illuminated with light emitted from the narrowband light source.
US10397485B2
A camera control unit, having “learned” how objects typically move in a monitored scene, provides help to an operator by moving a monitoring camera according to representative movement of the objects in the scene. The representative movement may be derived in a learning procedure using object motion analysis.
US10397481B2
Techniques are described for addressing rolling shutter delay and in some cases rolling shutter delay and stabilization. Processing circuits may receive image content in overlapping portions of images, and may adjust the image content until there is overlap in the overlapping portions. Processing circuits may also receive information of deviation of the device from a common reference. Based on the overlapping image content, the deviation of the device from the common reference, and image content in non-overlapping portions, the processing circuits may determine mapping of coordinates to a rectangular mesh for generating an equirectangular image.
US10397477B2
A three-dimensional studio system includes a booth including camera modules each including a camera and a driving device and sensor modules; a database configured to store camera setting data and driving setting data; a booth control unit configured to transfer a photographed image of the camera to an external image processing device, and provide a camera control signal and a driving control signal to the camera and the driving device, respectively; and a statistical analysis unit configured to back up the camera setting data and the driving setting data in the database by reflecting a rendering correction value.
US10397476B2
The present invention relates to the field of panoramic still and motion photography. In a first embodiment, a camera apparatus for panoramic photography includes a first image sensor positioned to capture a first image. The first image sensor has a rolling-shutter readout arranged in portrait orientation. The camera apparatus also includes second image sensor positioned to capture a second image. The second image sensor has a rolling-shutter readout arranged in portrait orientation. Finally, the camera apparatus includes a controller configured to signal the second image sensor to start capturing the second image before the first image sensor finishes capturing the first image. At least a portion of the first image is in front of the second image relative to a forward direction of the camera apparatus.
US10397466B2
An extreme value detection section performs a scan operation to detect and store an extreme value of a contrast and a direction of change in the contrast while performing scan driving of a focus lens, based on a direction indicated by a defocus amount. A determination start position calculation section calculates a determination start position corresponding to a position of the focus lens where a determination whether the scan operation is stopped is started, as a position precedent to an in-focus position based on the defocus amount. A control section stops the scan operation if a maximum value is detected during the scan operation before the focus lens reaches the determination start position and it is determined that the contrast decreases as a latest change during the scan operation after the focus lens reaches the determination start position.
US10397463B2
Methods and apparatuses are provided for obtaining an image by an electronic device. A first image for an object is obtained from a first image sensor of the electronic device. Information regarding a focusing state is determined with respect to the object based on the first image. The second image sensor of the electronic device is focused on the object based on the information regarding the focusing state. A second image for the object is obtained through the second image sensor.
US10397461B2
First information is obtained from a first control apparatus for controlling a first image capturing device on an upstream side of an image capturing device. Based on a captured image obtained by the image capturing device and the first information, second information used to generate a 3D model of an object in the captured image is generated. Transmission information is transmitted to a second control apparatus for controlling a second image capturing device on a downstream side. Generation of the transmission information is controlled in accordance with a size of the object in the captured image or the size and a position of the object in the captured image in a case in which the captured image obtained by the image capturing device includes an invalid object that is not an object corresponding to information registered in advance.
US10397455B2
An imaging lens includes first to sixth lens elements arranged from an object side to an image side in the given order. Through designs of surfaces of the lens elements and relevant optical parameters, a short system length of the imaging lens may be achieved while maintaining good optical performance.
US10397434B2
There is provided a scanner that combines images read by a first sensor array and a second sensor array, in which the first sensor array and the second sensor array have read regions which are overlapped partially, and includes a combining section that combines a first read image read by the first sensor array and a second read image read by the second sensor array and a correction section that corrects an image after a combining based on a degree of displacement of a reading position of the document.
US10397433B2
An image forming apparatus includes an image forming unit, an image reading unit, an image inspecting unit and a history generating unit. The image forming unit forms an image on a sheet. The image reading unit reads a sheet face on which the image is formed, thereby generating a scan image. The image inspecting unit compares the generated scan image with a normal image to detect an error in the scan image. When the image inspecting unit detects the error, the history generating unit generates detection information on the detected error and embeds the generated detection information in the scan image, thereby generating a history image.
US10397432B2
Systems and methods for extraction of prescription information from a medicine bottle are provided. Relevant prescription information and instructions are extracted by imaging or scanning the surface of the medicine bottle, along with spoken instructions based on the extracted information/instructions, are stored in a medicine bottle with an attachment or a storage device. A database of prescription labels used by various pharmacies is used to detect and parse text from the assembled image made of the several scans or images of the bottle.
US10397426B2
According to one embodiment, an information processing method includes instructing a multifunction peripheral performing scanning and printing to perform setting regarding scanning, transmitting a scan signal for performing scanning to the multifunction peripheral, instructing the multifunction peripheral to perform setting regarding printing, and transmitting a print signal for printing a scan image obtained through scanning to the multifunction peripheral.
US10397422B2
A control apparatus includes a processor that causes a preview to be displayed for an image to be printed on a print medium by a printing apparatus and a display that displays the preview. The processor causes the display to display the preview including one or more page images on a first side and one or more page images on a second side such that a positional relationship between a position of a page image on the first side of a print medium and a position of a page image on the second side of the print medium is shown, and adjusts the positions of the page images on the first side and second side such that a position of a blank area between the page images on the first side corresponds to a position of a blank area between the page images on the second side.
US10397419B2
A hinge mechanism includes a first member, a second member, and a stopper mechanism. The stopper mechanism has a path and a moving member. The moving member is provided in the path. The path includes a first path part and a second path part. The first path part is located in the first member. The second path part is located in the second member. The first member and the second member are changeable between a first communication state, a non-communication state, and a second communication state depending on a turning angle of the second member relative to the first member.
US10397418B1
The present invention accepts an input of a temporary condition, which is an illumination condition temporarily selected by a user from a plurality of illumination conditions, uses spectral colorimetric data for a specific patch printed as a specific color to calculate a first color value, which is a color value under each of the plurality of illumination conditions, calculates, by using the first color value, a second color value, which is a color value indicating an appearance of a printed matter printed to appear as the specific color under the temporary condition, which is an illumination condition other than the temporary condition, displays color information indicated by the second color value, accepts an input of an illumination condition permanently selected by the user from the plurality of illumination conditions, and creates a profile such that the specific patch is observed as the specific color under the illumination condition permanently selected.
US10397416B2
A document reading device (20) includes a document reading unit (5) that optically reads an image of a source document, a character string recognizer (102) that recognizes a character string included in a designated region in the source image read by the document reading unit (5), and an image storage controller (103) that stores the source image read by the document reading unit (5) in a storage device. The image storage controller (103) generates, when a character string recognized by the character string recognizer (102) in the source image in a designated page of the source document, and a character string recognized by the character string recognizer (102) in the source image in a preceding page are different from each other, one file including the source images up to the preceding page, and stores the file in the storage device (92).
US10397411B2
An all-encompassing fully integrated communication Access Node for call stations and other security and communications equipment includes a modular housing within which is mounted wire and wireless communication systems and power systems. The housing has a chassis for mounting the electronics and battery modules and a backbox and panel for staged installations, managing cables and providing heat dissipation. A door to the chassis is secured using latch hooks with roller bearings. Optical cable termination is provided as a two sided patch panel. Dual power supplies provide power to internal components and to external components via a distribution module. Backup power is provided by a custom battery backup with a charging controller. Cooling is controlled by dual fans and a fan controller moving air through the housing using openings and baffles. Freestanding pedestal mounting of the Access Node and various other mounts for column, wall, or ceiling to any substrate or condition is an option. Venting through a plug prevents pressure build up.
US10397403B2
A system for managing events at a contact center is disclosed. The system may include a memory and at least one processor. The at least one processor may be configured to receive an input from a user identifying at least one condition associated with a service level at the contact center, the at least one condition including at least a threshold of a call waiting time at the contact center; detect an occurrence of an event meeting one of the at least one condition; and in response to the detecting, provide a notification to a device associated with the user and operating in a collaboration environment, thereby notifying the occurrence of the event.
US10397399B2
A method, system, and computer readable medium comprising instructions for providing Internet protocol enabled information delivery are provided. Information from a calling party is received at an Internet protocol enabled device. A lookup of information relating to the calling party is performed in a database via an Internet protocol connection. A message is received from the database comprising information relating to the calling party.
US10397398B2
A method of obtaining and automatically providing secure authentication information includes registering a client device over a data line, storing information and a changeable value for authentication in subsequent telephone-only transactions. In the subsequent transactions, a telephone call placed from the client device to an interactive voice response server is intercepted and modified to include dialing of a delay and at least a passcode, the passcode being based on the unique information and the changeable value, where the changeable value is updated for every call session. The interactive voice response server forwards the passcode and a client device identifier to an authentication function, which compares the received passcode to plural passcodes generated based on information and iterations of a value stored in correspondence with the client device identifier. Authentication is confirmed when a generated passcode matches the passcode from the client device.
US10397396B2
A method and system for disabling functions of a movement detection enabled device is provided. The method includes monitoring a movement detection signal of the movement detection enabled device in a vehicle and determining that the vehicle is currently in motion. An electronic tag in the vehicle is detected and instructions associated with the movement detection enabled device are retrieved. It is determined that the movement detection enabled device is located within a specified proximity to a driver location of the vehicle and that a user of the device is a driver of the vehicle. In response, specified functions of the movement detection enabled device are disabled.
US10397395B2
Intent-based reminders are provided. A user is enabled to initiate a reminder request based on an intent to enter or leave a given location. In a geofence training process, a plurality of geofences are created for plotting a path and subsequently tracking the user's traversal of the path for inferring the user's intent to depart or enter the location. A signal strength of a WLAN is recorded at each geofence. As the user traverses the path, a determination is made as to whether a predetermined percentage of the geofences is triggered in a sequential order by comparing the signal strength of the WLAN against the recorded WLAN signal strengths at the geofences. In some examples, signal strengths of neighboring WLANs are recorded and used to filter out false triggers. When a determination is made that the user's intent is to depart or enter the location, a reminder is provided.
US10397394B1
An electronic device includes a wireless communication circuit, a three-dimensional imager, and one or more processors operable with the three-dimensional imager. The one or more processors can detect, with the wireless communication circuit, receiving or transmitting an electronic communication. The one or more processors can also detect, with one or more sensors, an object located within a first distance the electronic device. The one or more processors can thereafter transition the three-dimensional imager from a high-power mode of operation to a low-power mode of operation.
US10397385B2
An internet phone system includes an internet phone main body, at least one expansion device and at least one multiple-layer connecting card. The internet phone main body includes a first connecting port. The at least one expansion device includes a second connecting port. One end of the multiple-layer connecting card is connected to the first connecting port, and the other end is connected to the second connecting port such that the internet phone main body can be electrically connected to the expansion device via the multiple-layer connecting card.
US10397382B2
An electronic device may include a shell defining a plurality of positioning slots, a screen mounted in the shell, a screen protector connected to the shell and arranged at a periphery of the screen. The screen protector may be presented as a frame being made in one piece, a plurality of positioning pins may be arranged on the screen protector, each of the plurality of positioning pins may have an extending direction perpendicular to the screen and be engaged in a corresponding positioning slot. The screen protector may be configured to stretch or retract relative to the screen along a direction perpendicular to the screen under the guide of the plurality of positioning pins, such that the screen protector moves between a stretchable state and a retractable state.
US10397363B2
In one embodiment, one or more computing devices access a social graph including nodes and edges between nodes; the nodes include user nodes corresponding to users of a social-networking system and concept nodes corresponding to concepts of the social-networking system; the computing devices identify first user nodes in the social graph corresponding to users having a particular user characteristic; the computing devices assign a characteristic score to each first user node; for a second user node without an assigned characteristic score, the computing devices also select neighboring user nodes connecting to the second user node based on affinity, and estimate a characteristic score for the second user node by aggregating iteratively characteristic scores while traversing the social graph from at least one first user node to the second user node through paths that each includes at least one selected neighboring node.
US10397360B2
With an idempotent POST request, the URL (and headers) cannot be used as an HTTP cache key. To cache idempotent POST requests, the POST body is digested and appended the URL with the digest and used as the cache key. Subsequent requests with the same payload will end up hitting the cache rather than the origin server. A forward cache proxy at the client end and reverse cache proxy at the server end are deployed. The client sends the request to the forward proxy that looks up the cache. If there is a cache miss, the forward cache proxy digests the body and sends only the digest to the reverse proxy. The reverse cache proxy looks up request cache to find if there is a match for the request and send that request to the server.
US10397355B2
The Multi-Device Continuum and Seamless Sensing Platform for Context Aware Analytics provide a platform for continuous sensing across multiple devices towards a unified target. The Multi-Device Continuum and Seamless Sensing Platform provides a platform for extracting, loading, integrating, and tracking related data across multiple smart devices capable of integrating with internal and external sensors, such as wearable devices. The Multi-Device Continuum and Seamless Sensing Platform develop context aware solutions, which are targeted at automated recognition of context extracted from users' devices, as people are often always interacting with a digital device such as phone, tablet, or desktop.
US10397353B2
A method of enhancing log packets with context metadata is provided. The method at a redirecting filter on a host in a datacenter, intercepts a packet from a data compute node (DCN) of a datacenter tenant. The method determines that the intercepted packet is a log packet. The method forwards the log packet and a first set of associated context metadata to a proxy logging server. The first set of context metadata is associated with the log packet based on the DCN that generated the packet. The method, at the proxy logging server, associates a second set of context metadata with the log packet. The second set of context metadata is received from a compute manager of the datacenter. The method sending the log packet and the first and second sets of context metadata from the proxy logging server to a central logging server associated with the tenant.
US10397351B2
In one embodiment, a user of a social networking system requests to look up a contact's communication channel information in the user's address book. The social networking system provides to the user the contact's communication channels in an ordered sequence based on the user's social graph and communication information.
US10397350B2
Systems, methods and computer program products to perform an operation comprising determining, based on interaction data stored in a first profile, that a first toy device communicated with a second toy device, wherein the first and second toy devices are within a predefined distance during the communication, determining at least one emotion reflected in an emotion data of the first profile, determining at least one activity reflected in an activity data of the first profile, and generating, based on the interaction data, the emotion data, and the activity data, a story depicting a plurality of emoji, wherein the plurality of emoji comprise a first emoji reflecting the first toy device communicating with the second toy device, a second emoji reflecting the at least one emotion, and a third emoji reflecting the at least one activity.
US10397346B2
In one embodiment, a method includes automatically determining, in response to user input that includes an indication that the user is generating social-network content, a location of the user. The social network has a number of nodes and a number of edges connecting the nodes, and at least one node corresponds to the user. The method includes sending, automatically and without requiring further user input, the location from a client computing device of the user to an external server computing device and receiving from the server an identification of one or more places corresponding to the location.
US10397342B2
The present invention refers to the field of networked computer telecommunication, and in particular to a method and system for processing contract data defining contracts between a service requester and a service provider for services like Web Services to be provided via a network. In order to improve the processing of web services in presence of a multitude of valid contracts between binding a Service Consumer (SC) it is proposed to include (1300) said contract data into a request for said service in order to enable the Service provider to evaluate (1330) and select (1340) a particular contract out said multitude in order to match best the needs of the Consumer.
US10397340B2
A Virtual extensible Local Area Network Tunnel Endpoint (VTEP) receives a multicast group state indicator comprising a state attribute associated with a group identifier of a multicast group, wherein the multicast group is a first multicast group or a second multicast group. The VTEP sets a traffic send and receive state regarding a traffic for a destination VxLAN in the multicast group according to the state attribute for the multicast group in the multicast group state indicator. The traffic is migrated from the first multicast group to the second multicast group.
US10397333B2
A recording/reproducing apparatus with a wireless LAN function. The recording/reproducing apparatus has a Wi-Fi module and establishes a Wi-Fi connection with a smartphone, and the like. When the Wi-Fi connection with a smartphone is established, the recording/reproducing apparatus automatically extinguishes a display, thereby curtailing power consumption. In addition, the display is extinguished, and an operating status of the display is transmitted to the smartphone by way of the Wi-Fi connection.
US10397328B2
A method for integrating a Proof of Storage (PoS) into a blockchain increases security, robustness and verifiability of a blockchain network. A part of the blockchain to be stored is received at a first one of a plurality of mining nodes of the blockchain network. The part of the blockchain is stored. Mining of the new block is bound to the stored data and performed so as to enforce that the mining nodes store different parts of the blockchain. The PoS is integrated into the new block. The PoS is verified before accepting the new block into the blockchain.
US10397322B2
Systems and Methods that help in Group travel and Event management, initially embodied as GROTU mobile app built for iOS and Android platforms. GROTU uses computer networking, internet cloud and mobile smartphone's camera, computing power, storage and graphical user interface abilities to help users in creating travel surveys from pre-built, customizable template for voting on group choices; organizing photos and external storage hyperlinks in photo albums stored in cloud; group expenditure management using smartphone camera for photo receipts uploading while calculating, storing and helping in settlement of group expenses; sending event invitations via SMS, Email and Push Notifications including potluck items management; and providing users with organized chatting ability to have private discussions while planning group events and trips. GROTU eliminates the need for linking spreadsheets and online forms on chat apps for planning and managing group travel and events.
US10397318B2
An example method for automated message logging may include receiving a message from a first client in communication with a server. The received message may be placed the in a first queue at the server. The received message may be processed at the server, and the processed received message may be placed in a second queue for broadcast to a second client in communication with the server. The example method may further include broadcasting the processed received message to the second client, and placing the processed received message in a third queue for persistent storage.
US10397315B2
An information processing apparatus comprising a first processor configured to, for each of a plurality of control apparatuses, determine weights to be used for distribution of requests for predetermined processing so that a larger amount of requests for the predetermined processing is distributed to a control apparatus controlling a larger number of destination apparatuses. Each of the plurality of control apparatuses includes a second processor configured to: receive a request distributed to own control apparatus; perform the predetermined processing according to the request; create a message; transmit the message to a destination apparatus that is a destination of the message when a control apparatus controlling the destination apparatus is the own control apparatus; and forward the message to another control apparatus when the control apparatus controlling the destination apparatus that is a destination of the message is the other control apparatus.
US10397308B2
Systems and methods for file transfer by mobile user collaboration are provided. In some embodiments, a method of operation of a first wireless device for uploading a data file as multiple pieces to a destination network node in a wireless communications network includes dividing the data file into the multiple pieces; sending one or more pieces of the multiple pieces to one or more second wireless devices to be uploaded to the destination network node; and uploading one or more pieces via a Coordinated Multi-Point (CoMP) set of cooperating nodes in the wireless communication network. In this way, the first wireless device may be able to upload the data file to the destination network node faster than if the first wireless device uploads the entire date file directly.
US10397298B2
An endpoint optimizes bandwidth by initiating a peer-to-peer conference with a plurality of remote devices, generating a first quality list comprising a first device of the plurality of remote devices from which to receive a first data stream at a first quality level, transmit a request to the first device to receive the first data stream at the first quality level, determining that a second device of the plurality of remote devices is not a member of the first quality list, and in response to determining that the second device of the plurality of remote devices is not a member of the first quality list, transmitting a request to the second device to receive a second data stream at a second quality level.
US10397294B2
Bandwidth adaptation is achieved with selection of quality levels of media content to be transferred based on network conditions.
US10397289B2
A streaming media server is provided that receives a request over a network from a customer premises gateway to receive a streaming media content item that is to be presented on two or more client devices in a synchronized manner. Responsive to the request, the streaming media server sends a manifest associated with the requested streaming media content item to the customer premises gateway only when it has been incrementally updated to remove an oldest media segment URL from the manifest and add a most recent media segment URL to the manifest.
US10397284B2
A system and method are provided for recovering a communication session between a client device and a participant device is performed by a server running a central service. The server detects that the client device has lost connection to the participant device and proceeds to maintain the connection to the participant device. In certain embodiments, the server determines why the client device lost connection and selects a second device in close proximity to the client device using information from a user profile associated with the client device. The server then proceeds to establish a connection between the client device and the participant device.
US10397279B2
Data traffic is monitored on a network with data access elements thereof collected and compared to security rules. An audit data collection is sent to a repository responsive to data access elements matching a condition of the security rules, where security rules having the condition designate the audit data collection and repository. A tag to data traffic is applied responsive to the matching condition. Comparing of collected data access elements to the corresponding security rules having the matching condition is discontinued responsive to applying the tag. The tag indicates a repository and the data traffic includes a connection and session. An audit data collection is sent to the repository indicated by the tag for a data access responsive to the tag in the tagged data traffic. The method continues sending audit data for future data accesses in the tagged data traffic without comparing to the corresponding security rules again.
US10397278B2
A control system facilitates communication between a plurality of networked services. The control system includes a client agent associated with a first service of the networked services, and a destination agent associated with a second service of the networked services. The client agent includes an injection mechanism that intercepts a network request issued by the first service, transparently injects a token into the network request while the network request is in transit, and automatically transmits the network request to the second service in accordance with one or more security policies associated with the second service. The destination agent includes an interception mechanism that intercepts the network request, extracts the tokens from the network request, and determines whether to forward the network request to the second service.
US10397266B1
Verifying that influence of a user data point has been removed from a machine learning classifier. In some embodiments, a method may include training a machine learning classifier using a training set of data points that includes a user data point, calculating a first loss of the machine learning classifier, updating the machine learning classifier by updating parameters of the machine learning classifier to remove influence of the user data point, calculating a second loss of the machine learning classifier, calculating an expected difference in loss of the machine learning classifier, and verifying that the influence of the user data point has been removed from the machine learning classifier by determining that the difference between the first loss and the second loss is within a threshold of the expected difference in loss.
US10397264B2
Embodiments relate to systems and methods for providing digital dye packs in connection with a transaction via a device user interface. In an embodiment, a system includes a communication module of a remote server that interacts with a device that receives, from a user of the device, specific identifier information in connection with conducting a transaction with a recipient server; wherein the specific identifier information is associated with an alert of potential risk of the transaction. The system also includes a non-transitory memory comprising a database storing specific identifier information with corresponding actions that are executed based on the specific identifier information. The system further includes at least one hardware processor for executing an action in response to receiving corresponding identifier information associated with the alert of potential risk from the device in connection with the transaction.
US10397263B2
A method comprising receiving, by a network element, a data packet, searching, by the network element, the received data packet at a first hierarchical level to determine whether a substring of a string of a regular expression exists in the received data packet, searching, by the network element when the search of the received data packet at the first hierarchical level finds a match, the received data packet at a second hierarchical level to determine whether the string of the regular expression exists in the received data packet, and transmitting, by the network element, the received data packet to a next network element along an original path of the received data packet without searching the received data packet at a third hierarchical level when the search of the received data packet at the first or second hierarchical level does not find a match.
US10397262B2
Devices, systems, and methods to detect malware, particularly an overlay malware that generates a fake, always-on-top, masking layer or an overlay component that attempts to steal passwords or other user credentials. A defensive module protects a victim application, particularly of an electronic device having a touch-screen. The defensive module generates a transparent or invisible always-on-top layer of its own; and periodically injects automatically-generated non-human tap events or touch-gesture events, and checks whether the injected events are indeed received, in order to determine whether an overlay malware is active.
US10397241B2
In accordance with embodiments of the present disclosure, an information handling system may include a processor, a directory service application comprising a program of instructions embodied in computer-readable media accessible to the processor, the directory service application configured to enumerate a plurality of management controller categories for management controllers of a plurality of information handling systems communicatively coupled to one another via a network and create a directory service device object for each of the plurality of management controller categories.
US10397240B2
A scaling policy associated with a notification received by one or more computer systems is obtained. A first request is submitted, to a software container service, for a first current capacity of a resource. An amount by which to adjust a capacity of the resource is calculated, based at least in part on the scaling policy and the first current capacity. A second request is submitted, to the software container service, to adjust the capacity of the resource by the amount. A third request is submitted, to the software container service, for a second current capacity of the resource, and whether the second request has been fulfilled is determined based at least in part on a comparison between the second current capacity and the amount.
US10397238B2
Systems and methods are provided for managing electronic tokens for device interactions. In some embodiments, a unified graphical user interface is provided for an account, for controlling the activation status and settings associated with authorized electronic devices used for conducting transactions on the account. The electronic devices may be programmed with an electronic token that allows a server to look up sensitive account information, although the electronic token does not divulge the account information itself. Therefore, if an electronic token is compromised or stolen, the account does not need to be closed, and sensitive information remains safe. Moreover, the unified graphical user interface provides detailed and highly customizable controls for settings and restrictions associated with each of the electronic tokens, without modifying or accessing sensitive account or personal information.
US10397232B2
Techniques are described for providing users with access to perform commands on network-accessible computing resources. In some situations, permissions are established for user(s) to execute command(s) on computing node(s) provided by an online service, such as by maintaining various permission information externally to those provided computing nodes for use in controlling users' ability to access, use, and/or modify the provided computing nodes. An interface component may use such external permissions information to determine if a particular user is authorized to execute one or more particular commands on one or more particular computing nodes, and to initiate simultaneous and independent execution of the command(s) on the computing node(s) when authorized. The interface component may further aggregate results from each computing node that executed the command(s), prior to providing the results to the user.
US10397227B2
Outbound traffic of a host application may be received from a host device having a host processor. The secure resource may be configured to provide a secure transaction based on the outbound network traffic. Using a second processor different than the host processor, it may be determined whether the host application is authorized to provide the outbound network traffic to the secure resource. The outbound network traffic may be allowed to be forwarded to the secure resource if the host application is authorized. The outbound network traffic may be disallowed to be forwarded to the secure resource if the host application is not authorized.
US10397218B2
Techniques are provided for a highly available web-based database interface system (WDIS) processing database requests that target one or more databases managed by a coupled DBMS. In an embodiment, a web server of multiple web servers receives a first client web-based request that includes one or more first database instructions of a database request. The multiple web servers are configured to balance client web-based requests among one or more of the multiple web servers. The one or more of the multiple web servers are coupled to a database management system that includes one or more database servers executing database instructions on one or more databases. Based on balancing client web-based requests among the one or more of the multiple web servers, routing the first client web-based request that includes the one or more first database instructions of the database request to the first web server of the one or more multiple web servers coupled to the database management system. A request coordinator store coupled to the one or more of the multiple web server is queried. to determine a state of the database request. Based at least in part on the state of the database request, the first web server requests the database management system to execute the one or more first database instructions and update the state.
US10397207B1
Credentials and other sensitive strings can undergo automatic rotation before each transmission or storage of those credentials. String modification, which can utilize a key stretching algorithm, can be used to modify the credential before transmission. This can be for an initial sign up, a subsequent login, or another such action. A random number can be generated to determine the number of iterations for the key stretching algorithm to be applied. For subsequent actions, a new random number can be added to the prior iteration number in order to create a new string that can be generated using the previously utilized iteration number and the new random number, with only the new random number being transmitted with the modified credential string. This increases security, as the transmission itself cannot be used to recover the original plaintext credential if recovered.
US10397202B2
A method and system for negotiating a secure device-to-device communications channel between a first computing device and a second computing device, wherein the first computing device is associated with a first user and the second computing device is associated with a second user. The method comprises receiving, at a server, a first connection request comprising first address data and a first cryptographic key associated with the first computing device, the first connection request being received over a first secure communications channel, and receiving, at the server, a second connection request comprising second address data and a second cryptographic key associated with the second computing device, the second connection request being received over a second secure communications channel.
US10397192B2
An assistant computing device communicates with a remote computing device, and a requesting computing device. The remote computing device in communication with a dataset resides in a secured data center. The requesting computing device: employs credentials to communicate remote instructions to the remote computing device over an external network and through a firewall; and receive query results generated by the remote computing device executing the remote instructions. The assistant computing device: receives requests from the requesting computing device to query the dataset, generates access credentials and remote processing instructions executable by the remote computing device to satisfy the request; encrypts and communicates the access credentials and remote processing instructions to the requesting computing device; receives results from the requesting computing device; generates a report of the results; and communicates the report to the requesting computing device.
US10397186B2
The present disclosure relates to network security software cooperatively configured on plural nodes to authenticate and authorize devices, applications, users, and data protocol in network communications by exchanging nonpublic identification codes, application identifiers, and data type identifiers via pre-established communication pathways and comparing against pre-established values to provide authorized communication and prevent compromised nodes from spreading malware to other nodes.
US10397181B2
Provided are an address book information service system, and a method and a device for an address book information service therein, whereby: a terminal device in the address book information service system sets groups in an address book according to category information and transmits group information on the set groups and preset user information to a service device; the service device searches new address book information corresponding to the group information on the basis of the location of a user by using the group information and the user information and transmits the searched new address book information to the terminal device; and the terminal device automatically registers the received new address book information in the address book, thereby enabling the user to easily look up new address book information.
US10397180B2
A method of generating a routing table containing information as to the weighted distance between client's that use a resolver and each rack gateway, taking into account how traffic to each client can egress from the CDN AS. The routing table is generated from matrix multiplication of two matrices. One matrix contains information as to the proportion of each client's use of each resolver in a first autonomous system. The second matrix contains information as to the distance between each client and each rack, with respect to an egress gateway, in a second autonomous system. The resulting routing table is used to identify a gateway from which to serve content to a client.
US10397167B2
In one embodiment, a method includes accessing a post associated with a first user of an online social network; extracting n-grams from the post; determining whether the post is associated with a trending topic based on whether one or more of the extracted n-grams are associated with the trending topic; identifying one or more second users, wherein each second user is a first-degree connection of the first user within the online social network and wherein each second user is a subscribing user; generating, for each second user, a live social module comprising the post; and sending, to a system of each second user, the live social module.
US10397164B2
Systems and techniques to deputize agents in a system to reduce a number of event logs received by a coordinator are described. An agent belonging to a group of agents may receive a request to select a deputized agent. The agent may determine data associated with a component hosting the agent and send the data to a selection agent. The agent may receive a message from the selection agent indicating that the agent is to be the deputized agent. The deputized agent may receive one or more event logs from other agents in the group, determine that at least one event log has a high priority, and send the at least one event log to the coordinator. The deputized agent may store the one or more event logs in a storage device accessible to the hardware component.
US10397163B2
Methods, systems, and apparatus, including computer programs encoded on a computer-readable storage medium for implementing one or more application programming interfaces (APIs) that configure applications stored in an electronic device are described. An application may be configured to receive event information from various sources based on user preferences and application permissions. In response to receiving the event information, the app may determine whether a notification should be issued to a user. This determination may be made based on various factors such as the type of event, user history, contextual data, ranking data, and application permissions. The notifications may include one or more of messages to the user and recommended actions for consideration by the user. The actions may include sharing data with other users who share a presence or interest in an event with the user.
US10397161B2
Systems and techniques to automatically delete emails from an inbox associated with an employee in an enterprise are described. A message lifecycle engine that interfaces with a corporate email system may select an inbox of an email client application. The message lifecycle engine may delete an email in the inbox based at least in part on: (i) one or more sender rules associated with the email; (ii) one or more system rules associated with an email system used by the enterprise; (iii) one or more user rules created based on an analysis of user behavior; and (iv) one or more data loss prevention (DLP) policies.
US10397156B2
One or more embodiments described herein include methods and systems of providing message status notifications. The status notifications can comprise one or more of sent, delivered, or accessed/read notifications. In one or more embodiments a status notification is persistently displayed in a thread for each participant in a conversation. Each time the participant accesses a new message, the system can move the status notification adjacent to the new message.
US10397152B2
Disclosed is a system, method, and non-transitory computer readable storage medium for predicting future messages. A processor receives a message sent to a user operating a client device, analyzes the message in light of previously identified patterns and scores assigned to scanned messages, determines a future message that should be received by the client device based on the received message, and transmits an item of information based on the determined future message.
US10397151B2
A middleware messaging system is connected between user devices and content providers possibly through one or more networks. The middleware messaging system includes a coordination manager for coordinating partial messages transmitted between the user devices and the content providers. Partial messages received by the middleware messaging system from one or more sources through one or more channels. Partial messages that are associated with each other comprise a single context and as such are coordinated and transmitted to one or more destinations through one or more channels.
US10397149B2
A method, system and terminal for deleting a sent instant message in messaging communication have been disclosed. The method including: receiving from a first communication terminal, a delete request to delete a sent instant message which has been transmitted from the first communication terminal to a second communication terminal, wherein the delete request comprises an identification which identifies the sent instant message which is to be deleted; determining whether the sent instant message which is to be deleted has already been successfully forwarded to the second communication terminal; and if it is determined that the sent instant message which is to be deleted has already been successfully forwarded to the second communication terminal, forwarding the delete request to the second communication terminal to facilitate deletion of the sent instant message by the second communication terminal.
US10397148B2
A system for processing electronic messages, whereby a user can transmit and receive various types of electronic messages via one processing module only. The different types of electronic messages can contain various attributes, such as “read” and “unread”, although not all types of messages need to have the same attributes. In order to make the handling of attributes in electronic messages easy, it is provided that the system contains allocation tables between various attribute sets of the electronic messages.
US10397137B2
A data processing system, method and device. A device can include a plurality of data cards having host interface connectors initially configured to transmit signals according to a first communication protocol and data card connectors that communicate with external devices using a different communication protocol. The data cards are converted so that the host interface connectors also transmit signals using the second communication protocol. The plurality of data cards are interconnected so that signals can be routed through the data cards to provide desired data processing functions. A cross-point switch fabric allows the signals to be routed to the appropriate data card or cards. Multiple devices can be interconnected to provide a distributed data processing grid providing access to the data processing functions for external devices that do not communicate using the first communication protocol.
US10397135B2
A router fabric for switching real time broadcast video signals in a media processing network includes a logic device configured to route multiple channels of packetized video signals to another network device, a crossbar switch configured to be coupled to a plurality of input/output components and to switch video data of the multiple channels between the logic device and the plurality of input/output components in response to a control instruction, and a controller configured to map routing addresses for each video signal relative to the system clock, and to send the control instruction with the mapping to the crossbar switch and the logic device.
US10397121B2
One embodiment provides a system that facilitates efficient communication based on a forwarding information base (FIB). The system receives, by an intermediate node, a first interest which includes a name and maximum interest information which indicates whether to forward a subsequent interest with a same name prefix as the first interest. In response to obtaining a first entry from a FIB based on the name for the first interest, the system adds to the first entry, for an outgoing interface corresponding to an arrival interface of the first interest, the maximum interest information included in the first interest as an interest limit for the first entry. In response to determining that the interest limit for the first entry is reached, the system refrains from forwarding the subsequent interest, thereby facilitating the intermediate node to manage traffic based on information in the forwarding information base provided by a content producer.
US10397113B2
Embodiments of the apparatus of identifying internal destinations of network packets relate to a network chip that allows flexibility in handling packets. The handling of packets can be a function of what the packet contents are or where the packets are from. The handling of packets can also be a function of both what the packet contents are and where the packets are from. In some embodiments, where the packets are from refers to unique port numbers of chip ports that the packets arrived at. The packets can be distributed for processing within the network chip.
US10397112B2
Technologies for communicating with local components of a computing device include intercepting a name resolution request from a host application, resolving a hostname included in the name resolution request to obtain a network address assigned to a target destination of the network packet, and transmitting the network address to the host application in response to the name resolution request. Such technologies may also include receiving the network packet from the host application destined for the network address, determining whether the target destination of the network packet includes a local component of the computing device based on the network address, and transmitting the network packet to the local component of the computing device via a platform network in response to the network packet being destined for the local component of the computing device.
US10397106B2
A content delivery network is configured to receive information about wireless network conditions from a wireless device. The wireless device is configured to provide information about the conditions of the wireless device and/or the conditions of the network the wireless device is being served by. These conditions can then be used to help optimize content delivery to the wireless device or similarly situated wireless devices.
US10397103B2
A data processing system with routing tables comprising an operating system for supporting processes, such that the process are associated with one or more resources and the operating system being arranged to police the accessing by processes of resources so as to inhibit a process from accessing resources with which it is not associated. Part of this system is an interface for interfacing between each process and the operating system and a memory for storing state information for at least one process. The interface may be arranged to analyze instructions from the processes to the operating system, and upon detecting an instruction to re-initialize a process cause state information corresponding to that pre-existing state information to be stored in the memory as state information for the re-initialized process and to be associated with the resource.
US10397102B2
A system may include a first border network device located between a first network domain and a third network domain, and a first edge network device in the first network domain, where the first edge network device may be configured to receive a packet. The packet may be directed to a second edge network device in a second network domain. The first edge network device may also be configured to add a second label to the packet that identifies a second border network device located at the border of a second network domain and the third network domain. The third network domain may be located between the first network domain and the second network domain. The first edge network device may additionally be configured to add a first label to the packet that identifies the first border network device, and route the packet to the first border network device.
US10397096B2
A mechanism is provided in a data processing system comprising at least one processor and at least one memory, the at least one memory comprising instructions that are executed by the at least one processor and configure the at least one processor to implement a path query cache. Responsive to receiving a path query from a process executing in the data processing system, the path query cache performs a lookup of the path query in the path query cache. The path query identifies a source port, a source address and a destination address. The path query cache stores a plurality of entries, each entry comprising a source port, a source address, a destination address, the source and destination global identifiers, and good/bad flag indicating whether a path associated with the entry is available or not. Responsive to the path query cache determining the path query matches a valid entry in the plurality of entries, the path query cache returns a result to the process. The result comprises the source and destination global identifiers and the good/bad flag from the valid entry.
US10397093B2
A method for acquiring a cross-domain separation path includes: when receiving a cross-domain separation path computation request, acquiring K pairs of candidate separation domain sequences according to a cross-domain network abstraction topology; traversing the K pairs of sequences, generating corresponding intra-domain path computation requests for various domains through which candidate separation domain sequences in the network pass to transmit; when receiving at least one pair of intra-domain paths for the request, configuring each of the at least one pair of intra-domain paths to a corresponding position in the K pairs of sequences, to form K pairs of candidate cross-domain separation paths; and determining one pair of cross-domain separation paths from the K pairs of paths as a computation result of the cross-domain separation path computation request to transmit. There are also disclosed another method for acquiring a cross-domain separation path, a path computation element, and a computer storage medium.
US10397091B1
At a first optical node of an optical communications system, during a signal initialization phase, a first optical pattern is received that includes a prefix indicating a beginning of a signal, a first word, and a first working signal for verifying stability of a connection between the first optical node and a second optical node of the optical communications system. A second optical pattern is transmitted that includes the prefix, a second word different from the first word, and the first working signal. A third optical pattern including the prefix, the first word, and a second working signal is received. Based on determining that a duration of the second working signal is greater than a duration of the first working signal plus a predetermined time, the first optical node determines that the second optical node is an adjacent node of the first optical node.
US10397086B2
One embodiment is a method and includes periodically polling a plurality of interface counters associated with each of an edge port and an Inter-Switch Link (“ISL”) port of a first fiber channel (“FC”) switch, wherein a target device is connected to the edge port of the first FC switch, and a plurality of interface counters associated with ISL port of a second FC switch, wherein the ISL port of each of the first and second FC switches are connected to one another via an ISL; determining based on the polling of the various counters whether several conditions have been met for a predetermined number of times and if so, characterizing the edge port as a level 1 slow drain port and taking remedial action based on the characterization.
US10397080B2
A network security system for wireless devices derives a fingerprint from the modulation imperfections of the analog circuitry of the wireless transceivers. These fingerprints may be compared to templates obtained when the wireless devices are initially commissioned in a secure setting and used to augment passwords or other security tools in detecting intruders on the network.
US10397070B2
The present system and method comprises an improved marketplace for providing and consuming services. Using the present system, generally via one or more APIs, comprises a method for integrating value added services within a network of participants, for instance, a payment network. The network can use service switching capabilities to route service calls to and from the service consumers and providers using routing elements defined in a message specification. Network participants can be both consumers and providers of services. The network can route service messages to the appropriate provider depending on details in the message.
US10397067B2
A computer-implemented method, computer program product, and computing system is provided for determining quality of experience for communication sessions. In an implementation, a method may include determining a plurality of intrusive quality of experience scores associated with a plurality of intrusive audio transmission samples. The method may also include determining a plurality of non-intrusive quality of experience scores associated with a plurality of non-intrusive audio transmission samples. The method may further include deriving a quality of experience coefficient based upon a relationship between the plurality of intrusive quality of experience scores and the plurality of non-intrusive quality of experience scores.
US10397057B2
The present disclosure relates to communication networks. Some embodiments may include a communication network with two or more network nodes each comprising: a receiver discerning the signal quality of received signals; a transmitter sending signals at different data rates; and a controllable terminating impedance. A network node transmits the discerned signal quality to one or more additional network nodes, a network node records the signal qualities and corresponding values of the terminating impedances of the respective network nodes. A network node prescribes for additional network nodes a new respective value to set as a terminating impedance. A network node determines new terminating impedance values to optimize the data rate between the various network nodes and the signal quality at each of the network nodes.
US10397056B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium. In some implementations, methods include determining multiple different configurations of multiple digital components eligible to be presented within a single digital component slot in a given electronic document being presented at a client device, selecting a particular configuration that has a highest configuration score and includes a given digital component, determining an offset factor that quantifies a negative impact of the given digital component on other digital components, optimizing a distribution amount applied to the given digital component based on the offset factor and a baseline distribution amount applied to each digital component in each of the multiple different configurations, and transmitting the given digital component to the client device based on the distribution amount for the given digital component, including causing the given digital component to be presented at the client device in the particular configuration.
US10397051B1
A system or device may implement configuration and testing of network-based service platform resources using a service platform specific language. A configuration file may describe one or more resources of a network-based service platform to be configured, as well as one or more tests to be performed. The configuration file may be described in a service platform specific language for the network-based service platform. When received, the configuration file may be interpreted according to the service platform specific language to identify configuration information for the resources and execution instructions for performing the tests. Requests may be generated and sent to the network-based service platform to configure and provision the resources according to the identified information. Results of the tests may be obtained.
US10397033B2
A first legacy portion of a physical layer (PHY) preamble is generated, wherein the first legacy portion of the PHY preamble is generated to include a signal field having PHY parameters arranged in subfields according to a first legacy communication protocol. A second portion of the PHY preamble is generated according to a second communication protocol, wherein the second portion of the PHY preamble is generated to include a repetition of the signal field. A PHY data unit that includes the PHY preamble is generated, the PHY data unit being for transmission via a wireless communication channel.
US10397027B2
The present invention relates to a continuous time linear equalizer comprising a first signal path comprising a high pass filter and a first controllable transconductance unit and a second signal path comprising a second controllable transconductance unit. The continuous time linear equalizer comprises a summation node configured to receive complementary current summation signals of the first transconductance unit and the second transconductance unit. The high pass filter comprises a first port configured to receive an input signal, a second port coupled to a control port of the first transconductance unit and a third port coupled to the summation node. The invention is notably also directed to a corresponding method and a corresponding design structure.
US10397017B2
Embodiments are directed to a computer-implemented method for communicating terms of service for providing internet access. The method includes establishing, using a gateway internet service provider (ISP) processor, a private network communications path between the gateway ISP processor and a client processor over a private area network. The method further includes transmitting, using the gateway ISP processor, data over the private network communications path, wherein the data includes terms of service that must be accepted by the client processor as one condition of the gateway ISP processor providing the client processor with internet access.
US10397011B2
For logical multicasting in overlay networks, at a data processing system, an original unicast packet is received from a first component in a first computing node in an overlay network. To cause multicasting in the overlay network the received original unicast packet was unicast by the first computing node only to the data processing system, and a multicast data structure for the overlay network is maintained only by the data processing system, the multicast data structure containing information of each receiver that is configured to receive unicast packets during logical multicasting in the overlay network. From a set of subscriber receivers in the multicast data structure, a subset of the subscriber receivers is selected. A copy of the original unicast packet is unicast to each subscriber receiver in the subset.
US10397010B2
A computer-implemented method includes receiving a request to multicast a message, wherein the request includes the message and a restriction bundle. The computer-implemented method further includes generating a distribution list for a first set of devices in a plurality of registered devices based, at least in part, on an overlap between a registered range of a device and a multicast range included in the restriction bundle. The computer-implemented method further includes determining a first subset of devices from the first set of devices based, at least in part, on a set of registered property values associated with each device meeting the criteria of each restriction in the restriction bundle. The computer-implemented method further includes multicasting the message to the first subset of devices. A corresponding computer system and computer program product are also disclosed.
US10397009B2
It is provided an apparatus, comprising generating means adapted to generate detection charging information related to an application; informing means adapted to inform a rules function device about a detection charging capability, wherein the detection charging capability indicates that the apparatus comprises the generating means; detecting means adapted to detect a start of the application; indicating means adapted to indicate the start of the application to the rules function device.
US10397006B2
A computing device such as a network security device receives one or more digital certificates in a certificate chain and generates one or more surrogate digital certificates that form a surrogate certificate chain. A surrogate certificate may be generated using certificate information from a corresponding digital certificate of the received certificate chain. In some cases, the received certificate chain may have a trusted root certificate that is a trust anchor for the received certificate chain and the generated surrogate certificate chain may have a different trusted root certificate that is the trust anchor for the surrogate certificate chain. Cryptographic keys of the certificate chains may be used to establish cryptographically protected communication sessions. The computing device may monitor network traffic utilizing cryptographic keys included in the certificate chains to encrypt data. The encrypted data may be decrypted and inspected to determine whether sensitive information is transmitted in an improper manner.
US10397000B2
An authentication system and method for authenticating an asset includes a Near Field Communication (NFC) tag associated with the asset, an NFC enabled user device, and an authentication server. The NFC tag includes a unique identifier and an encrypted output of a shared key that is stored on the authentication server. The encrypted output includes a Speck cryptographic algorithm. The unique identifier and the encrypted output are signed by an Elliptic Curve Digital Signal Algorithm (ECDSA) signature. When the user device verifies challenge/response messages and the unique identifier, and the ECDSA signature is verified by either the user device or the authentication server, the encrypted output is decrypted and the authentication server compares the decrypted data with the stored shared key to either determine that the asset is authentic or notify a stakeholder associated with the asset that the asset is inauthentic.
US10396991B2
Deferred verification of the integrity of data operations over a set of data that is hosted at an untrusted module (UM) is controlled. The controlling includes generating a request for a data operation on the set of data. The request includes an authentication portion. The request is sent to the UM. A response to the request is received from the UM. The response includes cryptographic verification information attesting the integrity of the data operation with respect to prior data operations on the set of data. The response includes results from deferred verification at a trusted module (TM).
US10396989B2
A method and a server for providing transaction keys for a transaction system includes transaction units which use pre-delivered transaction keys, and are provided by a key provisioning server and wherein the transaction key usage is checked by a transaction checking server. A transaction key is derived from a master key of a transaction unit, wherein a varying derivation parameter is used in the step of deriving. The step of deriving comprises a first sub step of deriving a key from the master key and a second sub step of deriving the transaction key from the derived key. The first sub step or the second sub step of deriving is performed dependent on a security level of the transaction unit.
US10396988B2
A method for distributing multiple cryptographic keys used to access data includes: receiving a data signal superimposed with an access key request, wherein the access key request includes at least a number, n, greater than 1, of requested keys; generating n key pairs using a key pair generation algorithm, wherein each key pair includes a private key and a public key; deriving an access private key by applying the private key included in each of the n key pairs to a key derivation algorithm; generating an access public key corresponding to the derived access private key using the key pair generation algorithm; and electronically transmitting a data signal superimposed with a private key included in one of the n key pairs for each of the n key pairs.
US10396987B2
The present disclosure describes a system, method, and non-transitory computer readable medium for provisioning multiple instances of a secure communication application on multiple devices. A secure communication application on a first device generates a first set of private keys that are associated with the user and a second set of keys that are associated with the secure communication application executing on the first device. The first set of private keys establishes a set of root identifying keys for the user that are identical for all installations of the secure communication application, while the second set of keys will vary from device to device. In this regard, the first set of root identifying keys must be securely transferred from the first device to any subsequent installations of the secure communication application on one or more second devices. This establishes a high degree of trust since each installation of the secure communication application is linked to the first set of root identifying keys and allows the user to send and receive encrypted communications on multiple devices from the same trusted root keys.
US10396983B2
A cryptographic communications system enables two entities related by an insecure communication channel and having initially no privately shared knowledge, to agree on a shared unconditionally secure information. Each one of the entities has the capability to generate a new form of randomness called Deep Random, such that any other entity than itself cannot know anything about the probability distribution except a given public characteristic. The internal system of each entity is made up with: (1) a Deep Random Generator (DRG) capable of generating Deep Random signals and of making calculations using the generated signals, and (2) an Interactive Communication Module (ICM) capable of publishing to and reading from the insecure channel. The two entities execute a communication protocol such that they can each compute their respective estimations of the shared information that are probabilistically as close as desired from perfect equality.
US10396970B2
A wireless communication system comprises a source node, a destination node, and a plurality of half-duplex relay nodes disposed between the source node and the destination node. The half-duplex relay nodes are configured in two disjoint paths each comprising an equal number of hops from the source node to the destination node. The source node is configured to alternately transmit information via the two disjoint paths in alternating time slots, and the destination node is configured to alternately receive information via the two disjoint paths in alternating time slots.
US10396967B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car or connected car, health care, digital education, smart retail, security and safety services. The present disclosure discloses a method capable of solving a problem of downlink-to-uplink interference (DL-to-UL interference) occurring as dynamic time division duplex (TDD) is applied in a wireless communication system.
US10396965B2
A method and apparatus for communicating with a machine-type communication (MTC) user equipment (UE) in a wireless communication system is provided. A base station (BS) configures a first MTC transmission time interval (M-TTI) for a first UE and a second M-TTI for a second UE in a subband, and communicates with the first UE and the second UE in the subband by using the first M-TTI and the second M-TTI. In this case, the first UE and the second UE have different coverage enhancement (CE) level from each other.
US10396955B2
The present disclosure relates to a 5G or pre-5G communication system to be provided for supporting a data rate higher than that of a 4G communication system, such as LTE, and subsequent communication systems. The present disclosure relates to a method for transmitting a reference signal (RS) in a wireless communication system, comprising the steps of: configuring a transmission resource by including at least one resource block (RB), which does not map the RS, between two RBs, which map the RS, in a first subframe; transmitting a first message for directing an RB offset indicating a gap between the two RBs, which map the RS, and locations of the RBs, which map the RS; and transmitting the RS through the configured transmission resource.
US10396954B2
Aspects of the subject disclosure may include, for example, receiving, by a network element of a distributed antenna system, a clock signal, a control channel and a first modulated signal at a first carrier frequency, the first modulated signal including first communications data provided by a base station and directed to a mobile communication device. The clock signal synchronizes timing of digital control channel processing by the network element to recover instructions from the control channel. The instructions in the control channel direct the network element of the distributed antenna system to convert the first modulated signal at the first carrier frequency to the first modulated signal in a first spectral segment. Other embodiments are disclosed.
US10396949B2
A method for processing interference signals, comprising the following steps of: receiving, by a terminal, configuration information sent by a base station to obtain periodic scheduling configuration information of a neighbor cell on specific time-frequency resources; detecting, by the terminal, an interference signal of the neighbor cell according to the scheduling configuration information, and acquiring information about the interference signal; and, performing, by the terminal, interference cancellation and/or interference suppression on the detected interference signal according to the information about the interference signal.
US10396939B2
Exemplary methods, apparatuses, and systems include duplicating a packet within a plurality of packets to be transmitted to a destination computing node as a sequence of packets. The plurality of packets including the duplicate of the packet are transmitted to the destination computing node. Upon receiving a first acknowledgement of the packet from the destination computing node, it is determined that the first acknowledgment is directed to a duplicated packet. In response to determining that the first acknowledgment is directed to a duplicated packet, it is determined that a second acknowledgement has yet to be received for each of one or more packets within the plurality of packets transmitted prior to the packet. In response to determining that the second acknowledgement has yet to be received, the one or more packets are retransmitted to the destination computing node.
US10396932B2
A method for operating a mobile communication network includes identifying link processing jobs running on one or more entities in the mobile communication network which cause an increase of data transmission delay in a communication link between the radio access network and a core network of the mobile communication network. One or more of the identified link processing jobs is selected. Link parameters of the selected link processing jobs of the communication link are adapted depending on latency requirements of a service using the communication link.
US10396925B2
A small cell interference coordination method and wireless communication device. The method includes: obtaining mobile information of at least one of the small cells; determining relative movement between the small cells according to at least the movement information; estimating a Doppler frequency shift of a signal between small cells according to the relative movement; and implementing an interference alignment policy between small cells according to the estimated Doppler frequency shift.
US10396923B2
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). Disclosed is a method of managing a telecommunications network, comprising the steps of: obtaining data representing an operational parameter from the at least one of a plurality of network elements comprising a plurality of base stations and at least one terminal, determining mapping information for connection between the at least one terminal and one of the plurality of base stations based on the data representing the operational parameter, and transmitting, to the at least one terminal, the mapping information.
US10396921B2
Disclosed are a multi-lane synchronization method and apparatus. The method includes: forming N data frames, frame headers of the N data frames including an identical frame header sequence, N being greater than or equal to 1 and less than or equal to the number of lanes M, and M being an integer not less than 2; and sending the N data frames via N lanes, wherein different data frames are sent via different lanes, and the frame header sequence is configured to perform frame synchronization between a receiving end and a sending end or to check frame synchronization. Also disclosed are a synchronization system and a computer storage medium.
US10396915B2
An interference cancellation repeater according to the inventive concept includes: a first transmission/reception processing unit configured to adjust a gain of a radio frequency (RF) input signal input via a link antenna communicatively coupled to a base station; an interference canceller configured to cancel and output an interference signal from an output signal of the first transmission/reception processing unit; and a gain controller configured to extract a signal with constant magnitude regardless of a change in user traffic from the output signal of the interference canceller, and to adjust the gain of the RF input signal to a predetermined level by controlling the first transmission/reception processing unit based on the extracted signal.
US10396910B2
A system and method of allowing a network device to enter RF test mode without changing the software image or attaching cables to it is disclosed. In one embodiment, the software image loaded into the network device has the capability to execute in both normal operating mode and RF test mode. A command is issued by a RF test tool which instructs the network device to enter one of one or more different RF modes. In certain embodiments, the network device remains in this RF test mode for a predetermined period of time. In other embodiments, the network device remains in this RF test mode until the power is cycled.
US10396903B2
An improved scheme for sending classical digital data over a quantum channel is presented using path entanglement. The protocol is can detect digital data by the measurement or non-measurement of one entangled channel to signal to the remote station. The remote station is able to resolve the distant measurement by use of an interferometer. No measurement and the entangled state imply an interference effect at the remote station, whereas measurement results in a mixed state and no interference. A disproof of the “No-communication Theorem” is presented. The method applies to both matter and light waves.
US10396899B1
Systems and methods for constellation shaping of M-QAM modulation formats in optical transport networks may receive binary data to be transmitted as an optical signal and partition symbols of an M-QAM constellation in the complex plane into two non-overlapping subsets of symbols, The systems and methods may include assigning respective probabilities to each symbol in the first subset of symbols dependent on a target probability distribution for the first subset, mapping at least a portion of the received binary data to the symbols in the first subset, including generating a respective codeword for each symbol in the first subset, in a first symbol period, providing data representing the respective codewords mapped to the symbols in the first subset to an optical modulator for transmission, and refraining from providing any data representing codewords mapped to the symbols in the second subset to the optical modulator until a second symbol period.
US10396892B2
A method of automated testing and evaluation of a node of a communications network, the method comprising: a management computer interacting with the node to discover fiber trails within the node that can be safely tested; and the management computer interacting with the node to test at least continuity of each identified fiber trail that can be safely tested.
US10396888B1
Methods and systems are described for providing end-to-end beamforming. For example, end-to-end beamforming systems include end-to-end relays and ground networks to provide communications to user terminals located in user beam coverage areas. The ground segment can include geographically distributed access nodes and a central processing system. Return uplink signals, transmitted from the user terminals, have multipath induced by a plurality of receive/transmit signal paths in the end to end relay and are relayed to the ground network. The ground network, using beamformers, recovers user data streams transmitted by the user terminals from return downlink signals. The ground network, using beamformers generates forward uplink signals from appropriately weighted combinations of user data streams that, after relay by the end-end-end relay, produce forward downlink signals that combine to form user beams.
US10396887B2
Aspects of the subject disclosure may include, for example, a client node device having a radio configured to wirelessly receive downstream channel signals from a communication network. An access point repeater (APR) launches the downstream channel signals on a guided wave communication system as guided electromagnetic waves that propagate along a transmission medium and to wirelessly transmit the downstream channel signals to at least one client device. Other embodiments are disclosed.
US10396881B2
In a mmW network, a UE and a base station may establish a link using a RACH procedure. Because mmW and other band communications may rely on accurate beamforming to overcome link attenuation, the UE may need to provide beam information feedback to the base station. In particular, the UE may receive a beam-formed message from the base station during the RACH procedure. The UE may determine beam information based on the received beam-formed message during the RACH procedure. The UE may transmit a message to the base station during the RACH procedure, and the message may include the determined beam information.
US10396879B2
The present disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. The UE transmits first information including at least the former two of {K first-type indexes, K1 first-type indexes, K first-type numerical values}. The K1 first-type indexes are a subset of the K first-type indexes. The K first-type indexes are used for determining K antenna port groups. The UE receives simultaneously radio signals from K1 antenna port groups. The K1 first-type indexes are used for determining the K1 antenna port groups. The K first-type numerical values are used for determining K channel qualities. The K1 first-type indexes include at least one given first-type index, and a position of the given first-type index in the K first-type indexes is used for determining whether an antenna port group corresponding to the given first-type index belongs to the K1 antenna port groups.
US10396877B2
A method for reporting channel status information (CSI) to a base station by a terminal in a wireless access system is disclosed in the present application. The method for reporting CSI comprises the steps of: receiving information on a first CSI process and a second CSI process, each of which includes two or more CSI-reference signal (CSI-RS) resources, through an upper layer; and transmitting, to the base station, a first CSI report according to the first CSI process and a second CSI report corresponding to the second CSI process, wherein the second CSI process is configured to have a rank indicator (RI) value that is the same as the RI of the first CSI process, and the numbers of antenna ports for all the CSI-RS resources included in the first CSI process and the second CSI process are the same.
US10396870B2
A system and method for system and method for multiplexing control and data channels in a multiple input, multiple output (MIMO) communications system are provided. A method for transmitting control symbols and data symbols on multiple MIMO layers includes selecting a first set of codewords from Ncw codewords, distributing control symbols onto the first set of layers, placing data symbols of the first set of codewords onto the first set of layers, placing data symbols of the (Ncw-Ncw1) remaining codewords to remaining layers if Ncw>Ncw1, and transmitting the multiple MIMO layers. The first set of codewords is associated with a first set of layers from the multiple MIMO layers, and the Ncw codewords are to be transmitted simultaneously and the first set of codewords comprises Ncw1 MIMO codewords, where Ncw and Ncw1 are integers greater than or equal to 1. The remaining layers are MIMO layers from the multiple MIMO layers not in the first set of layers.
US10396863B2
For determining parameters for configuring a regularized zero-forcing precoder aiming at being applied for transmitting data from a plurality of transmitters to a plurality of receivers via a MIMO transmission channel in a wireless communication system, and more particularly in a scope of massive MIMO approach, a first phase comprises: obtaining long-term statistics about observations of the MIMO transmission channel, and obtaining a power scaling factors aiming at meeting a power constraint P, by solving an optimization problem as a function of a signal to noise ratio asymptotic expression from the standpoint of each receiver. Then, a second phase comprises: obtaining an estimation of the MIMO transmission channel, and configuring the regularized zero-forcing precoder using the power scaling factors determined in the first phase as well as the obtained estimation of the MIMO transmission channel.
US10396862B1
Cooperative multi-node MIMO communications involves a second wireless communication device (WCD) or more generally a self-selection of devices which selectively assists a first WCD with respect to communication of a first message to a third WCD. This assistance involves transmitting the first message using the second wireless communication device. More particularly, transmission of the first message by the second wireless communication devices is performed synchronously with at least one retransmission of the first message by the first wireless communication device. This retransmission is performed at a predetermined re-transmission time known to both the first and second wireless communication devices.
US10396845B2
A communication system includes a conversion module configured to convert a signal between a radio frequency baseband (RF-BB) and an intermediate frequency (IF). At least one RF front-end module converts the signal between the IF and a radio frequency (RF). The RF front-end module is configured as an RF phased array and includes a coaxial interconnect configured to connect the conversion module with the RF front-end module. The signal is transmitted between the conversion module and the RF-front end module via the coaxial interconnect. At least one RF front-end module includes an active front-end (AFE) configured to allow the signal to be transmitted via the coaxial interconnect while minimizing any deterioration of the signal.
US10396834B2
Described is an apparatus which comprises: a pre-driver coupled to a transmitter, the transmitter having a differential output; and a tuning circuit operable to couple to the differential output to tune the pre-driver of the transmitter according to a common mode noise signature of a common mode signal derived from the differential output.
US10396832B2
To provide a filling apparatus capable of eliminating a disadvantage caused by a cable connecting a photodetector to a receiver. A filling apparatus 100 according to the present invention includes a radio transmission section 10 with a function of transmitting vehicle information via radio transmission on a filling nozzle 50. In the filling apparatus 100, it is preferable that the radio transmission section 10 is detachably attached to the end portion 50A of the filling nozzle 50.
US10396822B2
A transmitting apparatus and a receiving apparatus are provided. The transmitting apparatus includes: an encoder configured to generate a low density parity check (LDPC) codeword by performing LDPC encoding; an interleaver configured to interleave the LDPC codeword; and a modulator configured to modulate the interleaved LDPC codeword according to a modulation method to generate a modulation symbol. The interleaver is formed of a plurality of columns including a plurality of rows, respectively, and comprises: a block interleaver configured to divide each of the plurality of columns into a first part and a second part, and interleave a plurality of bit groups constituting the LDPC codeword, all bit groups interleaved by the first part are interleaved as bits included in a same bit group are written in a same column of the first part, at least one bit group interleaved by the second part is interleaved as bits included in the at least one bit group are divided and written in at least two columns constituting the second part.
US10396821B2
Embodiments herein provide for a controller that is operable to soft read a data bit a plurality of times, to generate a bit set for the data bit from the soft reads, to logically operate on the bit set, and to generate a Hamming weight for the data bit based on the logical operation. The Hamming weight has fewer bits than the bit set and is operable to correct the data bit.
US10396806B1
A filter circuit includes an amplifier circuit, a resistor-capacitor (RC) network and a first voltage follower. The amplifier circuit has a first input terminal, a second input terminal and an output terminal. The amplifier circuit is configured to output a first output signal from the output terminal according to a first voltage signal at the first input terminal and a second voltage signal at the second input terminal. The RC network, coupled to the first input terminal, is configured to produce the first voltage signal at least in response to a first current signal applied to the first input terminal. The first voltage follower, coupled to the output terminal, is configured to receive the first output signal, and generate a first filtered signal in response to the first output signal.
US10396805B2
A reference-less frequency detector circuit includes a sampling circuit that is configured to generate a frequency control voltage and a switch circuit control signal based on a frequency difference between a clock signal frequency and an input data rate. The frequency control voltage has a frequency down indication and a frequency up indication. A voltage-to-current converter circuit is coupled to the sampling circuit and is configured to convert the frequency control voltage to a frequency control current based on the switch circuit control signal. The voltage-to-current converter circuit includes an output switch circuit controlled by the switch control signal and is configured to have substantially equal respective latencies for the frequency down indication and the frequency up indication.
US10396803B2
A clock and data recovery (CDR) circuit operates to recover a clock and sample data from full-rate and sub-rate data signals. The CDR circuit selectively shifts one or more of the sampling clocks based on the rate of a received data signal, facilitating accurate sampling of sub-rate data signals. A masking circuit selectively masks data output bits clocked by a selection of the sampling clocks, thereby outputting relevant sampled data.
US10396799B1
A circuit for accessing memory elements in an integrated circuit device is described. The circuit comprises a first plurality of memory elements; first line drivers, each of the first line drivers configured to provide a signal to a memory element of the first plurality of memory elements; first line driver buffers configured to control the signals provided by the first line drivers to the first plurality of memory elements; a second plurality of memory elements; second line drivers, each of the second line drivers configured to provide a signal to a memory element of the second plurality of memory elements; second line driver buffers configured to control the signals provided by the second line drivers to the second plurality of memory elements; and wherein one or both of the first line driver buffers and the second line driver buffers are configured to be selectively disabled.
US10396794B1
A driver circuit includes a first termination resistor and a distributed amplifier comprising a plurality of pairs of input transistors and comprising inductors coupled between each pair of input transistors. The driver circuit also includes a distributed current-mode level shifter coupled to the first termination resistor. The distributed current-mode level shifter includes a first plurality of inductors coupled in series between the first termination resistor and the distributed amplifier and a first plurality of capacitive devices. Each capacitive device is coupled to a power supply node and to a node interconnecting two of the series-coupled inductors.
US10396793B2
A level shift circuit includes: a constant-current generation unit; a current mirror unit that flows the constant-current through first and second lines; and a level shift unit that receives first and second input signals, the first input signal being varied between first and second logic levels and having first and second potentials at the first and second logic levels respectively, the second input signal being a phase-inverted signal of the first input signal, the level shift unit producing first and second output signals that are acquired by shifting a signal level at the first logic level of the first and second input signals from the first potential to the power supply potential, the level shift unit outputting the first output signal from a node on the second line and outputting the second output signal from a node on the first line. The constant-current generation unit includes a current adjustment circuit which varies the constant current value depending on a variation in the first potential.
US10396787B2
Methods and apparatuses are provided for dynamic step size for impedance calibration of a semiconductor device. An example apparatus includes a resistance calibration circuit configured to provide an impedance code to set impedance of a driver circuit. The resistance calibration circuit includes an adder/subtractor circuit configured to change the impedance code by a first step size responsive to the impedance code being less than a value to adjust the impedance of the driver circuit and further configured to change the impedance code by a second step size responsive to the impedance code greater or equal than the value to adjust the impedance of the driver circuit. The second step size is different from the first step size.
US10396786B2
A key input apparatus includes a key top capable of moving up and down through a pressing operation; a first substrate, which includes a first surface, which is positioned on the key top side, and a second surface, which is opposite to the first surface, and the first substrate supports the key top and is provided to be movable up and down along with the key top; a second substrate, which is provided between the key top and the first substrate in the direction of the up-and-down movement of the key top, and the second substrate includes a first surface, which is positioned on the first substrate side, and a second surface, which is opposite to the first surface; a magnetic field generation unit; a magnetic sensor unit, which includes a magnetic detection element that detects a magnetic field generated from the magnetic field generation unit; and an adhesion unit, which includes a soft magnetic material capable of adhering to the magnetic field generation unit. The magnetic sensor unit and the adhesion unit are provided on one of the first surface of the first substrate and the first surface of the second substrate, and the magnetic field generation unit is provided on the other of the first surface of the first substrate and the first surface of the second substrate, opposite to the adhesion unit.
US10396784B2
A capacitive measurement device for control interfaces, includes: (i) a support plate (2) having elements for attachment (4) to a control interface (3), (ii) first electrodes (5) arranged on a first surface of the support plate (2) opposite the control interface (3) and including first active electrodes (5), (iii) electronic capacitive measurement elements capable of enabling the obtainment of proximity and/or contact information of objects of interest (1), and (iv) second electrodes (6, 7) arranged on a second surface of the support plate (2) facing the control interface (3) and including second active electrodes (6) connected to the electronic capacitive measurement elements such as to enable the obtainment of measurements of movement and/or deformation of the support plate (2). A method and apparatus implemented in the device are also described.
US10396780B2
Designing phase shifters having small insertion loss and footprint for mm-wave applications is challenging. The disclosed methods and devices provide solutions to overcome such challenge. Devices based on limited ground coplanar waveguide structure are also disclosed wherein the 180° phase shift is created using through and changeover mm-wave switches.
US10396779B2
A circuit includes a pair of high side transistors, a pair of low side transistors, a first sense resistor coupled to one of the low side transistors at a first sense node, and a second sense resistor coupled to another of the low side transistors at a second sense node. The first and second sense resistors couple together at a ground node. The circuit includes a first switch network coupled to the first sense resistor, a second switch network coupled to the second sense resistor, a first pair of switches configured to selectively provide a potential of the ground node or a potential of the first sense node as a ground potential to the first switch network, and a second pair of switches configured to selectively provide the potential of the ground node or a potential of the second sense node as a ground potential to the second switch network.
US10396765B2
A power amplifying apparatus includes a power circuit configured to generate operating power, a random pulse generation circuit configured to be supplied with the operating power and to generate a pulse width modulation signal of which a pulse width is randomly changed over time using an input radio frequency (RF) signal, and a charge pump circuit configured to be supplied with the operating power and to randomly perform a switching operation according to the pulse width modulation signal to generate a negative voltage.
US10396764B2
A high-voltage pulse generator including a plurality of stages and an electrode for returning current to ground, connected in series, each of the stages including at least one energy storage element connected in series with a spark gap. The spark gaps are distributed on an axis, the odd-numbered energy storage elements are arranged on one side of the spark gap axis, and the even-numbered energy storage elements are arranged on the other side of the spark gap axis, such that the circuit formed by the plurality of stages and the current return electrode have a reduced inductance during a discharge phase of the generator, with respect to a generator including the same components laid out according to a conventional architecture.
US10396763B2
Various circuit techniques for implementing ultra high speed circuits use current-controlled CMOS (C3MOS) logic fabricated in conventional CMOS process technology. An entire family of logic elements including inverter/buffers, level shifters, NAND, NOR, XOR gates, latches, flip-flops and the like are implemented using C3MOS techniques. Optimum balance between power consumption and speed for each circuit application is achieve by combining high speed C3MOS logic with low power conventional CMOS logic. The combined C3MOS/CMOS logic allows greater integration of circuits such as high speed transceivers used in fiber optic communication systems.
US10396753B2
Stacked wafer-level packaging devices. In some embodiments, a wireless device includes a transceiver configured to generate a radio-frequency (RF) signal. The wireless device also includes a front-end module (FEM) in communication with the transceiver, the front-end module including a packaging substrate configured to receive a plurality of components, the front-end module further including a stacked assembly implemented on the packaging substrate, the stacked assembly including a first wafer-level packaging (WLP) device having a radio-frequency (RF) shield, the stacked assembly further including a second wafer-level packaging device having an RF shield, the second wafer-level packaging device positioned over the first wafer-level packaging device such that the RF shield of the second wafer-level packaging device is electrically connected to the RF shield of the first wafer-level packaging device. The wireless devices further includes an antenna in communication with the front-end module, the antenna configured to transmit the amplified radio-frequency signal.
US10396743B2
A gain function controller may be configured to: receive a first plurality of sub-band-signals; determine a frequency-domain-gain-function for a second plurality of sub-band-signals, based on: the first plurality of sub-band-signals; a power of a first full-band signal; and a predetermined compression curve; and apply the frequency-domain-gain-function to the second plurality of sub-band-signals to provide a frequency-domain-output-signal.
US10396740B2
The present disclosure relates to a microphone driving device and a digital microphone including the same. A microphone driving device according to an embodiment of the inventive concept includes a voltage-to-current converter, a current-to-voltage converter, an analog-to-digital converter, a digital amplification unit, and a gain controller. The voltage-to-current converter converts an acoustic signal to an output current signal based on a gain control signal. The current-to-voltage converter converts the output current signal to an amplified voltage signal. The analog-to-digital converter converts the amplified voltage signal to a digital signal. The digital amplification unit amplifies the digital signal to an amplified digital signal based on the gain control signal. The gain controller generates a gain control signal. The microphone driving device and the digital microphone including the same according to the inventive concept may have a wide dynamic range and reduce the influence of noise.
US10396733B2
The various embodiments described herein include methods, devices, and systems for fabricating and operating superconducting circuitry. In one aspect, an electronic system includes: (1) a first circuit that includes a plurality of superconducting wires connected in parallel with one another, the plurality of superconducting wires including: (a) a first superconducting wire with a corresponding first threshold superconducting current; and (b) a second superconducting wire; (2) a second circuit connected in parallel to the first circuit; (3) a first current source coupled to the first superconducting wire and configured to selectively supply a first current; and (4) a second current source coupled to a combination of the first circuit and the second circuit and configured to supply a second current such that the plurality of superconducting wires operate in a superconducting state; where a combination of the first current and the second current exceeds the first threshold superconducting current.
US10396732B2
A cascading microwave directional amplifier (cascade) includes a set of Josephson devices, each Josephson device in the set having a corresponding operating bandwidth of microwave frequencies, wherein different operating bandwidths have different corresponding center frequencies. A series coupling is formed between first Josephson device from the set and an nth Josephson device from the set, such that the first Josephson device amplifies a signal of a first frequency from a frequency multiplexed microwave signal (multiplexed signal) and propagate without amplification a signal of an nth frequency, and the nth Josephson device to amplify the signal of the nth frequency and propagate without amplification the signal of the first frequency from the multiplexed signal in the first signal flow direction through the series.
US10396729B2
A differential circuit including: a first MOS transistor and a second MOS transistor that constitute a differential pair; a determination unit to determine a level of a determination target signal that is based on at least one of differential inputs being input to gate of the first MOS transistor and a gate of the second MOS transistor; and a voltage changing unit to change a back gate voltage that is supplied to both back gates of the first MOS transistor and the second MOS transistor according to a determination result of the determination unit, and an OP-amp will be provided.
US10396727B2
Exemplary embodiments including an amplifier circuit that includes a radio-frequency (RF) amplifier comprising an input terminal and an output terminal, the RF amplifier being configured to amplify, across a wideband frequency range, an RF signal applied to the input terminal to generate an amplified RF signal at the output terminal. The amplifier circuit also includes a first impedance matching network connected to the RF amplifier output terminal. The first impedance matching network includes a first reactive circuit, having substantially fixed impedance, connected between the RF amplifier input terminal and ground; a second reactive circuit; and a switching device configured to couple the second reactive circuit to the first reactive circuit in an ON state, and to decouple the second reactive circuit from the first reactive circuit in an OFF state. In some embodiments, the amplifier circuit can include a second impedance matching network connected to the RF amplifier input terminal.
US10396725B2
An amplifier includes an output stage circuit and a compensation circuit. The output stage circuit includes a first input terminal, a second input terminal, a first output terminal, and a second output terminal. The compensation circuit includes a first capacitor, a second capacitor, a third capacitor, and a fourth capacitor. The first capacitor is coupled between the first input terminal and the second output terminal, and is configured to operate as a first Miller capacitor. The second capacitor is coupled between the second input terminal and the first output terminal, and is configured to operate as a second Miller capacitor. The third capacitor and the fourth capacitor are configured to alternately operate as the first Miller capacitor and the second Miller capacitor according to at least one clock signal.
US10396720B2
High-frequency amplifier apparatuses suitable for producing output powers of at least 1 kW at frequencies of at least 2 MHz for plasma excitation are disclosed. These high-frequency amplifiers include two transistors, the source or emitter connections of which are each connected to a ground connection point. The transistors can have an identical design and are arranged on a multilayer printed circuit board. The apparatus also includes a power transformer, the primary winding of which is connected to the drain or collector connections of the transistors. The primary winding and the secondary winding of the power transformer are each in the form of planar conductor tracks which are arranged in different upper layers of the multilayer printed circuit board.
US10396717B2
Disclosed is a power control method for a radio frequency power amplifier, comprising the following steps: S1. reading a power source voltage signal and a power control signal and generating an amplified signal having a linear relationship with the power control signal; S2. according to the amplified signal and saturation information, generating one or more controlled currents, merging each controlled current, and converting the merged total current into voltage; S3. Conducting linear voltage regulation on the converted voltage and generating a base control voltage of the radio frequency power amplifier. The present invention dynamically monitors the saturation information of a pass element to change the base voltage of the radio frequency power amplifier, thus improving additional power efficiency of the radio frequency power amplifier at multiple power level and over a large power source voltage range, and improving the properties of the radio frequency switch thereof.
US10396713B2
An envelope-tracking current bias circuit includes a first rectifying circuit, a second rectifying circuit, and a first arithmetic circuit. The first rectifying circuit is configured to detect an envelope of an input signal, and provide an envelope detection signal comprising a first direct current (DC) offset voltage. The second rectifying circuit is configured to provide a second DC offset voltage corresponding to the first DC offset voltage. The first arithmetic circuit is configured to provide an envelope signal in which the first DC offset voltage is reduced through subtraction between the envelope detection signal and the second DC offset voltage.
US10396704B2
An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.
US10396701B2
A motor control device of a motor includes voltage acquisition circuitry that acquires a drive voltage of the motor; rotational speed acquisition circuitry that acquires a rotational speed of the motor; setting circuitry that sets a rotational speed instruction value of the motor; calculation circuitry that calculates a rotational speed threshold value of the motor; change circuitry that changes the rotational speed instruction value; and storage circuitry that stores reference data. The reference data includes at least three types of reference value sets each including a reference drive voltage value, a reference rotational speed instruction value, and a reference rotational speed threshold value. The calculation circuitry performs a proportional calculation, a current rotational speed instruction value, and the reference value set to calculate the rotational speed threshold value.
US10396690B2
An electric motor includes a stator, a rotor provided to be rotatable with respect to the stator, and a driving circuit board including a power IC applying a driving voltage to the stator, a Hall IC detecting a rotation position of the rotor, and a control IC adjusting a phase of the driving voltage in accordance with a magnetic-pole-position signal from the Hall IC and rotation speed information calculated on the basis of the magnetic-pole-position signal. The Hall IC is provided at a position at which an advance angle is larger than zero when a rotation speed of the rotor is zero.
US10396686B2
A converter comprises a plurality of controllable two-pole sub-modules connected in series. At least some of the sub-modules each comprises a first and a second sub-module connection, a first, a second, a third and a fourth controllable switch, and a storage dipole, which comprises a first and a second dipole connection, an energy store and a controllable switching device, wherein the controllable switching device has a first selectable switching state, in which the storage dipole outputs no energy, and a second selectable switching state, in which the store of the storage dipole can take up or discharge energy. The sub-module has a selectable conduction state, in which the controllable switching device of the storage dipole assumes the first switching state and the first to fourth switches are switched such that a current flows through the sub-module on two parallel branches.
US10396671B2
A switched mode DC-DC power supply includes a power circuit having an input for receiving an input voltage, an output for providing an output voltage, and four power switches coupled between the input and the output. The four power switches are arranged in a full bridge configuration. The power supply further includes a control circuit coupled to the power circuit for providing a plurality of control signals to the power switches. The plurality of control signals have a variable frequency. The control circuit is adapted to vary the frequency of the plurality of control signals, and to vary a parameter of only two of the plurality of control signals to regulate the output voltage. The parameter is a duty cycle or a phase of said two control signals. Other example switched mode DC-DC power supplies are also disclosed.
US10396660B2
The switching regulator has: a control unit for turning on/off an upper switch and a lower switch in a complementary manner in accordance with an output voltage; and a current extraction unit for extracting a constant current from a first end or a second end of an inductor. When under a light load, the control unit stops the switching control and fixes the upper switch and the lower switch in an off state. The constant current has positive temperature characteristics, wherein the value of the constant current is greater than or equal to a value obtained by subtracting leakage current of the lower switch from leakage current of the upper switch.
US10396651B2
A power conversion apparatus includes a semiconductor module including a semiconductor device and a control circuit unit controlling the semiconductor module. The semiconductor module has main and subsidiary semiconductor devices connected in parallel. The control circuit unit performs control such that the subsidiary semiconductor device is turned on after the main semiconductor device is turned on, and the main semiconductor device is turned off after the subsidiary semiconductor device is turned off. The control circuit unit performs control such that, one of the turn-on and turn-off switching timings has a switching speed faster than that of the other of the switching timings. The semiconductor module is configured such that, at a high-speed switching timing, an induction current directed to turn off the subsidiary semiconductor device is generated in a control terminal of the subsidiary semiconductor device depending on temporal change of a main current flowing to the main semiconductor device.
US10396650B2
The invention relates to an electric DC-DC converter suitable for being supplied with power by a primary voltage source and for supplying control electronics of a three-phase inverter with power, said three-phase inverter being configured to control a fan of a ventilation system of an aircraft. The DC-DC converter is characterised in that it comprises a transformer (16), a primary circuit (12) comprising two loops forming a symmetrical assembly, at least one secondary circuit (14) comprising a secondary winding (LS), suitable for supplying, firstly, the inverter with an output voltage equal to twice the peak voltage at the terminals of the secondary winding (LS) and, secondly, a branch of the circuit suitable for supplying the inverter with an output voltage equal to the opposite of the peak voltage at the terminals of the secondary winding (LS), and in that the controllable transistors (M1, M2) are suitable for each being switched at zero voltage.
US10396641B2
An object is to easily inject resin into a gap of a laminated core which constitutes a rotating electric machine. Included are: a resin supplying unit which feeds the resin; and a resin injection unit which injects the resin into an axial hole of the laminated core. The resin injection unit has an injection pipe and an elastic ring attached to the injection pipe. This elastic ring is made to firmly attach to the inner periphery of the axial hole; the resin is supplied from the resin supplying unit; and the resin is injected into the gap of the laminated core through the axial hole of the laminated core.
US10396634B2
Disclosed herein are a sensor assembly including a holder that includes a first insertion groove formed at one side and a second insertion groove formed at the other side, a sensing magnet disposed at the first insertion groove, and a sensor cap that covers the sensing magnet, and a motor including the same.
US10396626B2
An electric machine includes a housing, a shaft, which is rotatably supported in the housing, a stator, which is received in the housing, and a rotor, which is received in the housing and interacts with the stator. A planetary gear train, accommodated in the housing, connects the rotor and the shaft with one another.
US10396616B2
An electric motor has a switching unit with a number of contact wires and an annular frame part. The contact wires are arranged to form an interconnect ring for the coil ends of a stator winding and the ends of the wires being connected by insulation displacement contacts. Each of the contacts have two insulation displacement limbs for connecting at least two of the wire ends, the limbs being spaced apart, thus forming an insulation displacement slot therebetween. The frame part of the switching unit has a number of plug-in pockets for receiving the insulation displacement contacts, the number corresponding to the number of insulation displacement contacts.
US10396609B2
Magnetic flux short-circuit preventing slits extend from opposite ends of two permanent magnets in an outer circumferential surface of a rotor toward a center of a magnetic pole. Grooves formed in the outer circumferential surface can be located at a distance from each other symmetrically with respect to the center of the magnetic pole and at a distance from a groove of an adjacent magnetic pole in the outer circumferential surface. Relations are established as θf=n×τs and θs=n×τs where τs designates a pitch of stator winding slots, which pitch is converted into an angle around a rotation center, θf designates an angle between the magnetic flux short-circuit preventing slits, θs designates an angle between the grooves, and n designates a predetermined integer. Thereby, a permanent magnet-embedded type rotary electric machine in which the influence of a manufacturing error can be minimized so that cogging torque can be reduced stably.
US10396606B2
Systems and methods are disclosed herein that can allow for wirelessly powering and/or communicating with a sterile-packed electronic device without removing the electronic device from its sterile packaging and while maintaining the sterility of the electronic device. In some embodiments, a base station with a power transmitter wirelessly transfers power to a power receiver of the electronic device, for example using inductive, capacitive, or ultrasonic coupling. The base station or another external device can also be used to wirelessly program or interrogate the electronic device. Battery charging circuits and switching circuits for use with said systems and methods are also disclosed.
US10396588B2
The present disclosure provides devices and methods for wireless power transmission. These devices and methods may extend the battery life of electronic devices such as tablets, smartphones, Bluetooth headsets, smart-watches among others. An example method may include, when a receiver coupled to an electronic device is within a threshold distance from a transmitter: (i) receiving a plurality of wireless power transmission waves transmitted by the transmitter, (ii) converting the plurality of wireless power transmission waves into usable electricity, and (iii) providing the usable electricity to a backup battery of the receiver to at least partially charge the backup battery. Further, when the receiver is not within the threshold distance from the transmitter, and after providing the usable electricity to the backup battery to at least partially charge the backup battery, draining the backup battery to provide power to the battery of the electronic device.
US10396586B1
An electronic device includes a first antenna for transmitting a signal to a remote communication node and a second antenna for receiving a RF power signal from a remote wireless charger. The device includes a RF to DC converter connected to second antenna to convert the RF power signal to direct current power. DC power management circuitry is connected to the RF to DC converter to supply the direct current power to at least one of a battery or a device circuit. The electronic device includes a controller that monitors an output level of the transmission signal being transmitted to the remote communication node, determines whether the output level has met a predetermined threshold level during a transmission cycle, and causes the second antenna to be turned off after the output level has met or exceeded the predetermined threshold level during a predetermined number of transmission cycles.
US10396584B2
A wireless charging steering wheel device is described herein. The wireless charging steering wheel device is coupled to a power source via a clockspring included in the steering wheel. Also disclosed herein is an integrated wireless charging/heating system. Also disclosed herein are multiple coil placements for implementing the wireless charging steering wheel device.
US10396579B2
An electronic circuit is disclosed. The electronic circuit includes a GaN substrate, a first power supply node on the substrate, an output node, a signal node, and an output component on the substrate, where the output component is configured to generate a voltage at the output node based at least in part on a voltage at the signal node. The electronic circuit also includes a capacitor coupled to the signal node, where, the capacitor is configured to selectively cause the voltage at the signal node to be greater than the voltage of the first power supply node, such that the output component causes the voltage at the output node to be substantially equal to the voltage of the first power supply node.
US10396577B2
The instant disclosure provides an electronic apparatus with environmental sensing function including an electronic device and a power cable. The power cable includes a plug and a cable connected between the electronic device and the plug. The plug has a sensor module and at least two power pins. The cable has at least an AC power cable and at least a DC transmission cable. The AC power cable is electrically connected to the two power pins, and the DC transmission cable is connected to the sensor module. The power cable is configured to transmit AC electrical power to the electronic device through the AC power cable. The electronic device executes a control command according to a sensing signal detected by the sensor module.
US10396575B2
A device for holding and charging an electronic cigarette element is disclosed. The device comprises a housing having a planar surface deposited with adhesive configured for coupling to a flat surface, the housing including a rechargeable battery, a first power port in the housing, the first power port conductively coupled to the rechargeable battery and configured for accepting external power for recharging the rechargeable battery, a tubular element coupled to the housing, the tubular element having a cavity that is configured to accept an electronic cigarette element, and a charging terminal located on the housing such that when the electronic cigarette element is inserted in to the tubular element, one end of the electronic cigarette element contacts the charging terminal, wherein when the electronic cigarette element contacts the charging terminal, the rechargeable battery recharges a battery of the electronic cigarette element.
US10396572B2
A power transmission device includes: a power reception unit that receives electric power from outside; a power transmission line that transmits the electric power received with the power reception unit to a battery; a transmission cut-off switch that cuts off the power transmission line, a transmission control circuit that uses the electric power received in the power reception unit as operation power, receives a battery state signal indicating a state of the battery, and switches conduction and non-conduction of the transmission cut-off switch on the basis of the battery state signal; and a cut-off control circuit that monitors the received electric power from the power reception unit by receiving electric power from the battery, and forcibly puts the transmission cut-off switch in a non-conductive state when the received electric power is less than a specified value.
US10396570B2
A method and apparatus are disclosed for a Battery Management System (BMS) for the controlling of the charging and discharging of a plurality of battery cells (12). Each battery cell has an associated plurality of control circuits (32, 36) which monitor and control the charging of individual battery cells. These units are controlled by a central microcontroller (14) which shunts current around the battery cell if fully charged and stops discharge if a battery cell is fully discharged in order to prevent damage to the other cells.
US10396562B2
A series compensation device suitable to double-circuit lines is disclosed. The device includes one series transformer and one converter. One converter and dual-circuit transmission lines are respectively connected to three windings of one series transformer. In the solution provided in the present application, the device can be independently installed in a power transmission system to be used as a static synchronous series compensator, and can also be used as a component of a unified power flow controller, a convertible static compensator, an interline power flow controller and a unified power quality conditioner to be connected to a power transmission system device in series. The device can save the capacity of a converter, improve the application efficiency of the series compensation device, and reduce the cost and area occupation.
US10396560B2
An electric multimode power converter module includes an AC/DC converter, including a first AC port; a DC/AC converter, including a second AC port; a DC/DC converter, including a DC port; a controller; and a communication bus interconnecting the converters. The controller includes a hardware configuration port and sets the module in the following states, based on the value read from the configuration port: a first state in which the module transfers power between the first AC port and the DC port, a second state in which the module transfers power between the DC port and the second AC port, and a third state in which the module transfers power between the AC ports and the DC port. A power supply system includes a shelf device including at least one compartment, and an electric multimode power converter module as mentioned above is inserted in the at least one compartment.
US10396557B2
A power control device for an electrically powered appliance may selectively switch off one 110 volt input (of two separate 110 volt input lines) of a 220 volt power supply to the appliance during certain periods of operation, in response to a demand-response request. This may adjust operation of one or more components of the appliance, thus adjusting an amount of power consumed by the appliance. A determination of which one, of the two, 110 volt input lines to be switched off may be made based on an analysis of the amount of power consumed by each of the two 110 volt input lines during operation of the appliance. The power control device may be provided at any point between the electrically powered appliance and a power distribution panel distributing power from an external source.
US10396555B2
A power metering system includes any number of sites and a central database. Loads within a site are unmetered and a sensor data vector over time includes sensor data, operational data and external data. Iteration occurs over time intervals for all unmetered loads and the unmeasured power for each interval is disaggregated by matching a load type with a computer model in the central database having the same feature domain in order to predict the power usage of each load. Iteration again occurs over those intervals in which only a single load is operating; the power of that load is determined to be the unmeasured power minus miscellaneous power, and a new computer model is fitted for that single load and also uploaded to the database. The feature domain of an existing model may also be increased. Both iteration steps repeat until no more unmeasured power can be disaggregated.
US10396553B2
A power control system provides multiple supply voltages that are guaranteed not to violate boundary conditions regardless of the timing of voltage change commands. A first voltage (Vlogic in the embodiments described herein) is controlled conventionally, and a second voltage (Vmemory) is either selected, or generated by adding a selected offset to the first voltage. Both the size of the offset, and the absolute value of the second voltage, are constrained at all times, by constraint values specific to the current voltage zone. The invention ensures a smooth transition between different voltage operating points, and ensures that the trajectory of change between specified operating points remains within predefined boundaries.
US10396544B2
A magnetic core is electromagnetically coupled to two conductors that allow an AC current to flow through. An exciter is configured to supply a winding with an excitation current that is an alternating current. A current detector is configured to detect a current flowing through the winding. A DC component detector is configured to detect a DC component level from the current detected with the current detector. Two contact elements are respectively disposed along the two conductors. A discrimination controller is configured to: turn the two contact elements on when the DC component level detected with the DC component detector is less than or equal to a threshold; turn the two contact elements off when the DC component level detected with the DC component detector is greater than the threshold; and turn the two contact elements off in de-energized condition.
US10396541B2
Circuit interrupting devices are provided. One circuit interrupting device includes a fault sensor configured to output a sensor signal; a voltage sensor configured to sense a reference voltage; and a controller configured to determine an occurrence of an actual fault based on the sensor signal and the reference voltage. The circuit interrupting device further includes an amplifier configured to receive the sensor signal and the reference voltage and output an amplified signal; an analog-to-digital converter configured to receive the reference voltage and the amplified signal and output respective digital signals corresponding to the reference voltage and the amplified signal; and a line interrupt assembly configured to interrupt current flow through a conductive path when a characteristic of the sensor signal exceeds an actual fault threshold.
US10396529B2
A VCSEL can include: an active region configured to emit light; a blocking region over or under the active region, the blocking region defining a plurality of channels therein; a plurality of conductive channel cores in the plurality of channels of the blocking region, wherein the plurality of conductive channel cores and blocking region form an isolation region; a top electrical contact; and a bottom electrical contact electrically coupled with the top electrical contact through the active region and plurality of conductive channel cores. At least one conductive channel core is a light emitter, and others can be spare light emitters, photodiodes, modulators, and combinations thereof. A waveguide can optically couple two or more of the conductive channel cores. In some aspects, the plurality of conductive channel cores are optically coupled to form a common light emitter that emits light (e.g., single mode) from the plurality of conductive channel cores.
US10396527B2
A vertical-cavity surface-emitting laser (VSCEL) and method for producing a VCSEL are described, the VCSEL including an undercut active region. The active region of the VCSEL is undercut relative to current-spreading layers of the VCSEL, such that a width of a tunnel junction of the VCSEL overgrown by a current spreading layer is less than a width of an active region of the VCSEL, and a width of the active region of the VCSEL is less than a width of the overgrown current-spreading layer, such that the VCSEL including the undercut active region is configured to transmit data at speeds greater than 25 gigabits/second.
US10396523B1
A fiber laser amplifier system that employs a technique for reducing polarization modulation instability (PMI) in a delivery fiber. The system includes a fiber amplifier that amplifies a seed beam and provides the amplified seed beam to a weakly polarization maintaining (PM) delivery fiber that delivers the amplified beam to a certain location. The polarization of the seed beam is controlled so that it aligns with the slow axis of the delivery fiber such that nonlinear birefringence that occurs in the delivery fiber is added to the natural birefringence of the delivery fiber so as to suppress the PMI in the delivery fiber.
US10396522B2
In a general aspect, a chirped optical pulse is compressed by operation of diffraction gratings and a dispersive mirror having a smooth reflective surface. In some aspects, a chirped pulse laser system includes a programmable optical dispersive filter (PODF) operable to modify a spectral phase of optical pulses and a pulse compressor that receives an optical pulse based on an output of the PODF. The pulse compressor includes optical elements in a vacuum chamber. The optical elements define an optical path through the pulse compressor, and are arranged to disperse the optical pulse in the optical path. The optical elements include diffraction gratings and a dispersive mirror, which has a smooth reflective surface that defines a portion of the optical path.
US10396519B2
A two-piece male electric terminal includes an attachment piece with an attachment fastener portion that extends along a terminal axis. The two-piece male terminal also includes a contact piece with a lance and a contact fastener portion that extends along the terminal axis. One of the attachment fastener portion and the contact fastener portion includes a box structure. The box structure is positioned around and extends along the terminal axis and defines an interior space. The box structure includes a resilient contact locator that extends from a wall of the box structure into the interior space. The other of the attachment fastener portion and the contact fastener portion is located in the interior space. The contact locator is pre-stressed against the other of the attachment fastener portion and the contact fastener portion. The two-piece male terminal also includes a weld applied between the attachment piece and the contact piece.
US10396518B2
Disclosed is a cable gripping device used for manually gripping a coaxial cable to install a coaxial connector on the coaxial cable. According to an exemplary embodiment, the coaxial gripping tool includes a first half portion and a mating and/or hinged second half portion, wherein the mating/hinged portions provide a longitudinal bore configured to grip the coaxial cable.
US10396505B2
A filter connector includes an insulative housing including a docking head and a base member, and an electrical module including a circuit board defining a first lateral side and a second lateral side, a plurality of input terminals mounted in the docking head and bonded to the first lateral side of the circuit board and a plurality of output terminals mounted in the base member and bonded to the second lateral side of the circuit board. Thus, the circuit board is vertically secured between the input terminals, ensuring that the filter connector is small in size, simple in structure, and easy to manufacture, and has a filtering function, thereby greatly improving the electric perform.
US10396483B2
The present disclosure relates to a terminal capable of preventing deformation due to a load applied upon being in contact with a board, and the terminal includes a body, and a contact positioned inside the body and being in contact with the strip of the board. The contact includes a first bending portion bent backwardly from the front end of the body and elastic-deformed when being in contact with the board, a first inclined portion extending backwardly from the first bending portion, a second bending portion bent forwardly from a rear end of the first inclined portion and being in contact with the board, a second inclined portion extending forwardly from the second bending portion, and a support portion bent at a front end of the second inclined portion and limiting the deformation of the first bending portion when being in contact with the body.
US10396461B2
An antenna is provided and includes a radiator assembly extending along a first plane, a patterned ferrite layer extending along a second plane and a band stop frequency selective surface (FSS) extending along a third plane. The third plane of the band stop FSS is axially interposed between the first plane of the radiator assembly and the second plane of the patterned ferrite layer.
US10396460B2
When a plurality of antenna elements tuned to respective different frequency bands are closely disposed, the performance (the band, the radiating pattern, and so on) of each antenna element may deteriorate. In order to solve the problem, a multiband antenna according to the present invention is provided with: a conductive reflection plate; a frequency selective surface that is disposed so as to at least partially face the conductive reflection plate, that transmits therethrough electromagnetic waves in a first frequency band, that reflects thereon electromagnetic waves in a second frequency band that is a higher frequency band than the first frequency band, and that has a plurality of openings; a plurality of first antenna elements that are disposed in a region sandwiched between the conductive reflection plate and the frequency selective surface and that are tuned to a first frequency included in the first frequency band; and a plurality of second antenna elements that are disposed on a surface opposite the surface of the frequency selective surface facing the first antenna elements, that are fed through feeders passing through the openings, and that are tuned to a second frequency included in the second frequency band.
US10396449B2
A photovoltaic element comprises a semiconductor structure comprising a first layer comprised of a first semiconductor material with minimum electromagnetic damping and a second layer comprised of a second semiconductor material with electromagnetic damping. An upper plane of the first layer comprises an incidence plane of an electromagnetic wave onto the semiconductor structure and the second layer continues beyond the first layer in a direction of propagation of electromagnetic radiation to receive at least a portion of the electromagnetic radiation having passed through the first layer. The photovoltaic element further comprises at least one resonator comprising a first part extending along the upper plane of the first layer and a second part extending within the first layer and the second layer. The reference electrode bordering at least a portion of the second layer is coupled to the second layer in the direction of propagation of the electromagnetic wave.
US10396441B2
A communication device and a manufacturing method thereof are disclosed. The communication device includes a top cover, a housing, a bottom cover, a first magnetic isolation layer, and a short distance communication module. The housing is made of a metal material or an electrically conductive material. The top cover, the housing, and the bottom cover are assembled to construct an accommodating space from top to bottom. The first magnetic isolation layer is formed on a surface of the housing facing the accommodating space. The short distance communication module is disposed in the accommodating space. The communication device can prevent electromagnetic waves from being affected by the housing.
US10396438B1
The present application provides an antenna system for use in an electronic device. The antenna system includes a conductive substrate. The antenna system further includes a conductive element, which extends along a length between two ends a distance away from the conductive substrate. An area between the conductive substrate and the conductive element form at least part of a loop which is internal to the antenna system. The antenna system still further includes a differential signal source coupled between two points along the length of the conductive element. Each of the two points are proximate a respective one of the two ends of the conductive element. The differential signal source is coupled to each of the two points via a high frequency blocking circuit. Further yet, the antenna system includes an alternative signal source coupled to the conductive element between the two ends of the conductive element toward a center of the conductive element via a low frequency blocking circuit.
US10396435B2
Disclosed herein is an antenna device that includes a planar coil pattern having first, second, third and fourth sections, the first and second sections being opposite to each other, and the third and fourth sections being opposite to each other, and a metal layer having at least one aperture. A part of the first section and a part of the second section overlap the metal layer, and a remaining part of the first section and a remaining part of the second section overlap the aperture. A part or an entirety of both the third and fourth sections overlaps the metal layer or the aperture.
US10396419B2
The present invention provides a common-mode signal absorber, which comprises an impedance-matching network and a common-mode signal reflection circuit. A differential-mode signal is inputted into input ends of the impedance-matching network, and outputted from output ends of the common-mode signal reflection circuit. When a common-mode signal is inputted into the common-mode signal absorber, the common-mode signal reflection circuit is for reflecting the common-mode signal within a specific frequency band. Afterward, the reflection of the common-mode signal within the specific frequency band will be absorbed by an impedance element of the impedance-matching network. Thus, the common-mode signal within the specific frequency band may be absorbed by the impedance-matching network so as to avoid to interfere signals transmitted on a communication system.
US10396416B2
A material consisting of an insulating, ceramic-based matrix into which an endothermic gas-generating material is incorporated for the intended purpose of protecting electrical energy storage devices from cascading thermal runaway.
US10396397B2
A material that can be used in a wide temperature range is provided. A graphene compound includes graphene or graphene oxide and a substituted or unsubstituted chain group, the chain group includes two or more ether bonds, and the chain group is bonded to the above graphene or graphene oxide through a Si atom. Alternatively, a method for forming a graphene compound includes a first step and a second step after the first step. In the first step, graphene oxide and a base are stirred under a nitrogen stream. In the second step, the mixture is cooled to room temperature, a silylating agent that has a group having two or more ether bonds is introduced into the mixture, and the obtained mixture is stirred. The base is butylamine, pentylamine, hexylamine, diethylamine, dipropylamine, dibutylamine, triethylamine, tripropylamine, or pyridine.
US10396393B2
A high silica content substrate, such as for a thin-film battery, is provided. The substrate has a high silica content, such as over 90% by weight silica, and is thin, for example less than 500 μm. The substrate may include a surface with a topography or profile that facilitates bonding with a coating layer, such as a coating of an electrochemical battery material. The high silica content substrate may be flexible, have high temperature resistance, high strength and/or be non-reactive. The substrate may be suitable for use in the high temperature environments used in many chemical deposition or formation processes, such as electrochemical battery material formation processes.
US10396392B2
An electrochemical cell, including: a first current collector including a first collecting section in contact with a first electrode and including a first connecting section; a second current collector overlapping with the first current collector and including a second collecting section in contact with a second electrode and including a second connecting section; wherein the first and second current collectors are mutually connected via their first and second connecting sections and a distance between the first and second connecting sections is equal to or smaller than 50% of the distance between the first and the second collecting sections.
US10396386B2
Systems and methods are presented for generating and storing electric power in which a microbial solar cell is provided in a sealed container with photosynthetic organisms that generate reactants of the microbial fuel cell and the products of the microbial fuel cell from sunlight received through the container.
US10396380B2
A fuel cell includes a cathode side and an anode side. An oxidant gas is fed to the cathode side. In the cathode side, an oxidant exhaust gas is generated by using the oxidant gas. A fuel gas is fed to the anode side. In the anode side, a fuel exhaust gas is generated by using the fuel gas. The oxidant exhaust gas and the fuel exhaust gas are discharged from an outlet of a mixed exhaust gas discharge pipe as a mixed exhaust gas. The dilution apparatus is connected to the outlet of the mixed exhaust gas discharge pipe. The dilution apparatus includes a stirring chamber and an opening. The stirring chamber communicates with the mixed exhaust gas discharge pipe and expands from the outlet of the mixed exhaust gas discharge pipe. The opening is provided in the stirring chamber to take in air.
US10396376B2
A fuel cell vehicle control method changes an output current of a fuel cell depending on a required generated power and adjusts an air supply flow rate depending on the change of the output current. The output current is reduced in response to a decrease of the required generated power when a gearshift operation of a transmission is under an inertia phase of an upshift operation. The air supply flow rate is controlled to an inertia phase supply flow rate higher than the air supply flow rate set in response to the decrease of the output current.
US10396375B2
One embodiment provides a method for predicting maintenance of a redox flow battery, the method including: receiving, from a plurality of sensors, data regarding characteristics of the redox flow battery; weighting, using a processor, each of the characteristics to form an estimated state parameter for the redox flow battery; and determining, using the processor, a maintenance action for the redox flow battery using the estimated state parameter. Other aspects are described and claimed.
US10396369B2
A fuel cell stack FS includes: a plurality of cell modules M each including an integrally stacked plurality of single cells C; a sealing plate P intervened between each of the plurality of cell modules M; a manifold M3 that penetrates the plurality of cell modules M and the sealing plate(s) P in a stacking direction to distribute reaction gas, wherein the sealing plate P includes a sealing member S4 that surrounds and seals the manifold M3 between the sealing plate P and each of the plurality of cell modules M, and the sealing member S4 includes an extended portion E that extends toward the manifold M3 so that an end face F4 of the extended portion E is flush with an inner wall of the manifold M3. Generated water is suitably discharged through the manifold M3 without a decrease of the flowability of the reaction gas and an increase of the production cost.
US10396359B2
A method includes treating a CFx material with a base during the formation of a CFx cathode; and assembling the treated CFx material into a cathode electrode and assembling the cathode electrode with a lithium anode electrode and an electrolyte into a cell.
US10396356B2
Provided are nickel manganese composite hydroxide particles that are a precursor for forming cathode active material comprising lithium nickel manganese composite oxide having hollow structure of particles having a small and uniform particle size for obtaining a non-aqueous electrolyte secondary battery having high capacity, high output and good cyclability. When obtaining the nickel manganese composite hydroxide particles from a crystallization reaction, an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel and a metallic compound that contains manganese, and does not include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 11.5 to 13.5, and after nucleation is performed, an aqueous solution for particle growth, which includes the nuclei that were formed in the nucleation step and does not substantially include a complex ion formation agent that forms complex ions with nickel, manganese and cobalt, is controlled so that the temperature of the solution is 60° C. or greater, and so that the pH value that is measured at a standard solution temperature of 25° C. is 9.5 to 11.5, and is less than the pH value in the nucleation step.
US10396352B2
Provided are a non-aqueous electrolyte battery and a non-aqueous electrolyte battery system that can be repeatedly charged and that have good storage characteristics in a high-temperature environment. A non-aqueous electrolyte battery of the present invention includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, and a non-aqueous electrolyte. The negative electrode has a laminated body including a metal base layer that does not form an alloy with Li, and Al active layers respectively bonded to both faces of the metal base layer, or a laminated body including a metal base layer that is made of a metal selected from Ni, Ti, and Fe, or an alloy thereof, and an Al active layer bonded to the metal base layer. A Li—Al alloy is formed at least on a surface side of each Al active layer.
US10396351B2
A negative electrode material for a non-aqueous electrolyte secondary battery contains negative electrode active material particles containing a silicon compound expressed by SiOx, where 0.5≤x≤1.6, and a coating layer composed of an organic polymer coating the silicon compound, the silicon compound containing a lithium compound on its surface or inside. As a result, a negative electrode material for a non-aqueous electrolyte secondary battery can increase the battery capacity and improve the cycle performance and battery initial efficiency
US10396348B2
The present invention is directed to a negative electrode material for a non-aqueous electrolyte secondary battery, including a conductive powder composed of silicon-based active material particles coated with a conductive carbon film, in which the conductive carbon film exhibits a d-band having a peak half width of 100 cm−1 or more as determined from a Raman spectrum of the conductive carbon film. The invention provides a negative electrode material for a non-aqueous electrolyte secondary battery that has excellent cycle performance and keeps high charge and discharge capacity due to use of a silicon-based active material, a method of producing the negative electrode material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
US10396347B2
A positive electrode for an air battery that can remarkably improve the battery performance is provided by uniformly dispersing fine Nb (Nb oxide) therein. An air battery using the positive electrode as well as a method of manufacturing the positive electrode is also provided.A positive electrode for an air battery includes an expanded graphite sheet containing expanded graphite and Nb dispersed within the sheet. It is desirable that the Nb be contained in a weight proportion of from 5 ppm to 50000 ppm with respect to the expanded graphite.
US10396344B2
An object of the invention is to provide a drying method, a drying device, and a battery manufacturing method which are capable of rapid drying. A drying method according to an embodiment of the invention dries an electrode layer (12) including a binder and a solvent. The drying method according to the embodiment includes a first step of blowing a gas onto a first area (22) of the electrode layer (12) to volatilize the solvent, the electrode layer (12) being coated on a current collector foil (11); and a second step of blowing a gas onto a second area (22) of the electrode layer (12) to volatilize the solvent, the second area (22) being located around the first area (21).
US10396343B2
A lithium-ion battery cell includes an enclosure that includes a casing and a lid. The enclosure has an electrolyte fill hole disposed on a surface of the casing opposite the lid. An electrochemical cell is disposed within the enclosure. Additionally, a sealing patch is laser welded to the surface of the casing around the electrolyte fill hole, wherein the sealing patch is configured to seal the electrolyte fill hole.
US10396342B2
Provided is a method for manufacturing a secondary cell by which a wound body can be effectively impregnated with an electrolytic solution. The method includes: a step of depressurizing an interior of an outer case 30; a step of pouring an electrolytic solution E into the depressurized outer case 30; a step of depressurizing the interior of the outer case 30; a step of pouring the electrolytic solution E into the depressurized outer case 30; a step of impregnating the wound body with the electrolytic solution E from both axial end portions 100a, 100b of a wound body 100; a step of waiting until a difference in pressure between a wound body external space S, which is a space between the outer case 30 and the wound body, and a wound body internal space S1 is reduced after the impregnation with the electrolytic solution E; and a step of pressurizing the wound body external space S.
US10396338B2
A battery includes an electrode assembly, a case accommodating the electrode assembly, a cap plate sealing an upper portion of the case, a coupling pin elongated downwardly from the cap plate to the electrode assembly such that the coupling pin is concave when the cap plate is viewed from above and convex when the cap plate is viewed from below, and an electrode lead coupled to the coupling pin which electrically connects the coupling pin and the electrode assembly to one another.The battery may have a simple structure, reduced electrical resistance, an improved output performance.
US10396337B2
In a connecting part for connecting electrodes of an electrochemical cell to a current output terminal of the secondary cell, the connecting part has a surface at least a portion of which includes a plurality of indentations regularly spaced in two directions in the plane defined by the surface.
US10396336B2
A secondary battery includes: an electrode assembly; an electrode lead attached to an electrode tab extending from the electrode assembly, the electrode lead having a through-hole formed therein; a case accommodating the electrode assembly and the electrode lead; and a cap plate coupled to the case to seal an opening of the case and including a protrusion part protruding to the inside of the case, the protrusion part being coupled to the electrode lead through the through-hole by riveting, and the cap plate has at least one rivet groove formed around a periphery of the protrusion part.
US10396328B2
Document discloses new technologies for utilizing cellulose based materials in composites and electrically functionalized structures, such as energy storage devices. The object of the invention is achieved by means of high consistency fibrillated cellulose with at least one functional additive. This high consistency mixture is processed to form the composite structure having a shape and then dried or let to dry.
US10396326B2
Battery block includes the following elements: a plurality of batteries each of which includes safety valve; positive electrode-side current collecting part for collecting current by connecting the positive electrode sides of batteries; and negative electrode-side current collecting part for collecting current by connecting the negative electrode sides of the batteries. In positive electrode-side current collecting part and negative electrode-side current collecting part, the part that includes safety valves is set to one side current collecting part. On the other side current collecting part opposite the one side current collecting part, fuse that fuses at a predetermined temperature is disposed on each of batteries.
US10396321B2
A battery pack spacer is divided into a first region and a second region, the first region includes an end portion in a first direction and occupies half of an entire region of the spacer in a second direction from the end portion in the first direction, the second region includes an end portion in the second direction and occupies half of the entire region of the spacer in the first direction from the end portion in the second direction, and the second region has higher compressibility in the single cell arrangement direction than the first region.
US10396320B2
An illustrative battery retaining assembly comprises a retaining plate, and a casing including mounting devices. One of the mounting devices may include a hinge device, and another of the mounting devices may include a latch device. The retaining plate includes engagement portions engageable with the mounting devices, such that the retaining plate may be mounted to the casing. One of the engagement portions may include a channel engageable with the hinge device, and another of the engagement portions may include a catch engageable with the latch device. The mounting devices and engagement portions may be configured to enable the retaining plate to slide at an oblique angle with respect to the casing, to provide a variable separation distance between the casing and the retaining plate.
US10396318B2
Certain embodiments of the present disclosure are directed to a stretch removable adhesive tape comprising a thermoplastic polyurethane film having a unique combination of properties leading to a unique stretch removal profile.
US10396309B2
Discussed is a display device and a fabricating method thereof according to an embodiment, in which an organic-inorganic composite film is patterned without a mask by using an anti-film layer, and a residual anti-film layer protects a pad portion. The display device comprises a lower substrate; pixels arranged on a display area of the lower substrate; pads arranged on a non-display area of the lower substrate; an encapsulation layer arranged on the pixels; and an anti-film layer arranged on the pads as a molecular layer having a thickness of a single molecule. Also, the fabricating method of the display device comprises the steps of forming pads on a non-display area of a lower substrate and forming pixels on a display area; and forming an anti-film layer on the pixels as a molecular layer having a thickness of a single molecule.
US10396300B2
A field effect transistor includes a substrate and a gate dielectric formed on the substrate. A channel material is formed on the gate dielectric. The channel material includes carbon nanotubes. A patterned resist layer has openings formed therein. The openings expose portions of the gate dielectric and end portions of the channel material under the patterned resist layer. Metal contacts are formed at least within the openings. The metal contacts include a portion that contacts the end portions of the channel material and the portions of the gate dielectric exposed within the openings.
US10396298B2
An iridium complex and an OLED using the same are provided. The iridium complex is represented by general formula (I). In the general formula (I), A1, A2, A3, A4 and A5 are each independently a 5-membered unsaturated ring or a 6-membered unsaturated ring.
US10396297B2
The present application relates to a material comprising a monoarylamine of a defined formula and a p-dopant of a defined formula. The present application further relates to the use of said material in an organic layer of an electronic device, the device preferably being an organic electroluminescent device (OLED).
US10396291B2
Provided are a compound of Formula 1 and an organic electric element including a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode and comprising the compound, the element showing improved luminescence efficiency, stability, and life span.
US10396289B2
The present invention provides a novel organic compound of General Formula 1, a material comprising the same for organic electroluminescence devices, and an organic electroluminescence device comprising the material. The organic compound of the present invention is useful in organic electroluminescence devices as a hole injection layer substance, a hole transport layer substance, an electron blocking layer substance, and an emission layer substance such as green and red phosphorescent host substance, and when used in the organic electroluminescence devices, can reduce the drive voltage, and increase the luminous efficiency, luminance, thermal stability, color purity and service life of the devices.
US10396270B2
The vibration actuator enables easy inspection of conductivity of a conduction path for connecting an electrode of an electromechanical energy conversion element to a GND potential. In the vibration actuator, a vibration element includes an elastic body formed of a material which is insulating, dielectric, or semi-conductive, and a piezoelectric element joined to the elastic body. The piezoelectric element includes a first electrode formed on a surface of a piezoelectric body by which surface the piezoelectric body is joined to the elastic body, a second electrode provided in a manner opposed to the first electrode via the piezoelectric body, and at least two conduction paths each having a conductor in a through-hole formed in the piezoelectric body. One of the at least two conduction paths electrically connects the first electrode and the second electrode.
US10396260B2
A method of producing an optoelectronic component includes providing a wafer substrate that includes a light-emitting layer sequence, singulating the wafer substrate having the layer sequence into semiconductor components, applying the semiconductor components to an intermediate carrier, arranging a potting material on the intermediate carrier such that the potting material laterally surrounds the semiconductor components and is in direct contact, at least in places, with side surfaces of the semiconductor components, arranging one contact on one semiconductor component and the potting material, wherein one contact is arranged on a side of the semiconductor component and the potting material remote from the intermediate carrier, connecting the component to a carrier element, on a side of the semiconductor components remote from the intermediate carrier, removing the intermediate carrier and the wafer substrate of the semiconductor components, and bringing the semiconductor components into electrical contact by the contacts and the potting material.
US10396255B2
A light emitting component includes a light emitting unit, a molding compound and a wavelength converting layer. The light emitting unit has a forward light emitting surface. The molding compound covers the light emitting unit. The wavelength converting layer is disposed above the molding compound. The wavelength converting layer has a first surface and a second surface opposite to the first surface, wherein the first surface is located between the forward light emitting surface and the second surface, and at least one of the first and second surfaces is non-planar.
US10396252B2
An LED package structure with multiple color temperatures includes a substrate, a circuit layer disposed on the substrate, a plurality of first LED chips and a plurality of second LED chips disposed on the circuit layer, and a light conversion layer disposed on the substrate and the circuit layer. The light conversion layer has a spiral surface arranged away from the substrate. The light conversion layer includes a first light conversion portion and a second light conversion portion arranged around a lateral side of the first light conversion portion. The color temperature of the first light conversion portion is different from that of the second light conversion portion. The first LED chips are embedded in the first light conversion portion, and the second LED chips are embedded in the second light conversion portion. Thus, the LED package structure provided by the instant disclosure has good production efficiency.
US10396251B2
Various embodiments may relate to A light-emitting diode, including an LED chip having at least one emitter surface for emitting primary light, and a plurality of luminescent regions, which are connected optically downstream from the at least one emitter surface. At least one harder one of the luminescent regions is embedded in another, softer one of the luminescent regions.
US10396244B2
A nitride semiconductor light emitting element comprises a sapphire substrate, and a light emitting element structure portion that has a plurality of nitride semiconductor layers formed on the sapphire substrate. The nitride semiconductor light emitting element is a back-surface-emitting type nitride semiconductor light emitting element that outputs light from the light emitting element structure portion to an outside of the element through the sapphire substrate. The nitride semiconductor light emitting element is divided into a chip whose planarly-viewed shape is a square or a rectangle. A thickness of the sapphire substrate is 0.45 to 1 times an average length of sides of the planarly-viewed shape of the chip.
US10396242B2
A semiconductor light emitting device including a substrate, an electrode and a light emitting region is provided. The substrate may have protruding portions formed in a repeating pattern on substantially an entire surface of the substrate while the rest of the surface may be substantially flat. The cross sections of the protruding portions taken along planes orthogonal to the surface of the substrate may be semi-circular in shape. The cross sections of the protruding portions may in alternative be convex in shape. A buffer layer and a GaN layer may be formed on the substrate.
US10396233B2
In one or more embodiments, a solar cell may include: a silicon substrate, which is crystalline; a p-doped silicon oxide layer, which may be disposed on a first principal surface of the silicon substrate and may include phosphorus as an impurity; and an amorphous silicon layer, which may be disposed on the p-doped silicon oxide layer.
US10396226B2
A masterbatch for a solar battery sealing sheet containing: at least one ethylene resin selected from the group consisting of an ethylene-α-olefin copolymer, an ethylene homopolymer and an ethylene-unsaturated ester copolymer; and at least one compound selected from the group consisting of silicon dioxide and zeolite, wherein a degree of aggregation of silicon is 0 or more and 0.350 or less and the ignition loss of the compound is more than 1.7% to 15% or less.
US10396220B2
A semiconductor structure includes a thin-film device layer, an optoelectronic device disposed in the thin-film device layer, and a surrogate substrate permanently attached to the thin film device layer. The optoelectronic device is excitable by light at an application wavelength. The surrogate substrate is optically transparent and has a thermal conductivity of at least 300 W/m-K. The surrogate substrate has a volume of substrate removed therefrom to form a via. Light passes through the via and at least some of the surrogate substrate prior to reaching the optoelectronic device.
US10396219B2
Devices and methods for reducing optical losses in transparent conductive oxides (TCOs) used in silicon heterojunction (SHJ) solar cells while enhancing series resistance are disclosed herein. In particular, the methods include reducing the thickness of TCO layers by about 200% to 300% and depositing hydrogenated dielectric layers on top to form double layers of antireflection coating. It has been discovered that the conductivity of a thin TCO layer can be increased through a hydrogen treatment supplied from the capping dielectric during the post deposition annealing. The optimized cells with ITO/SiOx:H stacks achieved more than 41 mA/cm2 generation current on 120-micron-thick wafers while having approximately 100 Ohm/square sheet resistance. Further, solar cells and methods may include integration of ITO/SiOx:H stacks with Cu plating and use ITO/SiNx/SiOx triple layer antireflection coatings. The experimental data details the improved optics and resistance in cell stacks with varying materials and thicknesses.
US10396216B2
In one general aspect, a device can include a first trench disposed in a semiconductor region, a second trench disposed in the semiconductor region, and a recess disposed in the semiconductor region between the first trench and the second trench. The recess has a sidewall and a bottom surface. The device also includes a Schottky interface along a sidewall of the recess and the bottom surface of the recess excludes a Schottky interface.
US10396214B2
Non-planar semiconductor devices including semiconductor fins or stacked semiconductor nanowires that are electrostatically enhanced are provided. The electrostatic enhancement is achieved in the present application by epitaxially growing a semiconductor material protruding portion on exposed sidewalls of alternating semiconductor material portions of at least one hard mask capped semiconductor-containing fin structure that is formed on a substrate.
US10396211B2
A microelectronic device having a functional metal oxide channel may be fabricated on a microelectronic substrate that can be utilized in very large scale integration, such as a silicon substrate, by forming a buffer transition layer between the microelectronic substrate and the functional metal oxide channel. In one embodiment, the microelectronic device may be a microelectronic transistor with a source structure and a drain structure formed on the buffer transition layer, wherein the source structure and the drain structure abut opposing sides of the functional metal oxide channel and a gate dielectric is disposed between a gate electrode and the functional metal oxide channel. In another embodiment, the microelectronic device may be a two-terminal microelectronic device.
US10396209B2
A thin film transistor and a manufacturing method thereof, and an array substrate are disclosed. The thin film transistor includes a gate electrode, an insulating layer, an active layer and a source/drain electrode layer, and further includes a light shielding layer, and the light shielding layer is configured to block light from entering the active layer via the insulating layer, and the light shielding layer and the gate electrode are arranged in a same layer and electrically unconnected with each other. The thin film transistor can reduce the light irradiated to the active layer and thus reduce the adverse impact thus incurred.
US10396206B2
A method of manufacturing a semiconductor device includes the formation of an oxide spacer layer to modify the critical dimension of a gate cut opening in connection with a replacement metal gate process. The oxide spacer layer is deposited after etching a gate cut opening in an overlying hard mask such that the oxide spacer layer is deposited onto sidewall surfaces of the hard mask within the opening and directly over the top surface of a sacrificial gate. The oxide spacer may also be deposited into recessed regions within an interlayer dielectric located adjacent to the sacrificial gate. By filling the recessed regions with an oxide, the opening of trenches through the oxide spacer layer and the interlayer dielectric to expose source/drain junctions can be simplified.
US10396204B2
A semiconductor device includes: a gate structure extending along a first direction on a substrate, in which the gate structure includes a first edge and a second edge extending along the first direction; a first doped region adjacent to one side of the gate structure, in which the first doped region includes a third edge and a fourth edge extending along the first direction; a second doped region adjacent to another side of the gate structure, in which the second doped region comprises a fifth edge and a sixth edge extending along the first direction; a first fin-shaped structure extending from the second edge of the gate structure toward the third edge of the first doped region; and a second fin-shaped structure extending from the first edge of the gate structure toward the sixth edge of the second doped region.
US10396202B2
A semiconductor structure includes a plurality of stacked and suspended semiconductor nanosheets located above a semiconductor substrate. Each semiconductor nanosheet has a pair of end sidewalls that have a V-shaped undercut surface. A functional gate structure is located around the plurality of stacked and suspended semiconductor nanosheets, and a source/drain (S/D) semiconductor material structure is located on each side of the functional gate structure. In accordance with the present application, sidewall portions of each S/D semiconductor material structure are in direct contact with the V-shaped undercut surface of the end sidewalls of each of the semiconductor nanosheets.
US10396200B2
A semiconductor device includes a gate arranged on a substrate; a source/drain formed on the substrate adjacent to the gate; a source/drain contact extending from the source/drain and through an interlayer dielectric (ILD) over the source/drain, a portion of the source/drain positioned adjacent to the source/drain contact; and a silicide positioned along a sidewall of the source/drain contact between the portion of the source/drain and the source/drain contact, and along an endwall of the source/drain contact between the source/drain contact and the substrate.
US10396194B2
A semiconductor device includes a semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type, a first semiconductor region of a second conductivity type, a second semiconductor region of the second conductivity type, a third semiconductor region of the first conductivity type, a trench, a first electrode, and a Schottky electrode. Between trenches where the Schottky electrode is provided, a sidewall of each of the trenches is in contact with first semiconductor layer; and between trenches where the first electrode is provided, a sidewall of each of the trenches is in contact with the second semiconductor region and the third semiconductor region. A region of a part of the Schottky electrode faces toward the first semiconductor region in a depth direction and the trench faces the first semiconductor region in the depth direction.
US10396191B2
A semiconductor device, including: a channel layer formed on a substrate; a top barrier layer formed on the channel layer, wherein a first heterojunction is formed between the channel layer and the top barrier layer so that a first two-dimensional electron gas is generated in the channel layer; a buffer structure formed between the substrate and the channel layer; a back barrier layer formed between the buffer structure and the channel layer, wherein a second heterojunction is formed between the buffer structure and the back barrier layer so that a second two-dimensional electron gas is generated in the buffer structure; and a source electrode, a drain electrode, and a gate electrode formed on the top barrier layer, respectively; wherein a sheet carrier density of the second two-dimensional electron gas is less than 8E+10 cm−2.
US10396190B2
Characteristics of a semiconductor device are improved. A semiconductor device includes a sequential stack of a buffer layer, a channel layer, and a barrier layer, and includes a mesa part including a fourth nitride semiconductor layer formed over the stack, and a side part formed on both sides of the mesa part and including a thin film part of the fourth nitride semiconductor layer. Generation of 2DEG is suppressed below the mesa part while being unsuppressed below the side part. In this way, the side part that disables the 2DEG suppression effect is provided on an end portion of the mesa part, thereby a distance from an end portion of the side part to the gate electrode is increased, making it possible to suppress leakage caused by a current path passing through an undesired channel formed between a gate insulating film and the mesa part.
US10396179B2
A method of forming a vertical transport field effect transistors with uniform bottom spacer thickness, including, forming a plurality of vertical fins on a substrate, forming a protective liner layer on the plurality of vertical fins, forming a sacrificial liner on the protective liner layer, forming a spacer liner on a portion of the sacrificial liner, wherein at least a top surface of the sacrificial liner on each of the vertical fins is exposed, converting the exposed portion of the sacrificial liner on each of the vertical fins to a conversion cap, and removing the conversion cap from each of the vertical fins to expose an upper portion of each vertical fin.
US10396176B2
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
US10396174B2
A method for manufacturing a fin-type diode includes providing a substrate structure including a substrate, first and second sets of fins on the substrate, an isolation region between the first and second sets of fins and having an upper surface lower than an upper surface of the first and second set of fins, a well region partially in the substrate and overlapping the first and second sets of fins. The method also includes forming a dielectric layer on the first and second sets of fins, forming a dummy gate structure covering the dielectric layer on an end of the second set of fins and the upper surface of the isolation region, doping the first set of fins to form a first doped region, and doping the second set of fins and a portion of the well region below the second set of fins to form a second doped region.
US10396173B2
The invention provides transient devices, including active and passive devices that electrically and/or physically transform upon application of at least one internal and/or external stimulus. Materials, modeling tools, manufacturing approaches, device designs and system level examples of transient electronics are provided.
US10396171B2
The present invention provides a method for forming a semiconductor structure, including the following steps: first, a substrate is provided, an interlayer dielectric (ILD) is formed on the substrate, a first dummy gate is formed in the ILD, wherein the first dummy gate includes a dummy gate electrode and two spacers disposed on two sides of the dummy gate electrode respectively. Next, two contact holes are formed in the ILD at two sides of the first dummy gate respectively. Afterwards, the dummy gate electrode is removed, so as to form a gate recess in the ILD, a first material layer is filled in the gate recess and a second material layer is filled in the two contact holes respectively, and an anneal process is performed on the first material layer and the second material layer, to bend the two spacers into two inward curving spacers.
US10396170B2
A semiconductor device includes a transistor doping region of a vertical transistor structure arranged in a semiconductor substrate. Additionally, the semiconductor device includes a graphene layer portion located adjacent to at least a portion of the transistor doping region at a surface of the semiconductor substrate. The semiconductor device further includes a transistor wiring structure located adjacent to the graphene layer portion.
US10396166B2
A semiconductor device capable of high-voltage operation includes a semiconductor substrate having a first conductivity type. A first well doped region is formed in a portion of the semiconductor substrate. The first well doped region has a second conductivity type. A first doped region is formed on the first well doped region, having the second conductivity type. A second doped region is formed on the first well doped region and is separated from the first doped region, having the second conductivity type. A first gate structure is formed over the first well doped region and is adjacent to the first doped region. A second gate structure is formed beside the first gate structure and is close to the second doped region. A third gate structure is formed overlapping a portion of the first gate structure and a first portion of the second gate structure.
US10396165B2
A strain relaxed silicon germanium layer that has a low defect density is formed on a surface of a silicon substrate without causing wafer bowing. The strain relaxed silicon germanium layer is formed using multiple epitaxial growing, bonding and transferring steps. In the present application, a thick silicon germanium layer having a low defect density is grown on a transferred portion of a topmost silicon germanium sub-layer of an initial strain relaxed silicon germanium graded buffer layer and then bonded to a silicon substrate. A portion of the thick silicon germanium layer is then transferred to the silicon substrate. Additional steps of growing a thick silicon germanium layer having a low defect density, bonding and layer transfer may be performed as necessary.
US10396163B2
A silicon carbide epitaxial substrate includes a silicon carbide single crystal substrate and a silicon carbide layer. The silicon carbide single crystal substrate has a first main surface. The silicon carbide layer is on the first main surface. The silicon carbide layer includes a second main surface opposite to a surface thereof in contact with the silicon carbide single crystal substrate. The second main surface has a maximum diameter of more than or equal to 100 mm. The second main surface includes an outer peripheral region which is within 3 mm from an outer edge of the second main surface, and a central region surrounded by the outer peripheral region. The central region has a haze of less than or equal to 75 ppm.
US10396162B2
A silicon carbide semiconductor device includes a first semiconductor layer of a first conductivity type provided on a front surface of a silicon carbide semiconductor substrate of the first conductivity type; a first semiconductor region of a second conductivity type; a second semiconductor region of the second conductivity type, connected with the first semiconductor region; a first electrode forming a Schottky contact with a first semiconductor layer and a first semiconductor region; and a second electrode forming an ohmic contact with the second semiconductor region. A density of the second electrode is lower at a center portion of the silicon carbide semiconductor substrate and increases toward an outer peripheral side.
US10396153B2
A high-electron-mobility transistor has a buffer layer, a channel layer, a barrier layer, a mesa-shaped cap layer, a source electrode formed on one side of the cap layer, a drain electrode formed on the other side, and a gate electrode formed over the cap layer via a gate insulating film. The semiconductor device has an element isolation region defining an active region in which the semiconductor device is provided. The gate electrode extends from over the active region to the over the element isolation region. In plan view, the active region has a projection part projected to the direction of the element isolation region in a region overlapped with the gate electrode. By providing the active region with a projection part, the channel length of a parasitic transistor can be increased, and turn-on of the parasitic transistor can be suppressed.
US10396148B2
A semiconductor layer arranged on a semiconductor substrate includes an active region and an element isolation region that surrounds the first active region when viewed in plan. A field effect transistor is formed in the active region. A plurality of guard ring electrodes separated from each other affect a potential of the active region through the element isolation region. An interlayer insulating film is formed over the semiconductor layer, the field effect transistor, and the guard ring electrodes. At least one guard ring connection wiring formed on the interlayer insulating film electrically interconnects the plurality of guard ring electrodes.
US10396147B2
An on-chip metal-insulator-metal (MIM) capacitor with enhanced capacitance is provided by forming the MIM capacitor along sidewall surfaces and a bottom surface of each trench of a plurality of trenches formed in a back-end-of-the-line (BEOL) metallization stack to increase a surface area of the MIM capacitor.
US10396137B2
A method of making and testing transfer-printable micro-devices on a source wafer includes providing a source wafer comprising a plurality of sacrificial portions spatially separated by anchors, the source wafer comprising one or more test contact pads, providing a micro-device entirely over each of the plurality of sacrificial portions, each micro-device physically connected to at least one anchor with one or more tethers, providing one or more electrical test connections from each micro-device to a corresponding test contact pad, testing the micro-devices through the test connections to determine functional micro-devices and faulty micro-devices, and removing at least a portion of the one or more test connections.
US10396126B1
Semiconductor devices and methods for forming the semiconductor devices include a gate structure disposed between a top electrode and a bottom electrode, the gate structure including a resistive switching medium contacting a first side of the top electrode and a first side of the bottom electrode. A bottom dielectric layer is disposed on the first side of the bottom electrode around the gate structure. A top dielectric layer is disposed on the first side of the top electrode around the gate structure. A gate electrode is disposed between the first dielectric layer and the second dielectric layer and contacting the gate structure in a middle portion thereof to modulate an electric field perpendicular to current flow between the top electrode and the bottom electrode.
US10396123B2
Devices are described that include a multi-layered structure that is non-magnetic at room temperature, and which comprises alternating layers of Co and at least one other element E (that is preferably Al; or Al alloyed with Ga, Ge, Sn or combinations thereof). The composition of this structure is represented by Co1-xEx, with x being in the range from 0.45 to 0.55. The structure is in contact with a first magnetic layer that includes a Heusler compound. An MRAM element may be formed by overlying, in turn, the first magnetic layer with a tunnel barrier, and the tunnel barrier with a second magnetic layer (whose magnetic moment is switchable). Improved performance of the MRAM element may be obtained by placing an optional pinning layer between the first magnetic layer and the tunnel barrier.
US10396114B2
A microelectronic assembly including a dielectric region, a plurality of electrically conductive elements, an encapsulant, and a microelectronic element are provided. The encapsulant may have a coefficient of thermal expansion (CTE) no greater than twice a CTE associated with at least one of the dielectric region or the microelectronic element.
US10396107B2
A photodiode array 1 has a plurality of photodetector channels 10 which are formed on an n-type substrate 2 having an n-type semiconductor layer 12, with a light to be detected being incident to the plurality of photodetector channels 10. The photodiode array 1 comprises: a p−-type semiconductor layer 13 formed on the n-type semiconductor layer 12 of the substrate 2; resistors 4 each of which is provided to each of the photodetector channels 10 and is connected to a signal conductor 3 at one end thereof; and an n-type separating part 20 formed between the plurality of photodetector channels 10. The p−-type semiconductor layer 13 forms a pn junction at the interface between the substrate 2, and comprises a plurality of multiplication regions AM for avalanche multiplication of carriers produced by the incidence of the light to be detected so that each of the multiplication regions corresponds to each of the photodetector channels. The separating part 20 is formed so that each of the multiplication regions AM of the p−-type semiconductor layer 13 corresponds to each of the photodetector channels 10.
US10396104B2
A display substrate is disclosed. The display device includes a first electrode, a second electrode, and a vertical storage capacitor in an insulating layer. The vertical storage capacitor includes a first plate and a second plate which are spaced apart. The first plate is connected with the first electrode, the second plate is connected with the second electrode, and the first plate and the second plate are perpendicular with or tilted with respect to the substrate. A method for fabricating the display substrate and a display device are also disclosed.
US10396101B2
A thin film transistor array panel according to an exemplary embodiment of the present invention includes: a substrate; a gate electrode on the substrate; a gate insulating layer on the gate electrode; a semiconductor member including a channel region overlapping the gate electrode with the gate insulating layer interposed therebetween, and a source region and a drain region that face each other with the channel region interposed therebetween; an interlayer insulating layer on the semiconductor member; a data conductor on the interlayer insulating layer; and a passivation layer on the data conductor, wherein the interlayer insulating layer has a first hole on the channel region.
US10396097B2
An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.
US10396095B2
A semiconductor device includes: hole source patterns; electron source patterns located between adjacent hole source patterns; a stack structure over the hole source patterns and the electron source patterns; and channel layers penetrating the stack structure, wherein each channel layer is in contact with a corresponding hole source pattern and an electron source pattern adjacent to the corresponding hole source pattern.
US10396093B2
A three-dimensional (3D) semiconductor memory device includes an electrode structure including a plurality of cell electrodes vertically stacked on a substrate and extending in a first direction, lower and upper string selection electrodes sequentially stacked on the electrode structure, a first vertical structure penetrating the lower and upper string selection electrodes and the electrode structure, a second vertical structure spaced apart from the upper string selection electrode and penetrating the lower string selection electrode and the electrode structure, and a first bit line intersecting the electrode structure and extending in a second direction different from the first direction. The first bit line is connected in common to the first and second vertical structures. The second vertical structure does not extend through the upper string selection electrode.
US10396080B2
According to one embodiment, a semiconductor device includes a shallow P-well, a shallow N-well, a shallow P-well, and a shallow N-well formed in regions different from one another, a deep N-well formed in a part deeper than the shallow P-well and the shallow N-well, and a base material, and further includes a first transistor formed in a part of the shallow P-well and the shallow N-well on the side of the principal surface, and a second transistor formed in a part of the shallow P-well and the shallow N-well on the side of the principal surface, in which the shallow N-well is formed in such a way as to surround the peripheral edge of the region of the shallow P-well.
US10396078B2
The disclosure is directed to an integrated circuit structure. The integrated circuit structure may include: a first device region laterally adjacent to a second device region over a substrate, the first device region including a first fin and the second device region including a second fin; a first source/drain epitaxial region substantially surrounding at least a portion of the first fin; a spacer substantially surrounding the first source/drain epitaxial region, the spacer including an opening in a lateral end portion of the spacer such that the lateral end portion of the spacer overhangs a lateral end portion of the first source/drain epitaxial region; and a liner conformally coating the lateral end portion of the first source/drain epitaxial region beneath the overhanging lateral end portion of the spacer, wherein the liner includes an electrical insulator.
US10396070B2
A fin-shaped field-effect transistor device is provided. The fin-shaped field effect transistor device may include a semiconductor substrate having a top and a bottom surface. The fin-shaped field effect transistor device may also include a fin structure disposed on the top surface of the semiconductor substrate, where the fin structure includes a first sidewall and a second sidewall opposite of the first sidewall. The first sidewall is adjacent to a first region of the top surface of the semiconductor substrate and the second sidewall is adjacent to a second region of the top surface of the semiconductor substrate. The fin-shaped field effect transistor device may also include an insulation layer disposed above the fin structure and the first and second regions of the top surface. The fin-shaped field effect transistor device may also include a conductor structure disposed above and adjacent to the insulation layer.
US10396067B2
A semiconductor device includes a semiconductor body having opposite first and second surfaces. The semiconductor body includes a load current component having a load current transistor area and a sensor component having a sensor transistor area. The load current transistor area and the sensor transistor area share a same transistor unit construction. The load current transistor area includes first and second transistor area parts, and the sensor transistor area includes a third transistor area part. The first and the third transistor area parts differ from the second transistor area part between the first and the third transistor area parts by a load current transistor area element being absent in the second transistor area part. The second transistor area part is electrically disconnected from a parallel connection of the first and second transistor area parts by the load current transistor area element being absent in the second transistor area part.
US10396061B1
Dust-sized and light transparent semiconductor chips are provided and are used in a transparent electronic system. The dust-sized and light transparent semiconductor chips are composed entirely of materials that are transparent to visible light. The dust-sized and light transparent semiconductor chips are used as a component of a transparent electronic system.
US10396058B2
A light-emitting device configured to electrically connect to an external circuit and having: a first light-emitting structure; a second light-emitting structure; a first conductive structure having a first connecting pad having a side surface and a top surface connected to the first light-emitting structure and an exposed bottom surface, and a first connecting portion extending away from the side surface without being directly connected to the second light-emitting structure; and a second conductive structure electrically connecting the first light-emitting structure and second light-emitting structure.
US10396049B2
A fan-out semiconductor package includes: a first interconnection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having a connection pad disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first interconnection member and the inactive surface of the semiconductor chip; and a second interconnection member disposed on the first interconnection member and the active surface of the semiconductor chip, wherein the first interconnection member and the second interconnection member include, respectively, redistribution layers electrically connected to the connection pad, the semiconductor chip includes a passivation layer having an opening exposing at least a portion of the connection pad, the redistribution layer of the second interconnection member is connected to the connection pad through a via, and the via covers at least a portion of the passivation layer.
US10396048B2
A method of fabricating a contact hole and a fuse hole includes providing a dielectric layer. A conductive pad and a fuse are disposed within the dielectric layer. Then, a first mask is formed to cover the dielectric layer. Later, a first removing process is performed by taking the first mask as a mask to remove part the dielectric layer to form a first trench. The conductive pad is disposed directly under the first trench and does not expose through the first trench. Subsequently, the first mask is removed. After that, a second mask is formed to cover the dielectric layer. Then, a second removing process is performed to remove the dielectric layer directly under the first trench to form a contact hole and to remove the dielectric layer directly above the fuse by taking the second mask as a mask to form a fuse hole.
US10396045B2
An apparatus and a system including an apparatus including a circuit structure including a device stratum including a plurality of transistor devices each including a first side and an opposite second side; an inductor disposed on the second side of the structure; and a contact coupled to the inductor and routed through the device stratum and coupled to at least one of the plurality of transistor devices on the first side. A method including forming a plurality of transistor devices on a substrate, the plurality of transistor devices defining a device stratum including a first side and an opposite second side, wherein the second side is coupled to the substrate; removing a portion of the substrate; forming at least one inductor on the second side of the device stratum; and coupling the at least one inductor to at least one of the plurality of transistor devices.
US10396043B2
In one embodiment, a chip comprising a circuit, the circuit comprising a plurality of components, wherein the circuit is adapted to perform a function that is dependent on timing behavior of the circuit, and wherein a geometry of a layout of the circuit is substantially the same as another geometry of another layout of another circuit adapted to perform another function that is dependent on different timing behavior.
US10396037B2
There is provided a fan-out semiconductor device in which a first package having a semiconductor chip disposed therein and having a fan-out form and a second package having a passive component disposed therein and having a fan-out form are stacked in a vertical direction so that the semiconductor chip and the passive component are electrically connected to each other by a path as short as possible.
US10396032B2
A method is provided for fabricating a semiconductor structure. The method includes providing a semiconductor substrate; forming an initial metal layer; simultaneously forming a plurality of discrete first metal layers and openings by etching the initial metal layer; forming a plurality of sidewalls covering the side surface of the first metal layers; and forming a plurality of second metal layers to fill the openings.
US10396031B2
This invention provides an electronic device with improved reliability. The electronic device has a wiring board with a back-surface ground pattern formed at the back surface of the board. The back-surface ground pattern is provided with a notch overlapping a region of an upper wiring layer at which a board member is exposed and which is encircled by a wide pattern, the notch permitting the release of water vapor from the region.
US10396030B2
A semiconductor device includes a first electrode which includes a first main portion, and a first extension that extends from the first main portion, and a dielectric layer which surrounds a sidewall and a bottom surface of the first main portion, wherein the first main portion includes a first portion having a first depth, and a second portion having a second depth deeper than the first depth.
US10396018B2
A semiconductor package includes a plurality of half bridge assemblies each including a metal lead, a first power transistor die attached to a first side of the metal lead, and a second power transistor die disposed under the first power transistor die and attached to a second side of the metal lead opposite the first side. Each metal lead has a notch which exposes one or more bond pads at a side of the second power transistor die attached to the metal lead. The semiconductor package also includes a controller die configured to control the power transistor dies. Each power transistor die, each metal lead and the controller die are embedded in a mold compound. Bond wire connections are provided between the controller die and the one or more bond pads at the side of each second power transistor die exposed by the notch in the corresponding metal lead.
US10396017B2
A lead frame includes a frame part, a lead extending inward from the frame part and having a front surface and a back surface, and an external connection terminal formed at a part of the lead in an extension direction and protruding from the back surface of the lead. The lead includes a pentagonal shape in a cross-section where the front surface of the lead faces upward, the pentagonal shape having a quadrangular main body part and a triangular protrusion protruding from a lower surface of the main body part. A width of a lower end of the main body part is smaller than a width of an upper end of the main body part.
US10396012B2
A method providing a high aspect ratio through substrate via in a substrate is described. The through substrate via has vertical sidewalls and a horizontal bottom. The substrate has a horizontal field area surrounding the through substrate via. A first metallic barrier layer is deposited on the sidewalls of the through substrate via. A nitridation process converts a surface portion of the metallic barrier layer to a nitride surface layer. The nitride surface layer enhances the nucleation of subsequent depositions. A first metal layer is deposited to fill the through substrate via. A selective etch creates a recess in the first metal layer in the through substrate via. A second barrier layer is deposited over the recess. A second metal layer is patterned over the second barrier layer filling the recess and creating a contact. Another aspect of the invention is a device produced by the method.
US10396009B2
A heat dissipation material includes a plurality of linearly-structured objects of carbon atoms configured to include a first terminal part and a second terminal part; a first diamond-like carbon layer configured to cover the first terminal part of each of the plurality of linearly-structured objects; and a filler layer configured to be permeated between the plurality of linearly-structured objects.
US10396007B2
A package which comprises a first encapsulant configured so that electrically conductive material is plateable thereon, and a second encapsulant configured so that electrically conductive material is not plateable thereon.
US10396000B2
Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
US10395996B2
A method of forming a semiconductor structure is provided. The method includes providing a substrate comprising, from bottom to top, a handle substrate, an insulator layer and a germanium-containing layer. Next, hard mask material portions having an opening that exposes a portion of the germanium-containing layer are formed on the substrate. An etch is then performed through the opening to provide an undercut region in the germanium-containing layer. A III-V compound semiconductor material is grown within the undercut region by utilizing an aspect ratio trapping growth process. Next, portions of the III-V compound semiconductor material are removed to provide III-V compound semiconductor material portions located between remaining portions of the germanium-containing layer.
US10395990B2
A semiconductor device capable of improving operation performance and reliability, may include a gate insulating support to isolate gate electrodes that are adjacent in a length direction. The semiconductor device includes a first gate structure on a substrate, the first gate structure extending lengthwise in a first direction to have two long sides and two short sides, relative to each other, and including a first gate spacer; a second gate structure on the substrate, the second gate structure extending lengthwise in the first direction to have two long sides and two short sides, relative to each other, and including a second gate spacer, wherein a first short side of the second gate structure faces a first short side of the first gate structure; and a gate insulating support disposed between the first short side of the first gate structure and the first short side of the second gate structure and extending lengthwise in a second direction different from the first direction, a length of the gate insulating support in the second direction being greater than a width of each of the first gate structure and the second gate structure in the second direction.
US10395986B1
A method is presented for creating a fully-aligned via (FAV) by employing selective metal deposition. The method includes forming metal lines within a first inter-layer dielectric (ILD) layer, forming a second ILD layer over the first ILD layer, forming a lithographic stack over the second ILD layer to define areas where via growth is prevented, recessing the lithographic stack to expose a top surface of the metal lines where via growth is permitted by the lithographic stack, and performing metal growth over the exposed top surface of the metal lines where via growth is permitted.
US10395979B2
A semiconductor device includes a first lower insulating interlayer, a protection insulating layer, and a first upper insulating interlayer that are sequentially stacked on a substrate, and a conductive pattern penetrating the first upper insulating interlayer, the protection insulating layer; and the first lower insulating interlayer. The conductive pattern includes a line part extending in a direction parallel to an upper surface of the substrate and contact parts extending from the line part toward the substrate. The contact parts are separated from each other with an insulating pattern therebetween. The insulating pattern includes a portion of each of the first upper insulating interlayer, the protection insulating layer, and the first lower insulating interlayer. At least a portion of the insulating pattern has a stepped profile.
US10395978B2
The disclosed technology generally relates to semiconductor processing, and more particularly to patterning a target layer using a sacrificial structure. According to an aspect of the disclosed technology, a method of patterning a target layer comprises forming on the target layer a plurality of parallel material lines spaced apart such that longitudinal gaps exposing the target layer are formed between the material lines. The method additionally includes filling the gaps with a sacrificial material and forming a hole by removing the sacrificial material along a portion of one of the gaps, where the hole extends across the gap. The hole exposes the target layer in the gap. The method additionally includes filling the hole with a fill material to form a block portion extending across the gap. The method additionally includes removing, selectively to the material lines and the block portion, the sacrificial material from the target layer to expose the gaps, where the one of the gaps is interrupted in the longitudinal direction by the block portion. The method further includes transferring a pattern including the material lines and the block portion into the target layer.
US10395972B2
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes: a deep trench in a substrate; a sidewall insulating film on a side surface of the deep trench; an interlayer insulating film on the sidewall insulating film; and an air gap in the interlayer insulating film.
US10395967B2
Provided is a method of manufacturing a semiconductor device with improved manufacturing efficiency for the semiconductor device. The method of manufacturing a semiconductor device includes the steps of: (a) forming a circuit at a front surface side of a wafer (semiconductor wafer) having the front surface and a back surface opposite to the front surface; (b) grinding the back surface of the wafer that has a center part (first part) and a peripheral edge part (second part) surrounding a periphery of the center part in such a manner that the center part is thinner than the peripheral edge part; (c) attaching an upper surface (bonding surface) of a holding tape to the front surface of the wafer; and (d) separating the center part from the peripheral edge part by cutting a part of the center part with a blade (rotary blade) while the wafer is held by the first tape.
US10395962B2
In a substrate arrangement apparatus, a holder elevating mechanism disposes each first substrate between each pair of second substrates, with the first and second substrates being alternately arranged front-to-front and back-to-back. Each substrate is curved in a first radial direction to one side in a thickness direction with a minimum curvature, and curved in a second radial direction orthogonal to the first radial direction to the one side in the thickness direction with a maximum curvature. The first radial direction of the first substrates, each arranged between each pair of the second substrates, is approximately orthogonal to the first radial direction of the second substrates. This improves uniformity in the up-down direction of the distance in the direction of arrangement between the first and second substrates that are alternately arranged adjacent to each other in the direction of arrangement.
US10395955B2
Device and method of configuring a device to process a wafer is disclosed. The device includes a wafer chuck configured to mount the wafer, a dry wafer processing chamber configured to enclose the wafer chuck, a humidity sensor configured to measure relative humidity (RH) at an outlet of the dry wafer processing chamber, a humidity controller coupled to the humidity sensor, the humidity controller being configured to detect a change in RH above a threshold, and a process chamber controller coupled to the humidity controller. The change is triggered by a leakage in deionized water used as a coolant for cooling the wafer chuck and the wafer during the processing. The process chamber controller is configured to trigger a shutdown of the processing of the wafer in response to the leakage.
US10395954B2
A method and device for coating projecting surfaces of discrete projections of a product substrate that has functional units arranged at least partially in recesses. The method includes the steps of: bringing the projecting surfaces into contact with a coating material that is applied on a carrier substrate, and separating the carrier substrate from the projecting surfaces in such a way that the coating material remains partially on the product substrate. In addition, this invention relates to a corresponding device.
US10395949B2
The substrate drying apparatus includes a rinse agent nozzle configured to eject a rinse agent to the substrate while moving away from a center of the substrate relative to the substrate, a drying gas nozzle configured to spout a drying gas to the substrate while moving away from the center of substrate relative to the substrate with movement of the rinse agent nozzle, a liquid area sensor and a dried area sensor configured to sense a surface of the substrate around an interface of the rinse agent by moving away from the center of the substrate with movement of the rinse agent nozzle and the drying gas nozzle, and a control unit configured to control a drying condition based on the sensing results of the liquid area sensor and the dried area sensor.
US10395945B2
The embodiments of the present disclosure provide a bonding device for a chip on film and a display panel and a bonding method for the same. The bonding device includes: a bearing stage having a horizontal bearing surface for supporting at least one row of display panels, wherein one row of the at least one row of display panels has a row of first bonding regions; a grasping unit disposed above the bearing stage and configured to grasp at least a partial area of the entire chip on film so that a row of second bonding regions of the entire chip on film is horizontally located above the one row of display panels; and a bonding unit configured to bond the row of second bonding regions which has been aligned with the row of first bonding regions to the row of first bonding regions.
US10395938B2
A wafer element fabrication method is provided. The wafer element fabrication method includes forming a device element on a substrate such that the device element includes an upper surface and a sidewall extending from the upper surface to the substrate. The wafer element fabrication method further includes forming an adjusted print resolution assist feature (APRAF) on the substrate such that the APRAF is smaller than the device element in at least one dimension. In addition, the wafer element fabrication method includes depositing surrounding material, which is different from materials of the APRAF, to surround the APRAF and to lie on the upper surface in abutment with the sidewall of the device element.
US10395933B2
A method for manufacturing a semiconductor wafer including: slicing off a plurality of wafers from an ingot; chamfering outer peripheral portions of the plurality of sliced wafers; and performing double-side polishing to polish both surfaces of each wafer whose outer peripheral portion is held by a carrier, wherein includes performing warp direction adjustment to uniform directions of warps of the plurality of wafers in one direction after the slicing and before the chamfering, and the chamfering and the double-side polishing are performed in a state where the directions of the warps of the plurality of wafers are uniformed in one direction after the warp direction adjustment. Consequently, it is possible to provide the method for manufacturing a semiconductor wafer which can suppress degradation of flatness of the double-side polished wafers even in case of uniforming the directions of the warps of the wafers in one direction before the double-side polishing.
US10395931B2
A method is provided for fabricating an LDMOS transistor. The method includes providing a base substrate. The method also includes forming a first well area doped with a first well ion in the base substrate. In addition, the method includes forming a second well area doped with a second well ion in the base substrate, where the second well area includes a first region adjacent to the first well area. Moreover, the method includes forming a first ion doping region doped with first ions in the first well area and the first region, where a type of the first ions is the same as a type of the first well ion and opposite to a type of the second well ion. Further, the method includes forming a gate structure on part of the first well area and part of the first region.
US10395922B2
A semiconductor device including a gate structure present on at least two suspended channel structures, and a composite spacer present on sidewalls of the gate structure. The composite spacer may include a cladding spacer present along a cap portion of the gate structure, and an inner spacer along the channel portion of the gate structure between adjacent channel semiconductor layers of the suspended channel structures. The inner spacer may include a crescent shape with a substantially central seam.
US10395910B2
The present invention provides an accelerator mass spectrometry device for simultaneously measuring isotopes. In one embodiment, the device comprises a sputtering negative ion source for generating negative ions; the sputtering negative ion source being connected to an accelerating tube for simultaneously accelerating a plurality of isotopic ions; an output end of the accelerating tube being connected to an isotope mass resolution system; the isotope mass resolution system being connected to a charge conversion analysis and multi-receiving measurement system; the charge conversion analysis and multi-receiving measurement system being connected to an ion detection system. The present invention is capable of accelerating a plurality of isotopic negative ions simultaneously. The accelerated isotopic negative ions are separated. Stable isotopic negative ions are measured by a stable isotope receiver. Unstable isotope negative ions are converted to positive ions and then measured by a detector.
US10395907B2
A generator of an ion beam is provided, including an ionization chamber provided with an inlet of a fluid to be ionized; a source of ionizing particles configured to impact the fluid in an impact zone of the ionization chamber so as to generate ions; and an extractor of ions generated in a direction of an outlet zone of the generator, the extractor including at least two electrodes, a first electrode referred to as input electrode laterally bordering the impact zone, and at least one second electrode referred to as intermediate electrode located in the impact zone, the at least two electrodes being configured to generate a voltage gradient in the impact zone, with the voltage gradient being configured to direct the generated ions to the outlet zone of the generator.
US10395898B2
Disclosed are a substrate treating apparatus, a substrate treating method, and a plasma generating unit. The substrate treating apparatus includes a housing configured to provide a treatment space, in which a substrate is treated, a support unit configured to support a substrate in the treatment space, a plasma generating unit disposed outside the housing and configured to excite plasma from a gas and supply the excited plasma to the treatment space, and a controller, wherein the plasma generating unit includes a plasma generating chamber having a space, into which a gas is introduced, a first antenna wound to surround the plasma generating chamber and connected to a power source through an electric wire, a second antenna wound around the plasma generating chamber and connected to the power source through an auxiliary electric wire, and a switch configured to switch on and off the auxiliary electric wire.
US10395895B2
A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
US10395894B2
Systems and methods for increasing peak ion energy with a low angular spread of ions are described. In one of the systems, multiple radio frequency (RF) generators that are coupled to an upper electrode associated with a plasma chamber are operated in two different states, such as two different frequency levels, for pulsing of the RF generators. The pulsing of the RF generators facilitates a transfer of ion energy during one of the states to another one of the states for increasing ion energy during the other state to further increase a rate of processing a substrate.
US10395887B1
Apparatus and method for inspecting a surface of a sample. The apparatus includes a multi-beam charged particle column comprising a source for creating multiple primary beams directed towards the sample, an objective lens for focusing the primary beams on the sample, an electron-photon converter unit having an array of electron to photon converter sections, each section is located next to a primary beam within a distance equal to a pitch of the primary beams at the electro-photon converter unit, a photon transport unit for transporting light from the electron to photon converter sections to a photo detector, and an electron collection unit for guiding secondary electrons created in the sample, towards the electron-photon converter unit. The electron collection unit is arranged to project secondary electrons created in the sample by one of said primary beams to at least one of the electron to photon converter sections.
US10395881B2
Systems for generating a proton beam include an electromagnetic radiation beam (e.g., a laser) that is directed onto an ion-generating target by optics to form the proton beam. A detector is configured to measure a laser-target interaction property, which a processor uses to produce a feedback signal that can be used to alter the proton beam by adjusting the source of the electromagnetic radiation beam, the optics, or a relative position or orientation of the electromagnetic radiation beam to the ion-generating target. By adjusting the laser-target interaction, the feedback can be used to control properties of the proton beam, such as the proton beam energy or flux. Such systems have certain advantages, including reducing the size, complexity, and cost of machines used to generate proton beams, while also improving their speed, precision, and configurability.
US10395879B2
According to one embodiment, a tungsten alloy includes 0.1 to 5 wt % of Zr in terms of ZrC.
US10395877B2
The present invention proposes a protection device which has a large rated voltage and a large rated current, which is capable of sufficiently suppressing arc generation during activation, and which is also capable of providing suitable protection against overcurrent due to short circuiting or the like of a main circuit. The protection device of the present invention includes (i) a protection element which includes a first thermal fuse and a resistor, and in which the resistor generates heat as a result of current passing through the resistor when there are abnormalities, and the first thermal fuse is activated due to this heat and interrupts the current, (ii) a PTC element and a second thermal fuse which are electrically connected in parallel to the first thermal fuse and which are electrically connected in series to each other, and (iii) a current fuse which is electrically connected in series to the first thermal fuse.
US10395872B2
According to an aspect of the present invention, there is provided a movable contact assembly for a circuit breaker, which includes a fixed contact, a connector formed to protrude from one side of a terminal connected to a load or a power source, a plurality of movable contacts pivotably installed at the connector through a connector pin and configured to be contactable to or separable from the fixed contact, a side holder pivotably installed at the connector through the connector pin, a catch pivotably installed at the connector, supported on the side holder, and configured to restrict a rebound phenomenon of the plurality of movable contacts when current limiting interruption occurs, and a pressurizing protrusion formed at a lower portion of each of the plurality of movable contacts and configured to push the catch when the current limiting interruption occurs.
US10395867B2
A self regulating mechanism for a storage water heater for preventing the operation of heating elements while the heating elements are not submerged comprises a liquid level switch and an electrical contactor which are each integrated with a storage water heater having at least a water tank, at least one heating element and thermostat pair, and an input voltage line. In operation, the electrical contactor is wired to selectively control the flow of electricity from the input voltage line to the thermostats and heating elements and the liquid level switch is operative to determine the water level and operate the switching of the electrical contactor based on whether the level of water in the water tank meets a predetermined threshold. As such, the electrical contactor will only permit electricity to flow to the heating element when the liquid level switch indicates that the water tank is substantially full.
US10395864B2
A switching device includes a shell delimiting a plurality of spaces each able to accommodate a trip including a tripping device, a switching device, and a control mechanism including a device for grasping that can be moved between a first position and a second position by an operator in order to control movement of the switching device between an open position and a closed position. The switching device is in the closed position when the device for grasping is in the first position and in the open position when the device for grasping is in the second position. The control mechanism includes a single resetting device that resets each trip when the operator moves the device for grasping from the first position into the second position.
US10395863B2
The present disclosure includes a rotary dial assembly having a holder and a dial portion rotatably coupled to the holder. A plurality of dial magnets are fixed to the dial portion. A holder magnet is on a side of the holder opposite to the dial portion. The holder magnet is configured to attract or repel the plurality of dial magnets as the dial portion is rotated to resist rotation of the dial portion.
US10395849B2
An electrode plate, a manufacturing method thereof, and an energy storage device are disclosed. The method for manufacturing an electrode plate includes: forming a germanium film on a metal substrate; carrying out a topology treatment on the germanium film by using a functionalization element, to obtain the electrode plate with a topological semiconductor characteristic. The electrode plate prepared by the above method has a high conductivity and a low internal resistance.
US10395844B2
A capacitor component includes multilayer ceramic capacitors and an interposer board on which the multilayer ceramic capacitors are mounted. The interposer board is provided with four or more lands that are electrically connected to the corresponding external electrodes of the multilayer ceramic capacitors, an input terminal, and an output terminal, and each of the four or more lands is electrically connected to one of the input terminal and the output terminal.
US10395836B2
A multilayer ceramic electronic component includes a laminated body, a first external electrode, a pair of second external electrodes, and a pair of insulating coating portions. The pair of insulating coating portions extends in a laminating direction between each of the pair of second external electrodes and the first external electrode on a second principal surface, from the second principal surface to respective portions of a first side surface and a second side surface. As viewed from at least one direction in the laminating direction, an end of the pair of insulating coating portions, which is located closest to a first principal surface, is located closer to the first principal surface than an end of the first external electrode and pair of second external electrodes, which is located closest to the first principal surface.
US10395827B2
An electronic component includes a laminated body including first and second end surfaces, first and second side surfaces, and first and second principal surfaces, a first external electrode, and a second external electrode, in which the first external electrode includes a first fired electrode layer and a first resin layer, the second external electrode includes a second fired electrode layer and a second resin layer, each of the first fired electrode layer and the second fired electrode layer is provided on the laminated body and includes a region including voids and glass, each of the first resin layer and the second resin layer includes metal particles, and a surface layer of each of the first resin layer and the second resin layer has a portion of the metal particles exposed in a ratio of about 72.6% or more and about 90.9% or less.
US10395826B2
A method is disclosed for supporting a capacitor. In an embodiment, the method includes applying a pressure on a first side of the capacitor parallel to a first electrode of the capacitor in a first direction of a normal of the first electrode; applying a pressure on a second side of the capacitor parallel to a second electrode of the capacitor in a second direction of a normal of the second electrode, the first direction being opposite to the second direction; and afterwards pressurizing a non-conductive fluid surrounding the capacitor to a target pressure.
US10395824B2
A method of manufacturing a winding-type coil component which can efficiently manufacture a winding-type coil component having external electrodes where a height of the external electrodes is gradually increased in an inclined manner from opposedly facing surfaces of one flange portion and the other flange portion to surfaces of the one flange portion and the other flange portion on a side opposite to the opposedly facing surfaces.
US10395823B2
This disclosure is directed to methods for creating recycled Nd—Fe—B type permanent magnets, the methods comprising homogenizing a first population of particles of a rare earth transitional elemental additive with a second population of particles of a magnetic material, wherein the nature of the rare earth transitional elemental additive and the magnetic material are described herein. Additional steps may include compressing the population of homogenized particles together to form a green body, and heating the green body at a temperature and for a time sufficient to sinter the green body into a sintered body. Compositions resulting from these methods are also within the scope of the disclosure.
US10395822B2
A rare-earth magnet is an R-T-B-based rare-earth magnet containing a rare-earth element R, a transition metal element T, and boron B. The rare-earth magnet further contains Cu and Co, while having a Cu concentration distribution with a gradient along a direction from a surface of the rare-earth magnet to the inside thereof, Cu having a higher concentration on the surface side of the rare-earth magnet than on the inside thereof, and a Co concentration distribution with a gradient along a direction from the surface of the rare-earth magnet to the inside thereof, Co having a higher concentration on the surface side of the rare-earth magnet than on the inside thereof. The rare-earth magnet is excellent in corrosion resistance.
US10395820B2
A common mode choke coil according to one embodiment of the present invention includes a first coil conductor, a second coil conductor, and a third coil conductor. In the embodiment, the second coil conductor has a different shape than the first coil conductor and the third coil conductor. In the embodiment, the first coil conductor, the second coil conductor, and the third coil conductor extend parallel with each other in a first region in plan view as seen from an axial direction along the coil axis. In the embodiment, in the first region, when seen in a cross section cut along a plane including the coil axis, in an n-th turn, an arranging order of the first coil conductor, the second coil conductor, and the third coil conductor from an inner side in a radial direction thereof is inverted from that in an n+1th turn.
US10395811B2
An inductive sensor includes a core body, a coil wound on the core body, a cavity having a fixed volume within the core body, and an epoxy mixture filling a controlled portion of the fixed volume. The controlled portion of the fixed volume filled with the epoxy mixture controls an inductance of the sensor.
US10395810B2
An inductor includes a stacked body with a plurality of structural bodies that are stacked. Each of the plurality of structural bodies includes a wiring and an insulation layer formed on the wiring. The wirings of the plurality of structural bodies are connected in series to form a helical coil. The inductor further includes a through hole, which extends through the stacked body in a thickness direction of the stacked body, and a plurality of discrete insulation films, which are spaced apart from each other and cover surfaces of the wires of the plurality of structural bodies exposed from a surface of the stacked body.
US10395806B2
A grain-oriented electrical steel sheet, on which magnetic domain refining treatment by strain application has been performed, has an insulating coating with excellent insulation properties and corrosion resistance. In a grain-oriented electrical steel sheet, linear strain having been applied thereto by irradiation with a high-energy beam, the linear strain extending in a direction that intersects a rolling direction of the steel sheet, an area ratio of irradiation marks within an irradiation region of the high-energy beam is 2% or more and 20% or less, an area ratio of protrusions with a diameter of 1.5 μm or more within a surrounding portion of the irradiation mark is 60% or less, and an area ratio of exposed portions of steel substrate in the irradiation mark is 90% or less.
US10395803B2
The present invention relates to a method for the production of a cladding for elongated material (2), in particular a sheath for cable sets. In this method, an adhesive tape (3, 4) consisting of a carrier (4) and a first adhesive coating (3) which substantially fully covers the front side of the carrier (4) is combined with an adhesive-free carrier tape (5) such as to form a laminate (3, 4, 5). This is carried out such that the adhesive tape (3, 4) is applied to the carrier tape (5) with its first adhesive coating (3) in such a way that a first projection (Ü1) is defined along at least one of the two longitudinal edges of said adhesive tape. According to the invention, the carrier (4) of the adhesive tape (3, 4) is additionally provided with a further second adhesive coating (7) substantially in parts of its rear side.
US10395801B2
A mechanical assembly of a multi-strand cable including a plurality of strands and a substrate, the plurality of strands being aligned at the substrate in a first direction and the substrate having a convex edge in a plane perpendicular to the first direction. The plurality of strands is assembled on the substrate by swaging the strands around the convex edge, leading to the deformation of a portion of the strands around said convex edge. The substrate includes an opening in a plane substantially parallel to the first direction, the edge of which forms at least one portion of the convex edge. The swaging operation is carried out on the portion of the strands positioned between the edges of the opening such that a portion of the plurality of punched strands passes through the opening and projects around the convex edge onto the top and bottom sides thereof.
US10395800B2
Embodiments are directed to a method for manufacturing a product comprising: establishing, by a computing device comprising a processor, at least one parameter of a particular instance of a component to be used in the product, adapting, by the computing device, a baseline model of the component based on the at least one parameter to accommodate use of the particular instance of the component, growing a structure based on the adapted model to accommodate the particular instance of the component using an additive manufacturing technique, coupling the structure to the particular instance of the component, growing an electrical harness by using additive printing to establish an electrical cable, and assembling the product by coupling the electrical harness to the particular instance of the component.
US10395789B2
Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.
US10395782B2
A support structure for attenuating seismic forces in one or more reactor modules housed in a reactor building includes a mounting structure that may be configured to securely connect the support structure to a floor of the reactor building. A receiving area may be sized to receive a lower portion of a reactor module, and the support structure may be configured to at least partially surround the lower portion of the reactor module within the receiving area. The support structure may further include a retention system located near a top surface of the support structure. The retention system may be configured to contact the reactor module during a seismic event, and an upper portion of the reactor module may extend above the retention system without contacting the support structure.
US10395778B2
A system and apparatus for controlled fusion in a field reversed configuration (FRC) magnetic topology and conversion of fusion product energies directly to electric power. Preferably, plasma ions are magnetically confined in the FRC while plasma electrons are electrostatically confined in a deep energy well, created by tuning an externally applied magnetic field. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by the nuclear force, thus forming fusion products that emerge in the form of an annular beam. Energy is removed from the fusion product ions as they spiral past electrodes of an inverse cyclotron converter. Advantageously, the fusion fuel plasmas that can be used with the present confinement and energy conversion system include advanced (aneutronic) fuels.
US10395771B2
Computer-aided telemedical evaluation is described. A computing environment can receive a video comprising frames of a subject in motion. The computing environment can identify one or more anatomical features of the subject and determine one or more gait cycle patterns for the anatomical features by tracking motion of the anatomical features over a number of frames of the video. The computing environment can also examine the gait cycle patterns to identify symmetry, asymmetry, and other characteristics in the gait cycle patterns with respect to each other, the anatomical features of the subject, and/or inanimate features of the surroundings. Based on the examination, the computing environment can also provide an evaluation of the subject in the video. The evaluation can include the identification of one or more limbs associated with lameness in the subject. Care can then be administered to the subject, in part, based on the evaluation.
US10395768B2
An assembly and method for tracking implant devices within a sterile field, the assembly comprising a reader that includes a housing structure with a base and a cover, a scanner having a scanner housing, where the scanner housing is at least partially positioned in a cavity provided in the base; and an aperture provided in the cover, where the cover is configured to receive a transparent sterile sheath to at least partially encase the cover.
US10395757B2
Provided is a parental genome assembly method, comprising: using the sequencing data of parental selfing line progeny population to assemble and perfect the parental genome data. Also provided is a device for implementing the method.
US10395751B2
A system and an operating method thereof include a system under test (SUT) having a hardware array of flash storages, partitions including logical volumes, a kernel subsystem including an operating system, and an application layer including services, applications, and/or systems. The application layer receives test drivers and corresponding test fixtures from an external source. The SUT is segmented into subsystems of interest, and a different test using a different test fixture is applied to each subsystem. The tests are monitored and the results of the tests are collected and verified against suitable benchmarks. Results and associated data are archived.
US10395748B2
Apparatuses and methods of sharing error correction memory on an interface chip are described. An example apparatus includes: at least one memory chip having a plurality of first memory cells and an interface chip coupled to the at least one memory chip and having a control circuit and a storage area. The control circuit detects one or more defective memory cells of the first memory cells of the at least one memory chip. The control circuit further stores first defective address information of the one or more defective memory cells of the first memory cells into the storage area. The interface chip responds to the first defective address information and an access request to access the storage area in place of the at least one memory chip when the access request has been provided with respect to the one or more defective memory cells of the first memory cells.
US10395745B2
A one-time programmable memory device includes a well of a first polarity in a semiconductor substrate. A lightly-doped drain (LDD) region is above one portion of the well. The LDD region has a first doping concentration and a second polarity that is opposite the first polarity. A source region or a drain region of the second polarity is above another portion of the well. The source region or the drain region has a second doping concentration that is higher than the first doping concentration. A first breakdown voltage between the LDD region and the well region is higher than a second breakdown voltage between the source region or the drain region and the well region. A select device is positioned at least partially above a portion of the source region or the drain region. The select device is configured to form a channel between the source region or the drain region and the LDD region. An anti-fuse device is positioned at least partially above a portion of the LDD region.
US10395727B2
A nonvolatile memory device includes multi-level cells. A sensing method of the nonvolatile memory device includes: precharging a bit line and a sense-out node during a first precharge interval; identifying a first state of a selected memory cell, by developing the sense-out node during a first develop time and sensing a first voltage level of the sense-out node; precharging the sense-out node to a second sense-out precharge voltage; and identifying the first state of the selected memory cell from a second state adjacent thereto, by developing the sense-out node during a second develop time different from the first develop time and sensing a second voltage level of the sense-out node.
US10395720B2
A pseudo static random access memory (SRAM) and a refresh method for a pseudo SRAM are provided. The refresh method includes: providing a basic clock signal; at a first time point, enabling a chip enable signal to perform a first write operation, and receiving write data during an enabled time period of the chip enable signal; at a delay time point after the first time point, enabling a sub-word line driving signal, and writing the write data to at least one selected sense amplifier during an enabled time period of the sub-word line driving signal; and receiving a refresh request signal, and determining whether the refresh request signal is enabled according to an end time point of the enabled time period of the chip enable signal to determine a timing of starting a refresh operation.