US10819219B2
Disclosed is a semiconductor device for switching power supply control including: a high voltage input starting terminal; a discharger; and an input state detection circuit that includes: a voltage divider; a peak hold circuit; a first comparator which detects generation of a plug removal state; a second comparator which detects generation of a brownout state; a timer circuit; and a control signal generation circuit which generates a signal to turn on the discharger or a signal to stop outputting of a switching control signal, Td1, Td2 and Td3 are set to have a relationship of Td1
US10819215B2
Many DC applications switching converter modules are multilevel, series connected converters. If an individual converter cell fails, it is desirable to be able to bypass the failed cell, in order to continue operating the rest of the converter. A bypass switch is provided as a hybrid switch, including a parallel combination of a slow mechanical switch with high current conduction capability and a low power semiconductor switch with faster acting switching capabilities. When the bypass switch is activated (closed), the low power semiconductor switch is turned on first and quickly establishes the bypass within 10 μs or less, to temporarily conduct required current until the slower mechanical switch turns on. The mechanical switch is subsequently turned on with zero voltage, given the parallel-connected semiconductor switch being on. If desired, the semiconductor switch can then be turned off with zero voltage, given the presence of the mechanical switch. When the bypass switch is deactivated (opened), the semiconductor switch can first be turned on to divert part of the current from the mechanical switch. The mechanical switch can then be turned off at low voltage, since the mechanical switch is shorted by the semiconductor switch. Once the mechanical switch is off, the semiconductor switch can be quickly turned off.
US10819214B2
An active compensation circuit is disclosed. In an embodiment a circuit includes a first compensation stage and at least one other compensation stage, wherein each of the first compensation stage and the at least one other compensation stage includes a sensor configured to provide a sensor signal being representative of a current flowing in one or more phases, a controlled current sink configured to supply a compensation current as a function of the sensor signal and an active amplifier element configured to provide a frequency response of an open circuit voltage amplification and/or is to supply a maximal output current, wherein the frequency response differs from a frequency response of at least one other active amplifier and/or wherein the maximal output current differs from a maximal output current of at least one other active amplifier.
US10819209B2
A multi-source energy harvester system includes a power conversion apparatus. First and second energy harvesters respectively harvest first and second energy and respectively provide first and second input powers. The power conversion apparatus includes an adjustable impedance matching circuit and a power conversion circuit. The impedance matching circuit generates an adjusted power according to the first input power. The power conversion circuit converts a bus power to an output power. The energy harvester system controls a first and a second switch circuits according to the adjusted power and/or the second input power to select and conduct one of the adjusted power or the second input power as the bus power, and adjusts an impedance of the adjustable impedance matching circuit to maximize a voltage of the adjusted power.
US10819207B2
A yoke of a voice coil motor includes an outer yoke as a magnet holding portion and an inner yoke as a coil insertion portion. A magnet is fixed to the surface of the outer yoke facing the inner yoke. The inner yoke is inserted into a coil. Openings are provided toward both end positions of the outer yoke from a middle position of movement positions of the coil. The openings are formed to pass through the outer yoke. The outer yoke can be made lighter while a necessary thrust is ensured.
US10819206B2
A linear motor includes a motor movable body which has symmetrical structure with respect to a vertical plane and a horizontal plane that include the motor center axis line. Two linear bearings disposed in a space on the inner side of a rectangular tubular movable coil of the motor movable body are disposed symmetrically to the left and right of the center axis line so that the bearing support center coincides with the motor center axis line. Thrust generation sections of the motor movable body are disposed symmetrically above and below the motor center axis line, so that the thrust center coincides with the motor center axis line. Since the center of gravity of the motor movable body, the thrust center and the bearing support center coincide with the motor center axis line, a high responsive liner motor can be realized with no decrease in the thrust/movable body mass ratio.
US10819202B2
A linear vibration motor includes: a casing having an upper casing whose bottom is open and a lower casing coupled to the upper casing to form an internal space therein; a stator disposed on top of the lower casing in the internal space formed by the casing; an elastic member disposed around the stator in the internal space formed by the casing in such a manner as to allow one surface thereof to be coupled to the lower casing; an oscillator mounted on the other surface of the elastic member and having a ring-shaped magnet disposed around the stator; and a magnetic fluid applied to top of the ring-shaped magnet, wherein the upper casing includes a ring-shaped protrusion formed on the inner surface facing the lower casing, and an inner diameter of the ring-shaped protrusion is greater than an outer diameter of the ring-shaped magnet.
US10819198B2
In a method for producing a squirrel-cage rotor for an asynchronous machine, conductor rods made from a first conductive material are inserted in substantially axial grooves of a laminated rotor core in such a manner that the conductor rods protrude from an end face of the laminated rotor core. A short circuit ring disc made from a second conductive material and heated above the recrystallization temperature is axially pressed onto the protruding conductor rods on the end face of the laminated rotor core, taking into account a temperature range, a deformation, and the rate of deformation of the short circuit ring, with a permissible shear stress of the first and second conductive materials being locally exceeded and material transitions being caused by diffusion at an interface between the conductor rods and the short circuit ring, thereby resulting in microwelding. Subsequently or simultaneously the short circuit ring disc is hot shaped.
US10819187B2
A system and kit for dissipating heat generated by a motor assembly and methods for manufacturing and using same. The motor assembly includes a housing that defines an internal chamber. The internal chamber communicates with an air inlet and an air outlet each being formed in the housing, and can at least partially receive motor inner workings. A pump assembly can be included in the internal chamber for generating an air flow during operation of the motor assembly. The pump assembly can draw air into the internal chamber via the air inlet, generating an air flow within the internal chamber. The air drawn into the internal chamber is applied to the motor inner workings, and the air heated by the motor inner workings is expelled from the internal chamber via the air outlet. Thereby, the air flow advantageously can cool the motor assembly as the air traverses the internal chamber.
US10819183B1
A spherical resolver system includes a spherical body, an outer body, a first sensor coil, a second sensor coil, a third sensor coil, a first primary coil, and a circuit. The spherical body has a first axis of symmetry, a second axis of symmetry, and a third axis of symmetry, and the first, second, and third axes of symmetry are disposed perpendicular to each other. The circuit is coupled to the first primary coil and is operable to supply a first alternating current (AC) reference signal (Vr1) to the first primary coil, whereby a first sensor signal (Vx) is selectively induced in the first sensor coil, second sensor signal (Vy) is selectively induced in the second sensor coil, and a third sensor signal (Vz) is selectively induced in the third sensor coil, and supplies one or more signals representative of the sensor position.
US10819181B2
A terminal lead support for use in an integrated drive generator has a body defining an outer end extending to two outer angled surfaces. The outer angled surfaces each extend to curved end portions. The curved end portions connect the outer angled surfaces into inner angled surfaces. The inner angled surfaces each extend into cupped portions formed about a radius. There are six apertures formed within the body, with laterally outer apertures spaced from the outer surface by a greater amount than laterally intermediate apertures. The laterally intermediate apertures are spaced from the outer surface by a greater amount than laterally inner apertures. An integrated drive generator and a method of replacing a terminal lead support are also disclosed.
US10819177B2
Various embodiments include a stator for an AC electric machine with a number of magnetic poles comprising: a central axis; and a stator winding with a plurality of conductor turns. The individual conductor turns are grouped into a total of n electrical strands. The individual conductor turns of a respective electrical strand define a first conductor branch and a second conductor branch. The first conductor branch and the second conductor branch are arranged helically around the central axis over at least half of their respective lengths. The helically arranged conductor branches each have a pitch greater than a product of an axial length of the helical conductor branches and the number of magnetic poles.
US10819167B2
A wireless power reception device detects a power receiving coil position relative to a power transmitting coil while curbing an increase in power loss. The wireless power reception device includes: a power receiving coil magnetically coupled to the power transmitting coil; a first rectification and smoothing circuit rectifying an AC voltage supplied from the power receiving coil and outputs the rectified AC voltage to a load; first and second capacitors respectively connected to first and second transmission lines; a first resistor having one terminal connected to the first capacitor and the other terminal is supplied with a predetermined reference potential; a second resistor having one terminal connected to the second capacitor and the other terminal is supplied with the reference potential; and a position detecting circuit detecting the power receiving coil position relative to the power transmitting coil on the basis of first and second junction point potentials.
US10819162B2
A method for detecting a foreign object between a transmission pad and a reception pad for wireless power transfer (WPT) may comprise steps of performing a zero phase angle (ZPA) control for a power transfer converter included in or connected to the transmission pad; detecting a characteristic parameter with respect to at least one of an input current and a switching frequency of the power transfer converter; and determining whether or not a foreign object exists between the transmission pad and the reception pad according to whether the characteristic parameter with respect to at least one of the input current and the switching frequency deviates from an allowable range.
US10819161B2
Disclosed herein is a detecting device including a coil electromagnetically coupled to the external, a resonant circuit that includes at least the coil, and a detecting section that superimposes a measurement signal for measuring the Q-factor of the resonant circuit on a power transmission signal transmitted to the coil in a contactless manner and removes the power transmission signal from an alternating-current signal obtained by superimposing the measurement signal on the power transmission signal. The detecting section measures the Q-factor by using the alternating-current signal from which the power transmission signal is removed.
US10819151B2
One embodiment provides an apparatus for wireless power transmission, comprising: a resonator comprising: a three dimensional structure; and an energy storage mechanism operatively coupled to the three dimensional structure; wherein the three dimensional structure and energy storage mechanism produce standing electromagnetic waves upon driving the resonator. Other systems, methods, apparatuses, and products are described and claimed.
US10819149B2
Disclosed is an energy mixer having a first active diode coupled between a first input node and an output node, and a second active diode coupled between a second input node and the output node. A first capacitor is coupled between the first input node and a dynamic node, and a second capacitor is coupled between the second input node and a third node. Switching circuitry is configured to selectively couple the dynamic node between a fixed voltage node and the second input node in response to a control signal provided by control circuitry. When an output voltage at the output node is within a first range, the dynamic node is coupled to the fixed voltage node and when the output voltage is within a lower voltage second range, the dynamic node is coupled to the second input node such that first capacitor and second capacitor are coupled in series.
US10819144B2
A ferroresonant transformer assembly, which is adapted to be connected to a primary power source, an inverter system, a resonant capacitor, and at least one load, comprises a core, a main shunt, and first, second, and third windings. The main shunt is arranged to define a primary side and a secondary side of the ferroresonant transformer. The first windings are arranged on the primary side of the ferroresonant transformer and are configured to be operatively connected to the primary power source. The second windings are arranged on the secondary side of the ferroresonant transformer and are configured to be operatively connected to the inverter system. The third windings arranged on the secondary side of the ferroresonant transformer and are configured to be selectively operatively connected to or disconnected from the resonant capacitor.
US10819143B1
The redundant power supply device includes a power output port, a converter, a comparator unit and an output protection switch. The output protection switch is electrically connected between an output terminal of the converter and the power output port, and the comparator unit compares the voltage across the output protection switch and controls the output protection switch accordingly. The redundant power supply device has a control module that performs a protection control method. When the voltage of the power output port is higher than a preset voltage value and the output current is lower than a preset current value, the control module outputs a short turn-off signal to the enable terminal of the comparator unit, preventing the comparator unit from failing to perform the output protection as designed due to external abnormal slow rising voltage, and ensuring the redundant power supply unit operates normally.
US10819134B2
An adapter for charging control include a power converting unit, a sample and hold unit, a current acquisition and control unit. The power converting unit is configured to convert an input AC to obtain an output voltage and an output current of the adapter, and the output current of the adapter is a current of a first pulsating waveform. The sample and hold unit is connected to the power converting unit, and is configured to sample the current of the first pulsating waveform when the sample and hold unit is in a sampling state and hold a peak value of the current of the first pulsating waveform when the sample and hold unit is in a holding state. The current acquisition and control unit is configured to determine whether the sample and hold unit is in the holding state.
US10819130B2
A mobile charge/discharge device for being electrically connected to a power source and a first power receiving device is disclosed. The mobile charge/discharge device includes a detection circuit detecting a first working power of the power source and a second working power of the first power receiving device; an input port having a first power supply pin for being electrically connected to the power source; a first output port having a second power supply pin for being electrically connected to the first power receiving device; and a controlling circuit controlling the power source to supply the first power receiving device with a power according to one of the first working power and the second working power and supply the mobile charge/discharge device with a power according to the difference of the first working power and the second working power at the same time.
US10819123B2
Embodiments of the present disclosure provide a voltage collection circuit and a circuit control method. The voltage collection circuit includes a battery monitoring chip, n switch units, and a controller. The battery monitoring chip is connected to a battery module including k battery cells, a battery cell CELL(i) is any one of the k battery cells. A switch unit Ji is connected in parallel to the battery cell CELL(i), a switch unit Js is connected in parallel to voltage collection channels Cs and C(s−1). The battery monitoring chip is configured to collect voltages of the k battery cells by using n+1 voltage collection channels. The controller is connected to the battery monitoring chip and control ends of the n switch units and configured to control working statuses of the n switch units according to the voltages collected by using the n+1 voltage collection channels.
US10819108B2
The invention relates to an overvoltage protection circuit, particularly in system where the load is remote from a regulated power supply and relates to an electric power supply system comprising such overvoltage protection circuit. The invention further relates to a downhole tractor comprising such overvoltage protection circuit, and to a tethered subsea vehicle comprising the overvoltage protection circuit.
US10819105B2
A pre-fluxing system and method to reduce inrush current for a winding used in a transformer, motor or a solenoid. The system has a primary winding and a tertiary winding connected with a power source for providing electrical energy to these windings. A pre-fluxing circuit is connected to the tertiary winding. The power source provides electrical energy to the tertiary winding via the pre-fluxing circuit, and the pre-fluxing circuit pre-magnetizes the tertiary winding when energized. The tertiary winding is configured to pre-magnetize the primary winding to reduce inrush current when the power source energizes the primary winding.
US10819104B2
A method for a power system having a string of a plurality of power sources connected across a power device includes connecting a plurality of safe voltage units having safety switches connected respectively across each of the power sources. The method includes sensing a plurality of parameters of the power sources, and monitoring for a signal transmitted from the power device. Each of the safety switches is activated to be OFF responsive to detecting the signal within a predetermined time period. Upon not detecting the signal from the power device within the predetermined time period, a safe mode of operation of the power system is entered in which the voltages of each of the power sources is reduced to a voltage level less than a predetermined voltage level by turning the safety switches ON.
US10819101B2
An over-current protection apparatus constituted of: a transistor disposed on a substrate; a first thermal sense device arranged to sense a temperature reflective of a junction temperature of the transistor; a second thermal sense device arranged to sense a temperature reflective of a temperature of a casing surrounding the substrate; and a control circuitry, arranged to alternately: responsive to the sensed temperature by the first thermal sense device and the sensed temperature of the second thermal sense device being indicative that the temperature difference between the transistor junction and the substrate casing is greater than a predetermined value, switch off the transistor; and responsive to the sensed temperature by the first thermal sense device and the sensed temperature by the second thermal sense device being indicative that the temperature difference between the transistor junction and the substrate casing is not greater than the predetermined value, switch on the transistor.
US10819099B2
Provided is a relay device that can switch conduction of a current flow path between power storage units on and off, and can suppress a decrease in the output of the power storage units if an abnormality occurs. A relay device includes: a conductive path; a switch unit switched between an ON state, and an OFF state; a coil connected in series to the switch unit; a first voltage detection unit configured to detect a voltage of the conductive path at a position on a first power storage unit side; a second voltage detection unit configured to detect a voltage of the conductive path at a position on a second power storage unit side; and a control unit configured to switch the switch unit to the OFF state if a value detected by the first voltage detection unit and/or the second voltage detection unit indicates a predetermined abnormal value.
US10819084B2
The present disclosure provides a TO-CAN packaged laser and an optical module. According to an example, the TO-CAN packaged laser includes a base; a substrate located on the base, where the substrate is provided with a first conductive sheet and a second conductive sheet; a laser chip provided on the substrate, where an anode of the laser chip is electrically coupled with the first conductive sheet and a cathode of the laser chip is electrically coupled with the second conductive sheet; and a first pin and a second pin that protrude from the base, where the first pin is coupled with the first conductive sheet by conductive welding flux or conductive paste and the second pin is coupled with the second conductive sheet by conductive welding flux or conductive paste.
US10819080B1
Coating-less nonplanar ring oscillator lasers are disclosed. Such lasers may eliminate the need for thin-film optical coatings from a laser cavity, solving the problem of optical damage to the coatings, and thus, providing a longer useful lifetime for the laser for space or terrestrial applications. Such lasers may be compact, ultra-stable, and highly reliable, enabling a low phase noise, single frequency laser in a compact package. Such lasers may be used in CW and/or in pulse mode.
US10819078B2
A method for manufacturing an optical element includes a bonding step of bonding a first and a second element portion to each other without interposing an adhesive therebetween. The bonding step includes: a first step of fixing the first and the second element portion with an intermediate layer disposed between these portion, the intermediate layer containing an element substitutable for a constituent element of a bonded portion in the first and the second element portion, the intermediate layer being colored; and a second step of integrating a part of the intermediate layer with the first and the second element portion, and making a part of the intermediate layer transparent to laser light by irradiating the intermediate layer with giant pulse laser light and causing it to be absorbed into the intermediate layer after the first step.
US10819076B2
A rotatable device powered by continued electricity supply, having a supporting shaft, a bearing, a rotary body, a mounting seat, an electrical conductive member, and a brush. The bearing includes an outer ring and an inner ring. The rotary body is connected to the outer ring. One of the electrical conductive member and the brush is connected to the rotary body, and another one of the electrical conductive member and the brush is connected to the mounting seat. A windmill that uses the rotatable device is also provided.
US10819071B2
A connector is capable of replacing an STP cable (10B) and a UTP cable (10A) without a large structural change. UTP connection terminals (21A) are accommodated in accommodating portions (26) of a UTP dielectric (22A) that are close to each other in a width direction. Thus, elastic contact pieces (32) thereof are located inside and close to each other in the width direction, while receiving portions (31) are located outside and spaced from each other in the width direction. STP connection terminals (21B) are accommodated in accommodating portions (26) of an STP dielectric (22B) that are spaced more apart in the width direction than those of the UTP dielectric (22A). Thus, elastic contact pieces (32) thereof are located outside and are spaced from each other in the width direction, while receiving portions (31) thereof are located inside so as to be close to each other in the width direction.
US10819070B2
An anti-theft bracket according to the present invention is an anti-theft bracket provided near a parking driver. The parking driver is connected to a parking actuator via a harness with a connector of the harness inserted in the parking driver. The anti-theft bracket includes a connector detachment restricting part covering the connector.
US10819066B2
An inlet apparatus includes: a locking pin; a holder configured to accommodate the locking pin; and a first electromagnet provided at a lower portion of the holder. The first electromagnet includes a lower coil for generating a repulsive force or an attractive force in a vertical direction with respect to the locking pin. The inlet apparatus also includes a second electromagnet provided at a side of the holder, the second electromagnet including a side coil for fixing the locking pin. The inlet apparatus also includes a controller configured to control a current of the lower coil of the first electromagnet and a current of the side coil of the second electromagnet.
US10819065B2
An electronic building block includes a first side and a second side, a first magnet fixed to the first side and including a number of first magnet segments, a second magnet fixed to the second side and including a number of second magnet segments, a first power contact, a second power contact and a first communication contact arranged on the first side; and a third power contact, a fourth power contact and a second communication contact arranged on the second side and respectively coming into contact with the first power contact, the second power contact, and the first communication contact when the first magnet segments of one of two electronic building blocks is connected to the second magnet segments of the other of two electronic building blocks.
US10819060B2
A stacked connector includes a first housing (10A) and a second housing (10B) to be stacked one on the other. The first and second housings (10A, 10B) respectively include first detecting portions (17A) and second detecting portions (17B) configured to interfere with incompletely inserted second terminal fittings (60B) and first terminal fittings (60A) on a first facing surface (11A) and a second facing surface (11B). The first housing (10A) is recessed with groove portions (35) formed in an outer side surface opposite to the first facing surface (11A) by cutting a region along a width direction, extending in a depth direction, and open on both ends in the depth direction.
US10819045B2
A bonder cap includes a plurality of electrical wire bundles each having conductor parts in a plurality of electrical wires therein connected together and covered by a bonder cap; a tying member configured to tie the bonder caps together by being integrally wound around the bonder caps that are included in the electrical wire bundles; and an accommodating part into which the bonder caps that have been tied together by the tying member are inserted and in which the bonder caps are integrally accommodated.
US10819039B2
The present invention discloses an antenna system including a sub-array rectangular speaker having a metal substrate and a circuit board with 4 electrically connected sub-boards, 4 insolate layers and 4 feeding components. The sub-board includes a first feed point and a second feed point for electrically connecting to corresponding feeding components. Each of the speakers includes sidewalls and rigid walls for electrically connected to the first and second feed points. The present invention further provides a communication terminal using such an antenna.
US10819036B2
The present disclosure discloses a dielectric resonant antenna based NMOSFET terahertz detector, comprising an on-chip dielectric resonant terahertz antenna, wherein the on-chip dielectric resonant terahertz antenna is connected to a matching network, the matching network is connected to a source of an NMOSFET, and a gate of the NMOSFET is sequentially connected to a first bias resistor and a first bias voltage, a third transmission line is connected between the first bias resistor and the gate, a drain of the NMOSFET is connected to a first DC blocking capacitor, the other end of the first DC blocking capacitor is connected to a low noise preamplifier, a second bias resistor and a second bias voltage are connected in parallel between the first DC blocking capacitor and the low noise preamplifier, and the low noise preamplifier is further provided with a voltage feedback loop. The present disclosure also discloses a design method for the same.
US10819033B2
An apparatus of a user equipment (UE) to perform tuning of a tunable antenna may comprise baseband circuitry and radio frequency (RF) circuitry. The baseband circuitry may determine an indication of throughput performance of a tunable antenna for the UE while the tunable antenna is in a first state. The RF circuitry may select a second state for the tunable antenna based on the indication of throughput performance for the tunable antenna. The second state may be selected to improve throughput performance of a data stream for the UE. The RF circuitry may also generate a control signal to transition the tunable antenna to the second state.
US10819026B2
A radar apparatus is provided with transmitting means, receiving means, target detection means, azimuth detection means and a cover member. The cover member has a first face and a second face. The first face and second face are not parallel to one another. At least one of the first face and second face is a curved surface which is curved along azimuth detection directions of the azimuth detection means, such as to provide a large phase difference between incoming waves that are received by a plurality of antenna elements and are from within a range of large angular values in the azimuth detection directions of the azimuth detection means.
US10819022B1
A variable inclination continuous transverse stub antenna includes a first conductive plate and a second conductive plate spaced relative to the first conductive plate. The first conductive plate includes a first surface partitioned into a first region and a second different region, a first group of CTS radiators on the first region, and a second group of CTS radiators on the second region. A spacing and a width in an E-field direction of the first group of radiators is different in respect to a spacing and width in the E-field direction of the second group of radiators. The second conductive plate includes a second surface parallel to the first surface, the second surface partitioned into a first parallel plate transmission line and a second different parallel plate transmission line, the first and second parallel plate transmission lines configured to receive or output a different radio frequency signals from one another.
US10819020B2
The embodiments of the present invention relate to the field of communication technology, and disclose an antenna system and a mobile terminal. In the present disclosure, the antenna system includes: a first antenna, a second antenna, a third antenna, a fourth antenna, and a fifth antenna, wherein the first antenna, the second antenna, the fourth antenna, and the fifth antenna constitute a 4*4 MIMO operating at 3300 MHz to 3600 MHz, the second antenna and the third antenna constitute a 2*2 MIMO operating at 4800 MHz˜5000 MHz, so that the antenna system of the present disclosure can support the operating band of the terminal in 5G communication, promoting the development of mobile terminal in the aspect of 5G communication.
US10819016B2
A mobile terminal includes a metal frame, and the metal frame includes two corners provided diagonally. The antenna system includes four SIW horn antenna arrays formed on the metal frame. The circumference side of each corner is respectively provided with two SIW horn antenna arrays arranged perpendicular to each other and one of the SIW horn antenna arrays is provided at an end of the long frame close to the connected corner, and the other SIW horn antenna array is provided at an end of the short frame close to the connected corner. The SIW horn antenna array includes multiple SIW horns. The metal frame is provided with multiple spaced through holes at positions corresponding to the SIW horns. The antenna system and the mobile terminal of the present disclosure have good overall coverage efficiency.
US10819012B2
An antenna applied to a mobile terminal, includes: a first sub-antenna; and a second sub-antenna. The mobile terminal includes a first metal frame and a second metal frame, a breaking joint being provided between a first end of the first metal frame and a first end of the second metal frame, a length of the first metal frame being within a range of a quarter wavelength of a specified band, and the length of the first metal frame being greater than a length of the second metal frame. The first sub-antenna and the second sub-antenna are formed based on the first metal frame and the second metal frame.
US10819011B2
An electronic device is provided. The electronic device includes a housing including a first plate, a second plate facing the first plate, and a side member surrounding a space between the first plate and the second plate and a circuit board, which is accommodated inside a housing and in which a wireless communication circuit is disposed. The second plate includes a slot filled with a non-conductive material. An area other than the slot is formed of a conductive material. The circuit board includes a conductive pattern formed on the circuit board along with the slot of the second plate, and the wireless communication circuit is configured to feed one point of the second plate adjacent to the slot to receive a signal of a first frequency band through an electrical path formed by the slot and to feed the conductive pattern to receive a signal of a second frequency band through the slot.
US10819001B2
The motor vehicle has a glass roof, an antenna arrangement seated on this glass roof, and a metallic frame. An opening of the glass roof is located below the antenna arrangement and is covered thereby. The frame is located below the glass roof and forms a dome, which extends into the opening of the glass roof and to which the antenna arrangement is mechanically connected. A reflection surface associated with the antenna arrangement is attached on the lower side of the glass roof. The reflection surface has a grid structure made of intersecting lines extending transversely to the z direction. The lines are provided with a metallization which has a width of 0.5 to 2 mm. The intersecting lines delimit free fields, which are not metallized and have a maximum clear dimension of 3 to 15 mm.
US10818998B2
Spatial power-combining devices and, in particular, spatial power-combining devices with filtering elements are disclosed. A spatial power-combining device includes a plurality of amplifier assemblies and each amplifier assembly includes an input antenna structure, an amplifier, an output antenna structure, and a filtering element. A filtering element may be an integral single component with an input signal conductor of the input antenna structure or an integral single component with an output signal conductor of the output antenna structure. In some aspects, a filtering element may be an integral single component with both the input signal conductor and the output signal conductor.
US10818996B1
A power sampler may include a sampling circuit interposed in one leg of a differential-signal circuit. An input balun may convert a single-ended signal from a signal source into a differential signal on first and second differential-signal input ports. An output balun may convert an output differential signal to a single-ended output signal to a signal load. The sampling circuit may include an inductance and a coupling circuit. The inductance may be an inductor and have an impedance higher than a source impedance. The coupling circuit, which may be a balun, is connected to the inductance and outputs a single-ended sample signal having a magnitude proportional to the inductance impedance at the design frequency. A second coupling-circuit output conducts an output differential signal and may be connected to the output balun.
US10818992B2
An integrated spring mounted chip termination for converting energy of a circuit into heat to be absorbed by a heatsink. The integrated spring mounted chip termination includes an input tab configured to connect to the circuit. The integrated spring mounted chip termination also includes a chip termination having a top surface. The chip termination includes an input contact located on the top surface and configured to connect to the input tab, a resistor element located on the top surface and connected to the input contact, and a ground contact located on the top surface and connected to the resistor element. The integrated spring mounted chip termination also includes a formed ground spring connected to the ground contact of the chip termination, the formed ground spring configured to attach the chip termination to the heatsink, such that the chip termination and the heatsink are in contact.
US10818991B2
Aspects of the subject disclosure may include, for example, a system that performs operations including detecting a signal degradation of guided electromagnetic waves bound to a transmission medium without utilizing an electrical return path, the guided electromagnetic waves having a non-optical frequency range, and adjusting an alignment of at least a portion of fields of the guided electromagnetic waves to mitigate the signal degradation. Other embodiments are disclosed.
US10818990B2
A magnetoresistance effect device includes a first port, a second port, a first circuit unit and a second circuit unit which are connected in series between the first port and the second port, a shared reference electric potential terminal or a first reference electric potential terminal and a second reference electric potential terminal, and a shared DC application terminal or a first DC application terminal and a second DC application terminal, wherein the first circuit unit and the second circuit unit include a magnetoresistance effect element and a conductor connected to one end thereof, a first end portion of the conductor is connected to a high-frequency current input side, and a second end portion of the first conductor is connected to the shared reference electric potential terminal, the first reference electric potential terminal or the second reference electric potential terminal.
US10818971B2
An improved, low porosity, solid electrolyte membrane and a method of manufacturing the solid electrolyte membrane are provided. The low porosity, solid electrolyte membrane significantly improves both mechanical strength and porosity of the membrane, inhibits the growth of lithium dendrites (Li dendrites), and thereby maintains and maximizes electrochemical stability of an all-solid-state battery. This is accomplished by wet-coating a sulfide or oxide solid electrolyte particle with a thermoplastic resin, or a mixture of the thermoplastic resin and a thermosetting resin, using a solvent to prepare a composite and hot-pressing the composite at a relatively low temperature and at a low pressure.
US10818970B2
Disclosed is an all-solid battery, including a cathode, an anode, and a solid electrolyte layer. The solid electrolyte layer may include a first solid electrolyte having an ionic conductivity ranging from greater than about 5×10−3 S/cm to about 1×10−1 S/cm and a second solid electrolyte having an ionic conductivity ranging from greater than about 5×10−4 S/cm to about 1×10−2 S/cm.
US10818966B2
Aimed at providing a sulfide solid electrolyte comprising an argyrodite type crystal structure, having a high ionic conductivity due to presence of a large amount of a halogen element and is capable of suppressing agglomeration at the time of production. Provided is a sulfide solid electrolyte comprising lithium, phosphorus, sulfur and one or more elements X selected from halogen elements, wherein the sulfide solid electrolyte comprises an argyrodite type crystal structure, and wherein a molar ratio of the lithium to the phosphorus “a (Li/P)”, a molar ratio of the sulfur to the phosphorus “b (S/P)” and a molar ratio of the element X to the phosphorus “c (X/P)” satisfy the following formulas (1) to (3): 5.0≤a<7.3 (1) 0.70≤a−b<1.0 (2) 7.0
0 and c>0.
US10818959B2
The present invention relates to a cap assembly formed of a composite of cap assembly ceramic for the cylindrical battery and mounted on a top end portion of the cylindrical secondary battery in which an electrode assembly is placed in a cylindrical can, which includes a safety vent having a predetermined notch configured to be ruptured by high pressure gas generated in the battery, a current interrupt device coupled to a lower end of the safety vent and blocking a current when an internal pressure of the battery rises, and a gasket for the current interrupt device surrounding an outer circumferential surface of the current interrupt device, wherein the gasket for the current interrupt device comprises a polymer resin having a melting point of 250° C. or more and a heat deflection temperature (HDT) of 200° C. or more, and a cylindrical secondary battery including the same.
US10818953B2
An apparatus and process are provided for electricity production and high-efficiency trapping of carbon dioxide, using carbon dioxide within combustion exhaust gas and converging technologies associated with a carbon dioxide absorption tower and a generating device using ions which uses a difference in concentration of salinity between seawater and freshwater. It is expected that enhanced electrical energy production efficiency, an effect of reducing costs for the operation of a carbon dioxide trapping process, and electricity production from carbon dioxide, which is a greenhouse gas, can be simultaneously achieved by increasing the difference in concentration using an absorbent for absorbing carbon dioxide.
US10818950B2
A composite polymer electrolyte membrane for a fuel cell may be manufactured by the following method: partially or totally filling the inside of a pore of a porous support with a hydrogen ion conductive polymer electrolyte solution by performing a solution impregnation process; and drying the hydrogen ion conductive polymer electrolyte solution while completely filling the inside of the pore with the hydrogen ion conductive polymer electrolyte solution by performing a spin dry process on the porous support of which the inside of the pore is partially or totally filled with the hydrogen ion conductive polymer electrolyte solution.
US10818949B2
A proton conducting membrane (16) for a fuel cell comprises light-transmissive proton conducting material (102, 104) and light scattering material (106) for scattering light within the membrane, the membrane further comprising a light guide (108) through which light can enter the membrane. Also disclosed is a fuel cell comprising the membrane.
US10818947B2
Systems, methods, and devices which optimize fuel-cell stack airflow control are described. According to aspects of the present disclosure, actuation of at least one cathode-flow actuator is initialized to an initial state based on a desired oxygen flowrate to operate the fuel-cell stack in a voltage-controlled mode, a stack current produced by the fuel-cell stack is determined that corresponds to operation at the actuation of the cathode-flow actuators, a flowrate of oxygen exiting the fuel-cell stack is calculated based on the stack current, the flowrate of oxygen exiting the fuel-cell stack is compared to the desired oxygen flowrate exiting the fuel-cell stack, and actuation of at least one of the cathode-flow actuators is modified in response to the flowrate of oxygen being different from the desired oxygen flowrate. The modified actuation reduces the difference between the desired oxygen flowrate and the flowrate of oxygen exiting the fuel-cell stack.
US10818946B2
A fuel cell system that has a fuel cell stack is provided. The system includes an electrolyte membrane, and a cathode and an anode that are a pair of electrodes disposed on opposite sides of the electrolyte membrane. A controller applies voltages to the cathode and the anode of the fuel cell stack before hydrogen that operates the fuel cell stack is supplied to the anode. When the voltages are applied to the cathode and the anode, hydrogen that resides in the cathode flows to the anode through the electrolyte membrane to decrease the concentration of the hydrogen in the cathode. The fuel cell system reduces the concentration of hydrogen discharged to the outside of the vehicle by reducing the concentration of hydrogen in the cathode before driving of the fuel cell is initiated.
US10818943B2
A fuel cell system includes: a turbine including a changing mechanism that adjusts a pressure difference between an upstream pressure and a downstream pressure of the turbine, the turbine recovering at least a part of energy of the cathode off-gas using the pressure difference and assisting driving of the motor with the recovered energy; and a control unit configured to drive the changing mechanism to increase or decrease the recovered energy. The control unit acquires a correlation temperature correlated with a temperature of the cathode off-gas discharged from the turbine and performs freezing avoidance control of not setting the degree of opening to be equal to or less than a predetermined degree of opening when the correlation temperature is lower than a predetermined threshold temperature at which the turbine is able to become frozen.
US10818942B2
A method for estimating a hydrogen concentration of a fuel cell includes estimating an initial amount of gas included at an anode side of a fuel cell, calculating a crossed over amount of gas between the anode side and a cathode side of the fuel cell and an amount of gas purged from the anode side to the outside from time when an initial amount of gas is predicted to a present time, and estimating a current hydrogen concentration at the anode side based on the predicted initial amount of gas, the calculated amount of crossed over gas, and the amount of purged gas.
US10818938B2
A fuel cell stack includes a plurality of cells laminated. Each of the cells includes: a membrane electrode gas diffusion layer assembly; an insulating member; a first separator including a first gas passage and a first refrigerant passage; first, second, and third manifolds penetrating through the insulating member and the first separator such that a first gas, a second gas, and a refrigerant circulate through the first, second, and third manifolds, respectively; and a second separator including a second gas passage and a second refrigerant passage and configured to sandwich the membrane electrode gas diffusion layer assembly and the insulating member together with the first separator. In the each of the cells, the insulating member includes a first communication portion, a second communication portion, and a third communication portion, and the first separator has a communication opening via which the third communication portion communicates with the first refrigerant passage.
US10818935B2
A connector is moved obliquely to a first separator. An optical distance measuring device is used to optically measure an attachment position of the connector while using the first separator as a reference. A reference plane of the first separator is used as a reference. An inspection plane of the connector is also used as a reference. The inspection plane is formed to be parallel to the reference plane in the state that the connector is accurately attached to an attachment portion.
US10818930B2
An electrical storage device includes high surface area fibers (e.g., shaped fibers and/or microfibers) coated with carbon (graphite, expanded graphite, activated carbon, carbon black, carbon nanofibers, CNT, or graphite coated CNT), electrolyte, and/or electrode active material (e.g., lead oxide) in electrodes. The electrodes are used to form electrical storage devices such as electrochemical batteries, electrochemical double layer capacitors, and asymmetrical capacitors.
US10818925B2
An electrical or electrochemical cell, including a cathode layer, an electrolyte layer, and an anode layer is disclosed. The cathode layer includes a first material providing a cathodic electric transport, charge storage or redox function. The electrolyte layer includes a polymer, a first electrolyte salt, and/or an ionic liquid. The anode layer includes a second material providing an anodic electric transport, charge storage or redox function. At least one of the cathode and anode layers includes the ionic liquid, a second electrolyte salt, and/or a transport-enhancing additive.
US10818921B2
Disclosed are: nickel complex hydroxide particles that have small and uniform particle diameters; and a method by which the nickel complex hydroxide particles can be produced. Specifically disclosed is a method for producing a nickel complex hydroxide by a crystallization reaction, which comprises: a nucleation step in which nucleation is carried out, while controlling an aqueous solution for nucleation containing an ammonium ion supplying material and a metal compound that contains nickel to have a pH of 12.0-13.4 at a liquid temperature of 25° C.; and a particle growth step in which nuclei are grown, while controlling an aqueous solution for particle growth containing the nuclei, which have been formed in the nucleation step, to have a pH of 10.5-12.0 at a liquid temperature of 25° C. In this connection, the pH in the particle growth step is controlled to be less than the pH in the nucleation step.
US10818912B2
A battery includes a positive electrode including a positive electrode active material, a negative electrode, and an electrolytic solution including a lithium hexafluorophosphate and an additive. The positive electrode active material includes a compound having a crystal structure belonging to a space group FM3-M and represented by Compositional Formula (1): LixMeyOαFβ. The additive is at least one selected from the group consisting of difluorophosphates, tetrafluoroborates, bis(oxalate)borate salts, bis(trifluoromethanesulfonyl)imide salts, and bis(fluorosulfonyl)imide salts.
US10818900B2
Porous, electrically insulating, and electrochemically resistant surface coatings that strengthen and protect separators and that improve the operational safety of electrochemical devices using such separators, porous, electrically insulating, and electrochemically resistant standalone separators, the use of ultraviolet (UV) or electron beam (EB) curable binders to secure an electrically insulating, porous, ceramic particle coating on separators or to produce standalone separators, and methods of producing polymer-bound ceramic particle separator coatings, separators and electrochemical devices by UV or EB curing slurries of reactive liquid resins and ceramic particles.
US10818896B2
The present disclosure provides a frame and a battery module. The frame is composed of a peripheral wall, the peripheral wall encloses to form a receiving cavity closed in a circumferential direction and opened at two ends in an axial direction, the peripheral wall is provided with at least one adhesive injection hole passing through the peripheral wall. The battery module comprises a plurality of secondary batteries arranged side by side, the frame and an adhesive. The secondary batteries are received in the receiving cavity. The adhesive comprises: a first part which adheres every two adjacent secondary batteries; a second part which adheres two secondary batteries positioned at outermost sides of the plurality of secondary batteries in an arrangement direction with the peripheral wall; a third part which adheres a lower side of the first part and a lower side of the second part with the peripheral wall.
US10818879B2
A method of manufacturing an organic electroluminescence display panel includes: forming pixel electrodes in matrix on a substrate; arranging column banks extending in column direction above the substrate along row direction, the banks each being between adjacent pixel electrodes in the row direction; applying ink containing organic light emitting material to gaps between adjacent banks, the applied ink being continuous in the column direction; reducing pressure of atmosphere including the substrate to first pressure while positioning a rectifying plate at first distance from upper surface of the substrate, the plate covering region with the ink applied on the substrate; reducing, after the reducing, the pressure to second pressure, which is lower than the first pressure, or lower while positioning the plate at second distance, which is greater than the first distance, from the surface; heating the substrate to form organic functional layer; and forming counter electrode above the functional layer.
US10818877B2
Provided are a display device, a mask assembly, and an apparatus and a method for manufacturing the display device. The mask assembly includes: a mask frame; at least two mask sheets installed on the mask frame, each of the mask sheets including a plurality of openings; and at least two thin shielding plates installed on the mask frame such that the thin shielding plates are spaced apart from each other and shield a portion of the plurality of openings of each mask sheet, wherein one of the mask sheets and the thin shielding plates includes a shielding portion between the thin shielding plates spaced apart from each other, the shielding portion selectively blocking at least portions of the openings so as to form a deposition region having a shape other than a rectangle or a square.
US10818863B2
An organic electroluminescent element according to one embodiment of the disclosure includes, in order, an anode, an organic light-emitting layer, an electron transport layer, an intermediate layer, and a cathode. The electron transport layer includes a sodium fluoride layer. The intermediate layer includes an ytterbium layer. The ytterbium layer is in contact with the sodium fluoride layer on side of the cathode.
US10818861B2
A light-emitting layer, which is a stack of a first light-emitting layer and a second light-emitting layer, is provided between an anode and a cathode. The first light-emitting layer is formed on the anode side and contains a first light-emitting substance converting triplet excitation energy into light emission, a first organic compound having an electron-transport property, and a second organic compound having a hole-transport property. The second light-emitting layer contains a second light-emitting substance converting triplet excitation energy into light emission, the first organic compound, and a third organic compound having a hole-transport property. The second organic compound has a lower HOMO level than the third organic compound. The first light-emitting substance emits light with a wavelength shorter than that of light emitted from the second light-emitting substance. The first and the second organic compounds form an exciplex. The first and the third organic compounds form an exciplex.
US10818857B2
The present disclosure provides a photosensitive device. The photosensitive device includes a donor-intermix-acceptor (PIN) structure. The PIN structure includes an organic hole transport layer; an organic electron transport layer; and an intermix layer sandwiched between the hole transport organic material layer and the electron transport organic material layer. The intermix layer includes a mixture of an n-type organic material and a p-type organic material.
US10818844B2
The organic EL device of the present invention has an anode, a hole transport layer, a luminous layer, an electron transport layer, and a cathode in this order, and the hole transport layer contains an arylamine compound represented by the following general formula (1): where Ar1 to Ar4 each represent a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group.
US10818843B2
A polymer compound comprising a constitutional unit represented by the following formula (1) and a constitutional unit represented by the following formula (X) and/or a constitutional unit represented by the following formula (Y), wherein the content of the hydroxyl groups contained in the polymer compound is less than 0.02 mol %: Ar1 (1) [wherein, Ar1 represents an arylene group and this group optionally has a substituent.] [wherein, aX1 and aX2 each independently represent an integer of 0 or more. ArX1 and ArX3 each independently represent an arylene group or a divalent heterocyclic group and these groups each optionally have a substituent. ArX2 and ArX4 each independently represent an arylene group, a divalent heterocyclic group or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are bonded directly to each other, and these groups each optionally have a substituent. When there are a plurality of ArX2 and a plurality of ArX4, each of them may be the same or different. RX1, RX2 and RX3 each independently represent an alkyl group, an aryl group or a monovalent heterocyclic group and these groups each optionally have a substituent. When there are a plurality of RX2 and a plurality of RX3, each of them may be the same or different.] ArY1 (Y) [wherein, ArY1 represents an arylene group, a divalent heterocyclic group or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are bonded directly to each other, and these groups each optionally have a substituent.].
US10818839B2
An apparatus of fabricating a semiconductor device may include a chamber including a housing and a slit valve used to open or close a portion of the housing, a heater chuck provided in a lower region of the housing and used to heat a substrate, a target provided over the heater chuck, a plasma electrode provided in an upper region of the housing and used to generate plasma on the target, a heat-dissipation shield surrounding the inner wall of the housing between the plasma electrode and the heater chuck, and an edge heating structure provided between the heat-dissipation shield and the inner wall of the housing and configured to heat the heat-dissipation shield and an edge region of the substrate and to reduce a difference in temperature between center and edge regions of the substrate.
US10818826B2
A manufacturing method of a light emitting diode apparatus is provided. This method includes forming a light emitting diode on the substrate, forming a light leakage preventing layer to surround the side surface of the light emitting diode, etching a region corresponding to the light emitting diode in the substrate, and bonding a wavelength converting material to a lower portion of the light emitting diode in the etched region, in which the wavelength converting material includes a semiconductor layer including a quantum well layer.
US10818819B2
A micro light emitting device including a component layer, a first electrode and a second electrode is provided. The component layer includes a main body and a protruding structure disposed on the main body. The first electrode is electrically connected to the component layer. The second electrode is electrically connected to the component layer. The first electrode, the second electrode and the protruding structure are disposed on the same side of the main body. The protruding structure is located between the first electrode and the second electrode. A connection between the first electrode and the second electrode traverses the protruding structure. The main body has a surface. The protruding structure has a first height with respect to the surface. Any one of the first electrode and the second electrode has a second height with respect to the surface. The relation 0.8≤H1/H2≤1.2 is satisfied, wherein H1 is the first height and H2 is the second height. A display apparatus having a plurality of micro light emitting devices is provided as well.
US10818817B2
There is described a cascade-type compact hybrid energy cell (CHEC) that is capable of individually and concurrently harvesting solar, strain and thermal energies. The cell comprises an n-p homojunction nanowire (NW)-based piezoelectric nanogenerator and a nanocrystalline/amorphous-Si:H single junction cell. Under optical illumination of ˜10 mW/cm2 and mechanical vibration of 3 m/s2 at 3 Hz frequency, the output current and voltage from a single 1.0 cm2-sized CHEC was found to be 280 μA and 3.0 V, respectively—this is are sufficient to drive low-power commercial electronics. Six such CHECs connected in series were found to generate enough electrical power to light emitting diodes or drive a wireless strain gauge sensor node.
US10818808B2
A method of producing a nanograin material wherein a hole-transporting surfactant is injected into an InP/ZnS dispersion solution, and the surface of an InP/ZnS quantum dot is covered with the hole-transporting surfactant to prepare an InP/ZnS dispersion solution with a hole-transporting surfactant. The InP/ZnS dispersion solution with a hole-transporting surfactant is then applied to a substrate using a spin coating process of the like to form a quantum dot layer with a hole-transporting surfactant having one or more layers. Then, a dispersion solution (replacement solution) containing an electron-transporting surfactant is prepared. The substrate having the quantum dot layer with a hole-transporting surfactant is immersed in the replacement solution for a predetermined time, and part of the hole-transporting surfactant is replaced with the electron-transporting surfactant to form a quantum dot layer having one or more layer.
US10818804B2
A semiconductor device includes a substrate, a tunneling oxide layer, a floating gate, an isolation layer and a control gate. The tunneling oxide layer is disposed on the substrate. The floating gate is disposed on the tunneling oxide layer. The isolation layer covers a top of the floating gate and peripherally encloses the tunneling oxide layer and the floating gate. The control gate is disposed over a top of the isolation layer.
US10818802B2
A semiconductor device according to example embodiments of inventive concepts may include a substrate, source/drain regions extending perpendicular to an upper surface of the substrate, a plurality of nanosheets on the substrate and separated from each other, and a gate electrode and a gate insulating layer on the substrate. The nanosheets define channel regions that extend in a first direction between the source/drain regions. The gate electrode surrounds the nanosheets and extends in a second direction intersecting the first direction. The gate insulating layer is between the nanosheets and the gate electrode. A length of the gate electrode in the first direction may be greater than a space between adjacent nanosheets among the nanosheets.
US10818801B2
A manufacturing method of a thin-film transistor is provided. The method include: forming a gate pattern layer on a substrate; forming a gate insulating layer covering the gate pattern layer; depositing semi-conductive oxide material on the gate insulating layer to form an active pattern layer on the gate insulating layer; depositing reducing material on the active pattern layer to form a reducing pattern layer; and forming a source pattern layer and a drain pattern layer on the reducing pattern layer. A thin-film transistor is further provided.
US10818795B2
A semiconductor device comprising a pixel portion comprising a capacitor and a transistor is provided. The capacitor comprises a first oxide semiconductor film and a transparent conductive material. The transistor comprises a second oxide semiconductor film, a source electrode, and a drain electrode. The transistor is electrically connected to the capacitor. The capacitor is provided to overlap with a first opening portion in an insulating film and a second opening portion in an organic resin film. The transparent conductive material comprises a region over the organic resin film. The second oxide semiconductor film comprises a channel formation region and a first region outside the channel formation region. Each of a carrier density of the first oxide semiconductor film and a carrier density of the first region is higher than a carrier density of the channel formation region.
US10818785B2
A charge sensing device for sensing charge variations in a charge storage area includes: a TFET having at least one sense gate; and a capacitive coupling for coupling the charge storage area with the sense gate.
US10818784B2
A semiconductor device according to the present invention includes a channel region of a first conductivity type, disposed at a front surface portion of a semiconductor layer, an emitter region of a second conductivity type, disposed at a front surface portion of the channel region, a drift region of the second conductivity type, disposed in the semiconductor layer at a rear surface side of the channel region, a collector region of the first conductivity type, disposed in the semiconductor layer at a rear surface side of the drift region, a gate trench, formed in the semiconductor layer, a gate electrode, embedded in the gate trench, and a convex region of the second conductivity type, projecting selectively from the drift region to the channel region side at a position separated from a side surface of the gate trench.
US10818782B2
At a portion at which a gate trench is branched, the trench is formed at a deeper position than at portions of the gate trench having a linear shape. A semiconductor device is provided, including: a first conductivity-type semiconductor substrate; a second conductivity-type base region provided at a front surface side of the semiconductor substrate; a first trench portion provided extending from a front surface of the semiconductor substrate and penetrating the base region; and a second conductivity-type contact region which is provided in a part of the base region at a front surface side of the semiconductor substrate and has a higher impurity concentration than the base region, wherein the first trench portion has a branch portion on the front surface of the semiconductor substrate, and the branch portion is provided being surrounded by the contact region on the front surface of the semiconductor substrate.
US10818775B2
The method for fabricating a field-effect transistor comprises a step of producing a sacrificial gate and first and second spacers covering first, second and third parts of successive first to fifth semiconductor nanowires of a stack. The fabricating method comprises a step of forming a channel area of the transistor, which channel area is compressively stressed and distinct from the second part of the third nanowire. The channel area is connected to a source electrode of the transistor by the first part of the second nanowire, and to a drain electrode of the transistor by the third part of the second nanowire.
US10818773B2
A method for forming self-aligned contacts includes patterning a mask between fin regions of a semiconductor device, etching a cut region through a first dielectric layer between the fin regions down to a substrate and filling the cut region with a first material, which is selectively etchable relative to the first dielectric layer. The first dielectric layer is isotropically etched to reveal source and drain regions in the fin regions to form trenches in the first material where the source and drain regions are accessible. The isotropic etching is super selective to remove the first dielectric layer relative to the first material and relative to gate structures disposed between the source and drain regions. Metal is deposited in the trenches to form silicide contacts to the source and drain regions.
US10818770B2
Method for producing field-effect transistor including source electrode and drain electrode, gate electrode, active layer, and gate insulating layer, the method including etching the gate insulating layer, wherein the gate insulating layer is metal oxide including A-element and at least one selected from B-element and C-element, the A-element is at least one selected from Sc, Y, Ln (lanthanoid), Sb, Bi, and Te, the B-element is at least one selected from Ga, Ti, Zr, and Hf, the C-element is at least one selected from Group 2 elements in periodic table, etching solution A is used when at least one selected from the source electrode and the drain electrode, the gate electrode, and the active layer is formed, and etching solution B that is etching solution having same type as the etching solution A is used when the gate insulating layer is etched.
US10818767B2
A semiconductor device includes a substrate and a gate dielectric layer on the substrate. The gate dielectric layer includes a single metal oxide layer. The semiconductor device includes a gate electrode stack on the gate dielectric layer. The gate electrode stack includes a metal filling line. The gate electrode stack includes a work function layer covering the sidewall and the bottom surface of the metal filling line. The gate electrode stack includes a capping layer in contact with the gate dielectric layer between sidewalls of the gate dielectric layer and sidewalls of the work function layer. The capping layer includes TaC and at least one of TiN or TaN. The gate electrode stack includes a barrier layer interposed between the capping layer and the sidewalls of the work function layer. The barrier layer comprises TaC and WN, and the barrier layer is in contact with the capping layer.
US10818763B1
Structures for a field-effect transistor and methods of forming a field-effect transistor. A first gate electrode has a first plurality of segments arranged in series to define a first non-rectilinear chain. A second gate electrode is arranged adjacent to the first gate electrode. The second gate electrode includes a second plurality of segments arranged in series to define a second non-rectilinear chain. A source/drain region is laterally arranged between the first gate electrode and the second gate electrode.
US10818756B2
A technique relates to a semiconductor device. Fins are formed of varying concentrations of germanium. Gate material is formed on the fins. Source or drain (S/D) regions are adjacent to the fins, and transistor devices include the fins.
US10818748B2
A method for manufacturing a thin film resistor (TFR) module includes forming a TFR element over a substrate; annealing the TFR element to reduce the temperature coefficient of resistance (TCR) of the TFR element; and after forming and annealing the TFR element, forming a pair of conductive TFR heads in contact with the TFR element. By forming the TFR element before the TFR heads, the TFR element may be annealed without affecting the TFR heads, and thus may be formed from various materials with different annealing properties, e.g., SiCCr and SiCr. Thus, the TFR element may be annealed to achieve a near 0 ppm TCR, without affecting the later-formed TFR heads. The TFR module may be formed using a damascene CMP approach and using only a single added mask layer. Further, vertically-extending “ridges” at edges of the TFR element may be removed or eliminated to further improve the TCR performance.
US10818741B2
An OLED array substrate includes a plurality of pixel structure, including a plurality of pixel units, each of the plurality of pixel units including: a base substrate; a first electrode disposed above the base substrate; a light emitting layer disposed on a side of the first electrode facing away from the base substrate; a second functional layer disposed on a side of the light emitting layer facing away from the base substrate, wherein the second functional layer wraps the light emitting layer.
US10818732B2
A photosensitive sensor and a method of manufacturing the photosensitive sensor are disclosed. The photosensitive sensor includes a thin film transistor and a photosensitive element on a substrate, wherein the photosensitive element includes a first electrode, a second electrode, and a photosensitive layer between the first electrode and the second electrode. The second electrode is connected to a drain electrode of the thin film transistor. An orthographic projection of an active layer of the thin film transistor on the substrate is within an orthographic projection of the second electrode on the substrate. The second electrode includes at least two stacked conductive layers, at least one of the at least two stacked conductive layers being a light shielding metal layer.
US10818731B1
The present invention is directed to a memory array including one or more memory layers, each of which includes a first plurality of memory cells and a second plurality of memory cells arranged in alternated odd and even columns, respectively; multiple odd horizontal lines with each connected to a respective odd column of the first plurality of memory cells; multiple even horizontal lines with each connected to a respective even column of the second plurality of memory cells; multiple transverse lines with each connected to one of the first plurality of memory cells and a respective one of the second plurality of memory cells disposed adjacent thereto along a row direction; and multiple vertical lines with each connected to a respective one of the multiple transverse lines. The odd horizontal lines collectively form fingers of a first comb structure and the even horizontal lines collectively form fingers of a second comb structure.
US10818711B2
Narrowband light filters, and methods of manufacturing such light filters, are provided. A narrowband light filter may include at least two electrically conductive bodies, an electrically conductive thin film layer disposed between the at least two electrically conductive bodies, at least one protective oxide layer disposed on the thin film layer and electrically conductive bodies, and at least one slit disposed through the electrically conductive thin layer. In various embodiments, the electrically conductive bodies give the narrowband light filter a mirrored structure in exemplary embodiments of the invention. The narrowband filters may also include one or more slits. Multiple slits may be configured to make the narrowband filtration polarization-independent. A plurality of narrowband light filters may be configured into pixel arrays. Pixel arrays may also be used in multispectral or hyperspectral imaging apparatus and techniques.
US10818707B2
A solid-state imaging device includes: pixels arranged in a matrix; a vertical signal line provided for each column, conveying a pixel signal; a power line provided for each column, proving a power supply voltage; and a feedback signal line provided for each column, conveying a signal from a peripheral circuit to a pixel, in which each of the pixels includes: an N-type diffusion layer; a photoelectric conversion element above the N-type diffusion layer; and a charge accumulation node between the N-type diffusion layer and the photoelectric conversion element, accumulating signal charge generated in the photoelectric conversion element, the feedback signal line, a metal line which is a part of the charge accumulation node, the vertical signal line, and the power line are disposed in a second interconnect layer, and the vertical signal line and the power line are disposed between the feedback signal line and the metal line.
US10818703B2
A method for manufacturing a semiconductor device includes: forming a photocatalytic layer and an organic compound layer in contact with the photocatalytic layer over a substrate having a light transmitting property; forming an element forming layer over the substrate having the light transmitting property with the photocatalytic layer and the organic compound layer in contact with the photocatalytic layer interposed therebetween; and separating the element forming layer from the substrate having the light transmitting property after the photocatalytic layer is irradiated with light through the substrate having the light transmitting property.
US10818702B2
The present disclosure relates to an array substrate including: an inorganic film layer having a surface provided with a number of first grooves; and metal wiring located in the first grooves. According to the array substrate described above, the surface of the inorganic film layer is provided with a number of first grooves, and the metal wiring is located in the first grooves, such that the inorganic film layer at the metal wiring is thinned, with reduced bending stress. On the other hand, the first grooves can release the bending stress of the array substrate partially during bending, thereby effectively preventing breakage of the inorganic film layer caused by bending, and thus effectively preventing breakage of the metal wiring, to improve reliability of the array substrate.
US10818699B2
A display panel and a display device, the display panel comprising: a substrate (1); a signal lead-out wire (2) arranged on the substrate, at least one end of the signal lead-out wire being exposed, the material of the signal lead-out wire comprising a metal, the signal lead-out wire being provided with a disconnected area (A); a heavily doped semiconductor material conductive portion (3) connecting the signal lead-out wire at the disconnected area. The present invention prevents poor display panel displaying caused by corrosion of exposed ends of signal lead-out wires.
US10818697B2
A semiconductor device includes a first TFT, a first source-side connection section that is formed from a part of a second metal film and connected to a first source region, a first drain-side connection section that is formed from a part of the second metal film and connected to a first drain region, a second TFT that is driven by the first TFT, a second source-side connection section that is formed from a part of a first metal film and connected to a second source region, and a second drain-side connection section that is formed from a part of the first metal film or a second transparent electrode film and connected to a second drain region.
US10818695B2
The present disclosure provides an anti-reflective substrate and a method for preparing the same, an array substrate, and a display device. The anti-reflective substrate includes a base substrate and an anti-reflective film having an optical path control structure. The anti-reflective film is disposed on the base substrate, and the optical path control structure is configured to reduce a reflection of an incident light from a side of the base substrate on which the anti-reflective film is disposed.
US10818693B2
The present invention provides an array substrate comprising a substrate, an inorganic layer formed on the substrate, a metal wiring formed on the inorganic layer, and an organic layer on the inorganic layer and covering the metal wiring; wherein the metal wiring and/or the inorganic layer include a bending performance enhancement structure. In this invention, by means of providing the bending performance enhancement structure in the metal wiring and/or the inorganic layer, the stress in the bending region is released when the flexible display is bent, so as to prevent the bending region from fracture or damage and improve the bending performance.
US10818691B2
A semiconductor memory device includes a conducting layer and an insulating layer that are disposed above a semiconductor substrate, a plurality of pillars that extend in a direction which crosses a surface of the semiconductor substrate, and a plate that is disposed between the plurality of pillars and extends in the same direction as the pillars. A surface of the plate, which faces the pillars, has convex portions and non-convex portions.
US10818688B2
A storage device includes: a plurality of electrode films stacked in a first direction, and extending in a second direction intersecting the first direction; a first semiconductor film provided adjacent to the plurality of electrode films, and extending in the first direction; a first charge holding film provided between one electrode film among the plurality of electrode films, and the semiconductor film, and including any one of a metal, a metal compound, and a high dielectric material; and a second semiconductor film located between the first semiconductor film and the charge holding film, and extending in the first direction along the first semiconductor film. The second semiconductor film is electrically insulated from the plurality of electrode films, the first charge holding film, and the first semiconductor film.
US10818681B2
In an example, a method of forming a stacked memory array includes, forming a termination structure passing through a stack of alternating first and second dielectrics in a first region of the stack; forming first and second sets of contacts through the stack of alternating first and second dielectrics in a second region of the stack concurrently with forming the termination structure; forming an opening through the stack of alternating first and second dielectrics between the first and second sets of contacts so that the opening terminates at the termination structure; and removing the first dielectrics from the second region by accessing the first dielectrics through the opening so that the first and second sets of contacts pass through the second dielectrics alternating with spaces corresponding to the removed first dielectrics.
US10818674B2
Structures and static random access memory bit cells including complementary field effect transistors and methods of forming such structures and bit cells. A first complementary field-effect transistor has a first storage nanosheet transistor, a second storage nanosheet transistor stacked over the first storage nanosheet transistor, and a first gate electrode shared by the first storage nanosheet transistor and the second storage nanosheet transistor. A second complementary field-effect transistor has a third storage nanosheet transistor, a fourth storage nanosheet transistor stacked over the third storage nanosheet transistor, and a second gate electrode shared by the third storage nanosheet transistor and the fourth storage nanosheet transistor. The first gate electrode and the second gate electrode are arranged in a spaced arrangement along a longitudinal axis. All gate electrodes of the SRAM bitcell may be arranged in a 1CPP layout.
US10818669B2
A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
US10818665B2
An array of recessed access devices comprises islands comprising semiconductive material surrounded by insulating material. The insulating material has a bottom adjacent individual of the islands. Rows of transistor gate lines individually cross multiple of the islands within the semiconductive material and cross within the insulating material between the individual islands. Individual of the gate lines are operatively adjacent a channel region of individual of the transistors within the individual islands and interconnect the transistors in that row. The individual transistors comprise a pair of source/drain regions on opposite sides of the individual gate lines in the individual islands. A lower portion of the individual islands proximate individual of the bottoms of the insulating material has less horizontal area than an uppermost portion of the individual islands. Additional embodiments are disclosed.
US10818649B2
Display devices and methods of fabricating display devices are provided. The display device includes a circuit board; a first light-emitting device array substrate mounted on the circuit board; and a second light-emitting device array substrate mounted on the circuit board adjacent the first light-emitting device array substrate in a first direction. The circuit board defines a groove that overlaps a boundary between the first light-emitting device array substrate and the second light-emitting device array substrate.
US10818648B2
A semiconductor module includes: a semiconductor package in which a semiconductor device is incorporated; a snubber circuit having a snubber capacitor and a snubber resistor which are connected in parallel to the semiconductor device; a first light-emitting device emitting light when residual voltage between an anode and a cathode of the semiconductor device becomes equal to or higher than first voltage; and a second light-emitting device emitting light when the residual voltage becomes equal to or higher than second voltage, wherein the first and second voltages are different from each other.
US10818643B1
Embodiments relate to using a pickup assembly to place light emitting diodes (LEDs) onto an electronic display substrate after fabrication of the LEDs. An LED assembly system places LEDs on a temporary substrate after fabrication. Pickup heads of the pickup assembly are coated with a conformable material to enable attachment of each LED to a pickup head. The pickup head removes the LEDs away from the temporary substrate and aligns the LEDs onto a target substrate. The LED assembly system provides heat to an electrode of the LEDs and a corresponding electrical contact pad of the target substrate. The pickup assembly applies force to the LED on the target substrate, such that with the heat, the electrode of the LED and the electrical contact pad are bonded. The pickup assembly releases the LED onto the target substrate.
US10818634B2
The present disclosure provides a display panel, a method for manufacturing the display panel, and a display device. The display panel includes a substrate; a printed circuit board; a chip on film; an anisotropic conductive adhesive layer, connected between the chip on film and the substrate, and between the chip on film and the printed circuit board.
US10818624B2
A semiconductor device includes a first substrate including a first surface, at least one first bonding pad disposed on the first surface, and at least one second bonding pad disposed on the first surface. The first bonding pad includes a first width, and the second bonding pad includes a second width. The second width is substantially different from the first width.
US10818611B2
Methods for compensating for bow in a semiconductor structure comprising an epitaxial layer grown on a semiconductor substrate. The methods include forming an adhesion layer on the backside of the wafer, and forming a stress compensation layer on the adhesion layer.
US10818610B2
There are provided an adhesive film for a semiconductor including: a conductive layer containing at least one metal selected from the group consisting of copper, nickel, cobalt, iron, stainless steel (SUS), and aluminum, and having a thickness of 0.05 μm or more; and an adhesive layer formed on at least one surface of the conductive layer and including a (meth)acrylate-based resin, a curing agent, and an epoxy resin, and a semiconductor device including the above-mentioned adhesive film.
US10818600B2
A circuit device having an interlayer dielectric with pillar-type air gaps and a method of forming the circuit device are disclosed. In an exemplary embodiment, the method comprises receiving a substrate and depositing a first layer over the substrate. A copolymer layer that includes a first constituent polymer and a second constituent polymer is formed over the first layer. The first constituent polymer is selectively removed from the copolymer layer. A first region of the first layer corresponding to the selectively removed first constituent polymer is etched. The etching leaves a second region of the first layer underlying the second constituent polymer unetched. A metallization process is performed on the etched substrate, and the first layer is removed from the second region to form an air gap. The method may further comprise depositing a dielectric material within the etched first region.
US10818598B2
An integrated circuit structure includes a first low-k dielectric layer having a first k value, and a second low-k dielectric layer having a second k value lower than the first k value. The second low-k dielectric layer is overlying the first low-k dielectric layer. A dual damascene structure includes a via with a portion in the first low-k dielectric layer, and a metal line over and joined to the via. The metal line includes a portion in the second low-k dielectric layer.
US10818589B2
BEOL and MOL interconnect structures with a self-forming sidewall barrier layer are provided. In one aspect, a method of forming an interconnect structure includes: patterning a feature(s) in a dielectric; selectively forming a metal layer at a bottom of the at least one feature; depositing a liner layer lining the feature(s), wherein the conformal liner layer includes a metal alloy AB; depositing a metal onto the liner layer to form the interconnect structure; and annealing the interconnect structure under conditions sufficient to form a barrier layer including the component B along vertical sidewalls of the feature(s). A method of forming an interconnect structure including a via and a trench on top of the via is also provided, as is an interconnect structure.
US10818585B2
There is provided a copper/ceramic bonded body of the present invention in which a copper member made of copper or a copper alloy and a ceramic member made of aluminum nitride or silicon nitride are bonded to each other, in which an active metal nitride layer containing a nitride of one or more active metals selected from Ti, Zr, Nb, and Hf is formed on the ceramic member side between the copper member and the ceramic member, a Mg solid solution layer in which Mg is dissolved in a Cu matrix phase is formed between the active metal nitride layer and the copper member, and the active metal is present in the Mg solid solution layer.
US10818581B2
An improvement is achieved in the performance of a semiconductor device. A second component mounting portion over which a first electronic component is mounted is connected to a coupling portion of a lead frame via a suspension lead. The suspension lead has a first portion between the second component mounting portion and the coupling portion and a second portion between the first portion and the coupling portion. The second portion has a third portion connected to the first portion and having a width smaller than a width of the first portion, a fourth portion connected to the first portion and having a width smaller than the width of the first portion, and a through hole (opening) located between the third and fourth portions. Each of the first, third, and fourth portions has the same thickness. After a sealing body is formed, a cutting jig is pressed against the suspension lead to cut the suspension lead.
US10818576B2
Methods for forming bonded assemblies using metal inverse opal and cap structures are disclosed. In one embodiment, a method for forming a bonded assembly includes positioning a substrate against a polymer support that is porous, depositing a metal onto and within the polymer support, disposing a cap layer to the polymer support opposite of the substrate to form a bottom electrode, and removing the polymer support from between the substrate and the cap layer to form a metal inverse opal structure disposed therebetween.
US10818572B2
An electrical circuit device includes a circuit board including a cavity extending from a top surface of the circuit board to an embedded conductor, an integrated circuit chip in the cavity, an electrical connection between the integrated circuit chip and the embedded conductor, a thermal slug disposed over a top surface of the integrated circuit chip, and a heat sink mounted to an outer surface of the thermal slug for transferring a thermal energy away from the circuit board, the heat sink extending above a top surface of the circuit board.
US10818569B2
In one example, a semiconductor package comprises a substrate having a top surface and a bottom surface, an electronic device mounted on the top surface of the substrate and coupled to one or more interconnects on the bottom surface of the substrate, a cover over the electronic device, a casing around a periphery of the cover, and an encapsulant between the cover and the casing and the substrate.
US10818568B1
A charger comprises a housing, a first multi-layer printed circuit board (PCB), a second multi-layer PCB, and a third multi-layer PCB. The first PCB comprises at least a portion of a primary side circuit. The second PCB comprises at least a portion of a secondary side circuit. The third PCB is perpendicular to the first PCB and the second PCB. An isolation coupling element is disposed on the third PCB. The isolation coupling element comprises a multi-layer PCB. The first PCB comprises a high voltage (HV) semiconductor package. A surface of a die paddle of the HV semiconductor package is exposed from a molding encapsulation of the HV semiconductor package.
US10818566B2
A circuit module (101) includes a substrate (1) having a principal surface (1a), a first component (6) mounted on the principal surface (1a), and a sealing resin portion (3) that covers at least a side surface of the first component (6) while covering the principal surface (1a). The first component (6) includes an empty portion (6c) and a connection portion (6b) exposed to the empty portion (6c). The sealing resin portion (3) is arranged to avoid at least a part of a region that is included in an upper surface of the first component (6) and corresponds to the empty portion (6c).
US10818557B2
This disclosure is directed to an integrated circuit (IC) structure. The IC structure may include a semiconductor structure including two source/drain regions; a metal gate positioned on the semiconductor structure adjacent to and between the source/drain regions; a metal cap with a different metal composition than the metal gate and having a thickness in the range of approximately 0.5 nanometer (nm) to approximately 5 nm positioned on the metal gate; a first dielectric cap layer positioned above the semiconductor structure; an inter-layer dielectric (ILD) positioned above the semiconductor structure and laterally abutting both the metal cap and the metal gate, wherein an upper surface of the ILD has a greater height above the semiconductor structure than an upper surface of the metal gate; a second dielectric cap layer positioned on the ILD and above the metal cap; and a contact on and in electrical contact with the metal cap.
US10818555B2
A device includes first and second transistors and first and second isolation structures. The first transistor includes an active region including a first channel region, a first source and a first drain in the active region and respectively on opposite sides of the first channel region, and a first gate structure over the first channel region. The first isolation structure surrounds the active region of the first transistor. The second transistor includes a second source and a second drain, a fin structure includes a second channel region between the second source and the second drain, and a second gate structure over the second channel region. The second isolation structure surrounds a bottom portion of the fin structure of the second transistor. The top of the first isolation structure is higher than a top of the second isolation structure.
US10818553B2
The method for manufacturing an element chip includes: sticking an adhesive tape having translucency to a front surface of a semiconductor wafer; measuring a position and a width of a second close contact portion in a dividing region; applying a laser beam having a beam diameter smaller than the width of the second close contact portion to the adhesive tape such that the laser beam does not protrude from the second close contact portion based on the width of the second close contact portion and the beam diameter, and forming an exposed portion; exposing the front surface to plasma with a back surface held by a dicing tape, and while protecting an element region from the plasma with an adhesive tape, etching the dividing region exposed in the exposed portion to dice the substrate into a plurality of element chips; and removing the adhesive tape remaining on the front surface.
US10818547B2
A method of manufacturing a semiconductor device includes forming a base layer on a substrate. A structure layer is formed on the base layer. The structure layer includes at least one material layer. A structure pattern is formed on the base layer. The structure pattern includes a first trench extending in a first direction and a second trench having a cross portion extending in a second direction that is perpendicular to the first direction. The second trench is connected to the first trench. The structure pattern further includes a base pattern having a recess portion recessed downward from a surface of the base layer at the cross portion of the second trench.
US10818542B2
An alternating stack of insulating layers and sacrificial material layers is formed over a substrate. Memory stack structures are formed through the alternating stack. Drain-select-level trenches through an upper subset of the sacrificial material layers, and backside trenches are formed through each layer of the alternating stack. Backside recesses are formed by removing the sacrificial material layers. A first electrically conductive material and a second electrically conductive material are sequentially deposited in the backside recesses and the drain-select-level trenches. Portions of the second electrically conductive material and the first electrically conductive material may be removed by at least one anisotropic etch process from the drain-select-level trenches to provide drain-select-level electrically conductive layers as multiple groups that are laterally spaced apart and electrically isolated from one another by cavities within the drain-select-level trenches.
US10818539B2
A method is provided for preparing semiconductor structure, e.g., a semiconductor on insulator structure, comprising a device layer having a smooth surface. The method provided involves smoothing a semiconductor substrate surface by making use of stress enhanced surface diffusion at elevated temperatures. The purpose of this method is to reach atomic scale surface smoothness (for example, smoothness in the range of between 1.0 and 1.5 angstroms as measured according to root mean square over a 30 um×30 um AFM measurement), which is required in advanced (sub 28 nm) CMOS device fabrication.
US10818538B2
Provided are a wafer holding mechanism for a rotary table and a method and a wafer rotating and holding device, which enable change of a holding position of the wafer during spin processing while maintaining the posture of the wafer, enable reduction of marks of outer peripheral pins due to etching, and enable reduction of insufficient cleaning or uneven cleaning. The wafer holding mechanism for a rotary table comprises a rotary table configured to hold a wafer on an upper surface thereof, and a plurality of movable outer peripheral pins provided in the rotary table and configured to hold an outer periphery of the wafer. The plurality of movable outer peripheral pins comprise a plurality of first movable outer peripheral pins and a plurality of second movable outer peripheral pins configured to hold the wafer at positions different from positions at which the wafer is held by the first movable outer peripheral pins. Holding positions of the wafer are changed by switching holding of the wafer by the first movable outer peripheral pins and the second movable outer peripheral pins during wafer processing.
US10818534B2
An embodiment of a substrate treatment device may comprise: a disk provided to be able to rotate; at least one susceptor arranged on the disk, a substrate being seated on the upper surface of the susceptor, the susceptor rotating, as the disk rotates, and revolving about the center of the disk as the axis; a metal ring coupled to the lower portion of the susceptor and arranged such that the center of the metal ring coincides with the center of the susceptor, and a magnet arranged radially on the lower portion of the disk with reference to the center of the disk and provided such that at least a part of the magnet faces the metal ring in the up/down direction.
US10818529B2
A purge device capable of appropriately purging a container while saving purge gas includes a first purge nozzle that supplies a purge gas to a container to be purged, an internal state detector capable of detecting an internal state of the container before a purging process with the first purge nozzle is started, and a purge determiner that determines purge conditions for the container based on a detection result from the internal state detector.
US10818528B2
Self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers. The wafer carrier system may include a housing configured for transport within the automated material handling system. A support is configured to support a semiconductor wafer within a housing. A metrology system is disposed within the housing. The metrology system is operable to measure at least one characteristic of the wafer. The metrology system may include a sensing unit and a computing unit operably connected to the sensing unit.
US10818526B2
The present invention relates to an apparatus of controlling a temperature of a wafer cleaning equipment capable of quickly and accurately determining a detection abnormality of a temperature sensor located inside a cleaning tank, and a method of controlling a temperature using the same.The apparatus of controlling a temperature of a wafer cleaning equipment and the method of controlling a temperature using the same according to the present invention may determine an abnormal operation of a first temperature sensor installed at an inner side of an inner tank by comparing a measurement value of the first temperature sensor installed at the inner side of the inner tank and a measurement value of a second temperature sensor installed at a transfer robot configured to transfer wafers to the inner side of the inner tank.Meanwhile, a method of controlling a temperature of a wafer cleaning equipment according to the present invention may determine an abnormal operation of temperature sensors by comparing measurement values of the temperature sensors installed at an inner side of each of inner tanks in a state of supplying deionized water of a set temperature to each of the inner tanks after discharging a cleaning solution accommodated in each of the inner tanks of a plurality of cleaning tanks.
US10818522B2
Disclosed are a supercritical process chamber and an apparatus having the same. The process chamber includes a body frame having a protrusion protruding in an upward vertical direction from a first surface of the body frame and a recess defined by the protrusion and the first surface of the body frame; a cover frame; a buffer chamber arranged between the body frame and the cover frame; and a connector. The buffer chamber includes an inner vessel detachably coupled to the body frame providing a chamber space in the recess and an inner cover detachably coupled to the cover frame. The inner cover is in contact with a first surface of the inner vessel enclosing the chamber space from surroundings. The connector couples the body frame and the cover frame having the buffer chamber arranged therebetween such that the enclosed chamber space is transformed into a process space in which the supercritical process is performed.
US10818518B2
A plurality of surface mounting components are arranged on a component mounting surface of a transfer substrate. A resin layer is formed on the transfer substrate and the plurality of surface mounting components are buried in the resin layer. The resin layer is peeled off the transfer substrate, with the plurality of surface mounting components buried in the resin layer, to expose a surface resin layer. An intermediate auxiliary layer is provided on the exposed surface of the resin layer. The intermediate auxiliary layer has openings to expose respective mounting terminals of the surface mounting component. Metal materials are arranged in the openings. A wiring sheet which includes a thermoplastic resin sheet with an electrode pattern and a plurality of unmetallized via patterns is joined to the intermediate auxiliary layer so that each of the via patterns aligns with a respective one of the openings in the intermediate auxiliary layer. Heat treatment is performed to fuse the thermoplastic resin sheet to the intermediate auxiliary layer and to metallize the via patterns to connect the via patterns to the openings in the intermediate auxiliary layer and therefore the mounting terminals and the electrode pattern through the metal materials and the via patterns.
US10818509B2
A method includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench, along a first direction, in the first HM layer. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a second HM layer over the material layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench. The method also includes etching the material layer through the third trench.
US10818507B2
Embodiments provide isotropic and selective etching of silicon nitride layers for the manufacture of microelectronic workpieces through sequential exposure of silicon nitride layers to plasma including hydrogen radicals and plasma including fluorine radicals. For example, the sequential application of plasma etch steps can use: (1) a first plasma gas including hydrogen (H2) and argon (Ar), and (2) a second plasma gas including nitrogen trifluoride (NF3), oxygen (O2), and Ar. These plasma gases are ignited within a processing region or chamber under sufficient pressure to generate the hydrogen radicals and the fluorine radicals. Other plasma gas chemistries can also be used under sufficient pressures to generate alternating application of hydrogen radicals and fluorine radicals.
US10818505B2
A method comprises following steps. A first mandrel is formed over a target layer over a substrate, wherein the first mandrel comprises a mandrel island and a first mandrel strip, the mandrel island comprises a first sidewall and a second sidewall perpendicular to the first sidewall, and the first mandrel strip extends from the first sidewall of the mandrel island. A first spacer is formed along the first and second sidewalls of the mandrel island and a sidewall of the first mandrel strip. The first mandrel is removed from the target layer. The target layer is patterned when the first spacer remains over the target layer.
US10818504B2
A method for producing a pattern of features on a substrate may involve performing two exposure steps on a resist layer applied to the substrate, followed by a single etching step. In the two exposures, the same pattern of mask features is used, but with possibly differing dimensions and with the pattern applied in the second exposure being shifted in position relative to the pattern in the first exposure. The shift, lithographic parameters, and/or possibly differing dimensions are configured such that a number of resist areas exposed in the second exposure overlap one or more resist areas exposed in the first exposure. When the pattern of mask features is a regular 2-dimensional array, the method produces of an array of holes or pillars that is denser than the original array. Varying the mask patterns can produce different etched structure shapes, such as a zig-zag pattern.
US10818501B2
A method for manufacturing a semiconductor device includes bonding a supporting substrate and a first surface of a semiconductor substrate via a bonding layer, processing a second surface of the supporting substrate, opposite to the first surface, to shape the semiconductor substrate into a thin film. After shaping the semiconductor substrate into a thin film, polishing a part of the bonding layer formed at a beveled portion of the supporting substrate or the semiconductor substrate with a first polishing plane to remove the part of the bonding layera A33fter polishing the part of the bonding layer, polishing a remaining part of the bonding layer formed at the beveled portion of the supporting substrate or the semiconductor substrate with a second polishing plane different from the first polishing plane to remove the remaining part of the bonding layer.
US10818495B2
An exemplary method of making a semiconductor device includes providing a semiconductor layer of a first conductivity type, providing a first hard mask on a surface of the semiconductor layer, patterning the first hard mask to obtain a patterned first hard mask to obtain an exposed surface of the semiconductor layer, forming a body region in the semiconductor layer by using the patterned first hard mask as mask, the body region being of a second conductivity type different from the first conductivity type, providing a second hard mask on the patterned first hard mask and the exposed surface of the semiconductor layer, patterning the second hard mask to obtain a patterned second hard mask, and forming a contact region and a sinker region by using the patterned first hard mask and the patterned second hard mask as mask.
US10818486B2
Methods and systems are provided for reducing the occurrence of unwanted electrical discharge when operating an electrospray ion source to generate ions for mass spectrometric analysis. In accordance with various aspects of the applicant's teachings, the methods and systems described herein can provide for controlling the ion emission current so as to limit the onset of avalanche of electrical discharge between the electrospray electrode and the counter electrode under ionization conditions that typically tend to increase the likelihood of such discharge (arcing), while nonetheless providing for maximal ionization efficiency. In various aspects, emission currents between the electrospray electrode and the counter electrode through which the ions are transmitted to a downstream mass analyzer can be maintained at elevated levels, below 10 μA, for example, without the electric potential between the electrospray electrode and the counter electrode initiating the electrical discharge avalanche that results from the dielectric breakdown of the air gap therebetween, which can cause sputtering and effect the long-term operation of the ESI source.
US10818476B2
There is provided a substrate processing apparatus which includes: a processing container in which a substrate is accommodated; a substrate supporting part configured to support the substrate inside the processing container and including a support electrode; an upper electrode installed to face the substrate supporting part; a first impedance control part having one end connected to the upper electrode; a second impedance control part having one end connected to the support electrode; a processing gas supply part configured to supply a processing gas to the substrate; an activation part configured to activate the processing gas, the activation part being installed outside the processing container and being connected to a power supply part via an insulating part; and a third impedance control part having one end connected between the insulating part and the activation part.
US10818457B2
Electrical switch devices are installed at in-wall electrical boxes of a building. Each device features a switch module with multiple electrically controlled switches for respective connection of multiple load circuits. A control panel with a user interface is mountable over the electrical box and is connected or connectable to the switch module. A communications transceiver of each device is operable to transmit and receive communications to and from each of the other devices. The control panel has a touch-screen display, and is configured to display virtual on-screen switches, including at least one virtual switch whose output is assigned to a respective one of the electrically controlled switches of the other devices. The at least one virtual switch at one device is thereby operable to control at least one load at another of said devices. User selected names are assignable to the switches, and used to label the virtual switches.
US10818452B1
This disclosure relates generally to power isolation switch devices. In one embodiment, a power isolation switch device has a power insulator, an arc breaker, and a switch. The power insulator and the switch are connected in parallel. The arc contact is operably associated with the switch such that the arc contact is removed from the arc chute as the switch is opened and is inserted to contact the arc chute when the switch is closed. In this manner, the power isolation switch device does not need an interrupter and can be provided so as to be less bulky.
US10818448B2
A method is for making an electronic device including forming a multilayer circuit board having a non-planar three-dimensional shape defining a membrane switch recess therein, the multilayer circuit board including at least one liquid crystal polymer (LCP) layer, and at least one electrically conductive pattern layer thereon defining at least one membrane switch electrode adjacent the membrane switch recess to define a membrane switch. The method also includes filling the membrane switch recess with air, and positioning at least one biasing member in the membrane switch recess.
US10818436B2
A multilayer ceramic electronic component includes: a ceramic body including dielectric layers and a plurality of internal electrodes disposed to face each other with each of the dielectric layers interposed therebetween; and external electrodes disposed on external surfaces of the ceramic body and electrically connected to the internal electrodes, respectively, in which the external electrode each include an electrode layer electrically connected to the internal electrodes and a plating layer disposed on the electrode layer, and a thickness of the electrode layer in a cross section of the ceramic body in first and second directions is 10 μm or more.
US10818434B2
A system includes a capacitor including: a structure, and one or more capacitive devices at the structure; and an electrically insulating bushing including: a fuse including: a fuse body including a fuse housing, a first fuse end, and a second fuse end, the fuse housing extending from the first fuse end to the second fuse end and defining an interior space, and a fusible element in the interior space, the fusible element electrically connected to the first fuse end and the second fuse end; and an adaptor including: an adaptor body extending from a first adaptor end to a second adaptor end, the adaptor body hermetically sealed to the structure and the second adaptor end configured to receive the first fuse end, and an adaptor connection interface in the adaptor body. The first fuse end is removably connected to the adaptor at the adaptor connection interface.
US10818416B2
A REBCO superconductor tape that can achieve a lift factor greater than or equal to approximately 3.0 or 4.0 in an approximately 3 T magnetic field applied perpendicular to a REBCO tape at approximately 30 K. In an embodiment, the REBCO superconductor tape can include a critical current density less than or equal to approximately 4.2 MA/cm2 at 77 K in the absence of an external magnetic field. In another embodiment, the REBCO superconductor tape can include a critical current density greater than or equal to approximately 12 MA/cm2 at approximately 30 K in a magnetic field of approximately 3 T having an orientation parallel to a c-axis.
US10818412B2
A communication cable that has a reduced diameter while ensuring a required magnitude of characteristic impedance. The communication cable contains a twisted pair that contains a pair of insulated wires twisted with each other and a sheath covering the twisted pair. Each of the insulated wires contains a conductor that has a tensile strength of 400 MPa or higher and an insulation coating that covers the conductor. A gap G is formed between the sheath and the insulated wires constituting the twisted pair. The communication cable has a characteristic impedance of 100±10 Ω.
US10818387B2
Providing selective, secure access to an aggregated, multidimensional data set comprising dose order records for generation of data analytics with respect thereto. The aggregated data may correspond to a plurality of unaffiliated facilities. As such, upon a user from a given facility attempting to access a data analytics tool may be identified in relation to a facility from which the user is accessing the tool. In turn, a data cube class definition from which all other data analytics data cubes inherit from may be used to, in conjunction with the user identification, limit the data used to generate data analytics outputs to source data to which the user has authorization to view. The outputs may include including, for example, reports, dashboards, tables, or the like.
US10818383B2
A database merger method (20) merges two or more anonymized healthcare databases (X, Y). Each anonymized healthcare database has personally identifying information anonymized including having medical care units replaced by medical care unit placeholders. In the database merger method, statistical patient feature distributions are computed for medical care unit placeholders in the anonymized healthcare databases. Medical care unit placeholders in different anonymized healthcare databases are matched by matching corresponding statistical patient feature distributions for the respective medical care unit placeholders. Patients in different anonymized healthcare databases are matched. The patient matching is performed within matched pairs of medical care unit placeholders to improve computational efficiency. A databases alignment table (16) is generated identifying the matched patients, or a merged anonymized healthcare database is generated that merges patient features in the different anonymized healthcare databases for each matched patient into a single patient entry.
US10818379B2
Systems, devices, media, methods, and kits are disclosed to integrate and exchange information of analyte analysis kits. Analyte analysis can be performed and presented using in association with advertising or questions.
US10818359B2
Systems, apparatuses, and methods related to organizing data to correspond to a matrix at a memory device are described. Data can be organized by circuitry coupled to an array of memory cells prior to the processing resources executing instructions on the data. The organization of data may thus occur on a memory device, rather than at an external processor. A controller coupled to the array of memory cells may direct the circuitry to organize the data in a matrix configuration to prepare the data for processing by the processing resources. The circuitry may be or include a column decode circuitry that organizes the data based on a command from the host associated with the processing resource. For example, data read in a prefetch operation may be selected to correspond to rows or columns of a matrix configuration.
US10818354B2
A semiconductor memory cell, semiconductor memory devices comprising a plurality of the semiconductor memory cells, and methods of using the semiconductor memory cell and devices are described. A semiconductor memory cell includes a substrate having a first conductivity type; a first region embedded in the substrate at a first location of the substrate and having a second conductivity type; a second region embedded in the substrate at a second location of the substrate and have the second conductivity type, such that at least a portion of the substrate having the first conductivity type is located between the first and second locations and functions as a floating body to store data in volatile memory; a trapping layer positioned in between the first and second locations and above a surface of the substrate; the trapping layer comprising first and second storage locations being configured to store data as nonvolatile memory independently of one another; and a control gate positioned above the trapping layer.
US10818334B2
A ferroelectric memory array includes (a) a driver circuit providing a first signal and a second signal; (b) word lines each providing a word line signal; and (c) memory array sections. Each memory array section may include: (a) bit lines; (b) plate line segments each associated with a corresponding one of the word line signals; (c) local plate line decoders, each local plate line decoder (i) being associated with one of the plate line segments, (ii) receiving the corresponding word line signal of the associated plate line segment, the first signal and the second signal, and (iii) providing predetermined voltages on the associated plate line segment according to the received word line signal, the first signal and the second signal; and (d) memory cells, each memory cells having one or more ferroelectric capacitor connected between one of the plate line segments and one of the bit lines. The predetermined voltages output from a local plate decoder may include a voltage of the word line signal, a power supply voltage, or one half the power supply voltage.
US10818331B2
A memory device comprises a memory bank comprising a plurality of memory addresses. The memory device further comprises a first level dynamic redundancy register comprising data storage elements and a pipeline bank coupled to the memory bank and the first level dynamic redundancy register, wherein the pipeline bank is configured to: (a) write a data word into the memory bank at a selected one of the plurality of memory addresses; (b) verify the data word written into the memory bank to determine whether the data word was successfully written by the write; and (c) responsive to a determination that the data word was not successfully written by the write, writing the data word into the first level dynamic redundancy register, wherein the memory bank is fabricated on a first die and further wherein the first level dynamic redundancy register is fabricated on a second die.
US10818329B2
A magnetic tunnel junction with out-of-plane magnetisation includes a storage layer; a reference layer; and a tunnel barrier layer. The two magnetisation states of the storage layer are separated by an energy barrier including a contribution due to the shape anisotropy of the storage layer and a contribution of interfacial origin for each interface of the storage layer. The storage layer has a thickness comprised between 0.8 and 8 times a characteristic dimension of a planar section of the tunnel junction. The contribution to the energy barrier due to the shape anisotropy of the storage layer is at least two times greater and preferably at least 4 times greater than the contributions to the energy barrier of interfacial origin.
US10818316B2
According to one embodiment, an actuator assembly includes a head actuator including an actuator block having a first surface, a second surface intersecting the first surface, and a first groove provided on the second surface, and a suspension assembly supporting a magnetic head and a wiring board including a plate arranged on the first surface, a flexible printed circuit board provided on the plate, and an IC chip provided on the flexible printed circuit board, wherein the plate comprises a first engaging portion engaging with the first groove.
US10818315B2
An apparatus according to one embodiment includes a magnetic head having at least two tunneling magnetoresistance sensors, where a resistance of a tunnel barrier of each of the tunneling magnetoresistance sensors of the magnetic head is about 25 ohms or less, a drive mechanism for passing a magnetic medium over the magnetic head, and a controller electrically coupled to the magnetic head. In addition, the controller includes a biasing circuit, where the biasing circuit restricts a maximum voltage drop across the tunnel barrier.
US10818310B2
Systems and methods to provide distortion sensing, prevention, and/or distortion-aware bass enhancement in audio systems can be implemented in a variety of applications. Sensing circuitry can generate statistics based on an input signal received for which an acoustic output is generated. In various embodiments, the statistics can be used such that a multi-notch filter can be used to provide input to a speaker to generate the acoustic output. In various embodiments, the statistics from the sensing circuitry can be provided to a bass parameter controller coupled to bass enhancement circuitry to operatively provide parameters to the bass enhancement circuitry. The bass enhancement circuitry can provide a bass enhanced signal for generation of the acoustic output, based on the parameters. Various combinations of a multi-notch filter and bass enhancement circuitry using statistics from sensing circuitry can be implemented to provide an enhanced acoustic output. Additional apparatus, systems, and methods are disclosed.
US10818309B2
An embodiment of the present invention provides an apparatus for noise canceling that includes: an input unit configured to receive an input voice signal; and one or more processors configured to perform a first noise cancellation using as input the received input voice signal to generate a first voice signal by cancelling noise from the input voice signal using a noise canceling model which is trained using a plurality of reference voice signals, perform a second noise cancellation using as input the first voice signal generated by the noise canceling model to generate a second voice signal in which residual noise is canceled from the first voice signal using statistical analysis, and generate an output voice signal comprising an encoding of the second voice signal.
US10818301B2
A decoder is provided. The decoder includes a parametric decoding unit for generating a plurality of first estimated audio object signals by upmixing three or more downmix signals, wherein the three or more downmix signals encode a plurality of original audio object signals, wherein the parametric decoding unit is configured to upmix the three or more downmix signals depending on parametric side information indicating information on the plurality of original audio object signals. Moreover, the decoder includes a residual processing unit for generating a plurality of second estimated audio object signals by modifying one or more of the first estimated audio object signals, wherein the residual processing unit is configured to modify the one or more of the first estimated audio object signals depending on one or more residual signals.
US10818297B2
A dialogue system, a vehicle and a method for controlling the vehicle is disclosed. The method for controlling the vehicle includes: acquiring an utterance and a speech pattern by recognizing a speech when a speech of a plurality of speakers is input through a speech input device; classifying dialogue contents for each speaker based on the acquired utterance and speech pattern; acquiring a relationship between the speakers based on the acquired utterance; understanding an intention and a context for each speaker based on the acquired relationship between the speakers and the acquired dialogue content for each speaker determining an action corresponding to the acquired relationship and the acquired intention and context for each speaker, and outputting an utterance corresponding to the determined action; generating a control command corresponding to the determined action; and controlling a load based on the generated control command.
US10818290B2
Example techniques involve a control hierarchy for a “smart” home having smart appliances and related devices, such as wireless illumination devices, home-automation devices (e.g., thermostats, door locks, etc.), and audio playback devices, among others. An example home includes various rooms in which smart devices might be located. Under the example control hierarchy described herein and referred to as “home graph,” a name of a room (e.g., “Kitchen”) may represent a smart device (or smart devices) within that room. In other words, from the perspective of a user, the smart devices within a room are that room. This hierarchy permits a user to refer to a smart device within a given room by way of the name of the room when controlling smart devices within the home using a voice user interface (VUI) or graphical user interface (GUI).
US10818289B2
An electronic device and method are disclosed herein. The electronic device includes a touchscreen, a wireless communication circuit, a microphone, a processor and memory storing instructions implementing the method, including: receiving a first user input including a request to perform a task, transmitting first data associated with the first user input to an external server, receiving a sequence of states executable to perform the task, detecting whether at least one first parameter is omitted from the first user input based on whether execution type information is received with the sequence of states, when the execution type information is received, displaying a graphical user interface (GUI) including at least one input field requesting input of the at least one first parameter, and when the execution type information is not received from the external server, executing a portion of the sequence of states to perform a portion of the task.
US10818286B2
A vehicle based system and method for receiving voice inputs and determining whether to perform a voice recognition analysis using in-vehicle resources or resources external to the vehicle.
US10818283B2
To assign an appropriate pronunciation to a word or phrase having a unique pronunciation or a word or phrase having a pronunciation incorrectly used by a user, a terminal device divides a first word or phrase indicated by a first recognition result acquired from a speech recognition server into morphemes and assigns a pronunciation to each of the morphemes, and divides a second word or phrase indicated by a second recognition result acquired from a speech recognition module into morphemes. Further, the terminal device selects, for a morpheme having the same character string as that of any one of the morphemes forming the second word or phrase among the morphemes forming the first word or phrase, a pronunciation of the morpheme indicated by the second recognition result.
US10818282B1
A system and method for providing aural guidance in imaging a document is disclosed. Visually impaired people may have difficulty when imaging a document with a mobile computing device. The system and method may analyze the image of the document in the imaging device, and output one or more aural directions in order for the user to move the document and/or camera for proper imaging of the document. In that regard, those with visual impairments may be assisted in imaging documents using a mobile computing device.
US10818278B2
A resonance signal generating method includes generating a first resonance signal of a first pitch circulating through first loop processing by inputting a first excitation signal to the first loop processing including first delay that delays the signal by a time corresponding to the first pitch and first attenuation that attenuates the signal, the first pitch being a pitch having a resonance frequency of a predetermined speaking length of a piano, generating a second resonance signal of a second pitch circulating through second loop processing by inputting a second excitation signal to the second loop processing including second delay that delays the signal by a time corresponding to the second pitch and second attenuation that attenuates the signal, the second pitch not being a pitch having a resonance frequency of any of speaking lengths of the piano or a pitch of a harmonic thereof but being higher than the first pitch, and outputting the first resonance signal circulating through the first loop processing and the second resonance signal circulating through the second loop processing.
US10818275B2
A method of treating an instrument string comprising the steps of: (a) securing both ends of the string, while the string is not on an instrument, to an apparatus that can apply tension to the string, the string having a longitudinal axis; (b) applying sufficient tension to the string with the apparatus along the longitudinal axis of the string to elongate the string by at least 0.3% without breaking the string; and (c) releasing at least part of the tension of step (b), wherein at least part of the elongation from step (b) remains.
US10818266B2
What is disclosed are systems and methods of compensation of images produced by active matrix light emitting diode device (AMOLED) and other emissive displays. Sub-sampling of pixel measurement data utilized in compensation of the display is utilized to reduce the data bandwidth between memory and a compensation module where the data is locally interpolated.
US10818257B2
Disclosed are embodiments of a narrow bezel display. The narrow bezel display has a structure in which output terminals of gate circuits are connected to jumping units through wires having a multistage path, thereby reducing the bezel size of a display. A dielectric layer may be disposed under the multistage path without placing another wire layer thereunder to prevent non-uniform capacitance between the wires and an underlying wire layer. Thus, a dimming phenomenon may be prevented during operation of the display or a short circuit may be prevented during an electrostatic test.
US10818250B2
A multi-layered intelligent display system includes a first LCD display panel; a second OLED display panel; a smart panel disposed behind the second display panel; an LED panel disposed between the second display panel and the smart panel; a sensor for detecting the ambient light behind the smart panel and activating the LED panel if the ambient light is below a predetermined illuminance; a memory having programming instructions stored thereon; and a controller in communication with the first and second display panels, the smart panel, and the memory. The multi-layered intelligent glass display is operable in each of a display mode, a multilayer display mode, and a transparent mode.
US10818248B2
A display panel is disclosed, which includes: a first substrate; a second substrate opposite to the first substrate; a liquid crystal layer disposed between the first and second substrate; a shielding pattern disposed on the second substrate and defining a first region and a second region, wherein a transmittance of the first region is larger than a transmittance of the second region; a first polymer layer disposed on a side of the first substrate facing to the second substrate; and a second polymer layer disposed on a side of the second substrate facing to the first substrate, wherein a roughness of a first area of the first polymer layer is different from a roughness of a second area of the second polymer layer, the second area overlaps with the first region, and the first area overlaps with a projection of the first region on the first polymer layer.
US10818234B2
A current sensing device and an organic light emitting display device including the same are disclosed. The current sensing device includes a sensing unit selectively connected to a pixel and a reference current source through a sensing line. The sensing unit includes a plurality of resistors connected to a first node and setting a divided voltage according to a pixel current input from the pixel and a reference current input from the reference current source, a first MOS transistor connected between the first node and a second node, a second MOS transistor diode-connected to the second node, and a comparator having an inverting input terminal connected to a third node, a non-inverting input terminal connected to a fourth node, comparing a reference voltage charged at the third node when the reference current is input and a pixel voltage charged at the fourth node when the pixel current is input, and outputting a comparison result.
US10818233B2
An organic light-emitting display device includes a display panel includes an active area in which a plurality of subpixels are arrayed, and a bezel area in which lines, through which a signal and a voltage to be supplied to the subpixels are transferred, are disposed, wherein each subpixels has a cathode and an anode; a data driver supplying a data signal to the subpixels; a gate driver supplying a data signal to the subpixels; a timing controller controlling the data driver and the gate driver; and a sensor package module having a portion that overlaps the active area.
US10818229B2
An organic light-emitting display apparatus including an organic light-emitting diode emitting visible light, a driving thin film transistor driving the organic light-emitting diode, and a compensation thin film transistor. The compensation thin film transistor includes a compensation gate electrode, a compensation semiconductor layer, a compensation source electrode, and a compensation drain electrode. The compensation gate electrode includes a first gate electrode, and a second gate electrode electrically connected to the first gate electrode. The compensation drain electrode is electrically connected to the driving gate electrode of the driving thin film transistor. The compensation semiconductor layer includes a first semiconductor region overlapping the first gate electrode and a second semiconductor region overlapping the second gate electrode and disposed further from the compensation drain electrode than the first semiconductor region, and an area of the first semiconductor region is different than an area of the second semiconductor region.
US10818226B2
Aspects of the present disclosure provide a pixel circuit, a method for driving the same, and a display apparatus. The pixel circuit comprises a display driving circuit. The display driving circuit comprises a reset sub-circuit, a writing sub-circuit, a driving sub-circuit, a light-emitting control sub-circuit, and a light-emitting device. The reset sub-circuit is configured to reset the driving sub-circuit. The writing sub-circuit is configured to write a data voltage into the driving sub-circuit. The light-emitting control sub-circuit is connected to the driving sub-circuit and an anode of the light-emitting device and is configured to provide driving current, through the driving sub-circuit, for causing the light-emitting device to emit light. The pixel circuit further comprises a detection circuit configured to collect incident light and output a collection result to the read signal line. One or more transistors are shared between the detection circuit and the display driving circuit.
US10818218B2
A display driver includes gradation voltage generation circuits; n DA converters configured to select and output a gradation voltage corresponding to pixel data, out of the gradation voltages generated by the gradation voltage generation circuit; n amplifiers configured to independently amplify n gradation voltages outputted from the DA converters, to generate n amplified gradation voltages; and a selector configured to output the n amplified gradation voltages from n output terminals, respectively, in a normal mode. In a power save mode, one of the gradation voltage generation circuits generates a gradation voltage, and the other gradation voltage generation circuits stop. In the power save mode, the selector outputs selected one of k amplified gradation voltages from k output terminals, and opens an output terminal of each amplifier, except for an amplifier for generating the one amplified gradation voltage, out of the k amplifiers configured to generate the k amplified gradation voltages.
US10818214B2
Provided is a display system for a vehicle. The display system includes a display device installed to be visually recognizable from the outside of a vehicle, and a control device configured to cause the display device to display state information of the vehicle. The control device receives a signal from a sensor that senses a distance from the vehicle to an object around the vehicle, and the control device changes display of the display device based on the distance.
US10818202B2
The disclosure discloses a method and apparatus for encrypting data, and a method and apparatus for decrypting data. The method for encrypting data includes: acquiring a to-be-encrypted data block; executing a first encryption on the to-be-encrypted data block to obtain a data ciphertext; executing a hash operation on the to-be-encrypted data block to obtain an index key; designating a last ciphertext block as a first target ciphertext block, and decrypting the first target ciphertext block to acquire an index value of the first target ciphertext block; executing a preset operation on the index value of the first target ciphertext block to obtain the index value of the to-be-encrypted data block, and executing a second encryption on the index value of the to-be-encrypted data block based on the index key to generate an index ciphertext; and combining the data ciphertext and the index ciphertext to generate a ciphertext block.
US10818201B2
Simulated tissue structures for practicing surgical techniques and methods of manufacturing those structures are provided. In particular, a realistic organ model or simulated tissue portion for practicing the removal of a tumor or other undesired tissue followed by suturing a remnant defect as part of the same surgical procedure is provided. The simulated tissue structures include a polyp simulation having a suturable mesh layer that is separable from a defect layer. A simulated colon model with interchangeable and suturable tissue pods is also provided as is a fully suturable rectum model and a rectum model with integrative suturable and removable polyp zones.
US10818196B2
A mechanical computing system configured to serve as an aid in learning fundamental aspects of coding. The mechanical computing system including a substrate having a flow path between an upstream portion and a downstream portion, and a plurality of repositionable programming members pivotably coupled to the substrate and configured to guide and interact with units dispensed along the flow path from the upstream portion to the downstream portion, wherein a first programming member is configured to pivot relative to the substrate upon interaction with a unit traversing along the flow path, and wherein a second programming member positioned upstream of the first programming member is configured to pivot relative to the substrate based on feedback from the first programming member.
US10818184B2
A close cut-in vehicle identification apparatus includes an information generator configured to generate sensor fusion information, estimated vehicle state information, and risk determination information based on surrounding vehicle information upon receiving the surrounding vehicle information, a feature combination generator configured to extract a plurality of features based on the sensor fusion information, the estimated vehicle state information, and the risk determination information and to combine the extracted features to generate a plurality of feature combinations, a classification learner configured to classify and learn the plurality of feature combinations depending on a weight factor, and a vehicle intention determination device configured to determine intention of a surrounding vehicle based on a classification learning result value to select an optimum feature combination corresponding to identification of the close cut-in vehicle and configured to determine a situation of the close cut-in vehicle based on the selected optimum feature combination.
US10818179B1
A wireless transmission system includes a server to receive a unique identifier associated with a parking space from a first receiving device. The server then generate an instruction to query a type of the unique identifier and transmit the instruction to the database. The server in response to determining that a parking space is occupied by the first receiving device, generate an instruction to modify a record within the database associated with the parking space as occupied. The server receive a query from a second receiving device about the availability of parking spaces, and generate an instruction to receive one or more unoccupied parking spaces. The server generates a graphical user interface including a census data where the census data may include the occupied parking spaces, unoccupied parking spaces, and number of occupants within the automobile. The server transmit the graphical user interface to the second receiving device.
US10818177B2
A control unit (3) determines whether a host vehicle has deviated from the lane of a scheduled travel route using information acquired by an information acquiring unit (2). A notification unit (4) notifies a driver of the host vehicle of the lane deviation of the host vehicle. A wireless communication unit (5) transmits lane deviation information indicating the lane deviation of the host vehicle to another vehicle.
US10818174B2
An output apparatus includes: an identifying unit that identifies a direction in which an occupant of a first vehicle is looking; a receiving unit that receives, from a second vehicle positioned in the direction identified by the identifying unit, information indicating whether or not the first vehicle is recognized by the second vehicle; and an output unit that outputs alert information to at least one alerting device among alerting devices attached to the first vehicle and the occupant of the first vehicle if the first vehicle is not recognized by the second vehicle.
US10818161B2
The invention relates to a method for assisting with the commissioning and/or maintenance of a fire alarm and/or extinguishing control center (12) comprising a central control unit (30), a plurality of functional modules (14a-14g) and at least one data interface (36). A display unit (40) is connected to the central control unit (30) by means of the data interface (36), and an information mode which can be activated and deactivated is respectively assigned to each of the functional modules (14a-14g). Information is respectively stored for each of the functional modules (14a-14g), wherein, by activating the information mode of a functional module (14a-14g), the stored information relating to that functional module (14a-14g) whose information mode has been activated is displayed using the display unit (40) or tablet computer (44). The invention also relates to a system for carrying out the method and to a functional module.
US10818160B2
A method for disseminating information regarding a problem and administering medical interventions comprises providing a mobile device wirelessly connectable to a network, receiving and storing contact information corresponding to a designated list of information recipients, receiving, via the mobile device and via the wireless trigger transmitting to the mobile device, a signal from a user indicating the problem, receiving, via the mobile device, information regarding the problem, transmitting an indication of the problem to a rescue clearinghouse via the network, prompting a participant of the rescue clearinghouse, different from the user, to make a decision about a course of action regarding the problem, and at least one of transmitting the information regarding the problem to the information recipients from the designated list and transmitting the information regarding the problem to a government rescue organization, based at least in part on the decision.
US10818156B2
The present disclosure includes embodiments of systems, methods, and computer readable media that enable a dynamic transportation system to detect when material has been left in a vehicle by a requestor. In some embodiments, the system detects the completion of the transportation request, analyzes data from a plurality of vehicle sensors, from a computing device associated with the vehicle, and from a computing device associated with the requestor, and then determines, based on the data analysis, that material has been left in the vehicle. The system then performs an action for handling the material based on one or more attributes of the material.
US10818152B2
A wearable device includes a first radio-frequency identification (RFID) tag, a second RFID tag, one or more feedback devices configured to provide feedback to a guest, and a microcontroller. The microcontroller is configured to generate a first control signal that causes a first type of feedback via the one or more feedback devices in response to interaction between electromagnetic radiation having a first frequency and the first RFID tag and to generate a second control signal that causes a second type of feedback via the one or more feedback devices in response to interaction between electromagnetic radiation having a second frequency and the second RFID tag.
US10818151B2
The present invention provides a vibration method applied to an electronic device having a vibration motor. The method includes the steps of: receiving a vibration instruction and obtaining an expected vibration effect from the vibration instruction; searching for a reference vibration effect matched with the expected vibration effect from a pre-stored vibration effect database; acquiring an effect data stream corresponding to the reference vibration effect; wherein the vibration effect database has an effect data flow which is customized according to hardware characteristic of the electronic device and corresponds to the reference vibration effect; and generating a driving signal according to the effect data flow for driving the vibration motor to vibrate. An electronic device and a computer readable storage medium are also provided.
US10818147B2
An assembled type sales terminal comprises: a flat panel sales terminal and a printer. The flat panel sales terminal includes: an operation display screen, disposed at one end of the flat panel sales terminal; an expansion assembling seat, disposed rotatably at the other end of the flat panel sales terminal, and connected thereto through using a hinge; and a first connection portion, disposed on a lower portion of the expansion assembling seat. The printer includes: a lift cover, having a paper roll placement port disposed thereon; a second connection portion, disposed on the printer, to work in cooperation with the first connection portion; and a placement plane, disposed at a lower portion of the printer. The flat panel sales terminal can be stacked on the printer to form into a body; or the former and the latter can be separated and juxtaposed side by side.
US10818143B2
A keno game includes a multiplier feature which is used to increase the payouts during the play of a keno game. This payout multiplier is determined by winning outcomes during a round of play and the payout multiplier is applied to the next round of play of the keno game.
US10818140B2
The present disclosure provides systems and processes for gaming. A gaming system consistent with the present disclosure provides a game feature involving multiple rounds. For the individual rounds of the game feature, the gaming system can display randomly determined combinations of game symbols at symbol display areas and determine awards corresponding to the winning combinations. Additionally, for the individual rounds of the game feature, the gaming system can display persistent game indicators at the symbol display areas. The game symbols may be replaced from round-to-round of the game feature. The persistent game indicators are held in the symbol display areas from round-to-round of the game feature such that the quantity of symbol display areas including the persistent game indicators accumulate during the game feature. After the last round of the game feature, the gaming system can evaluate the displayed persistent game indicators and determine whether the accumulated persistent game indicators correspond to a game award.
US10818129B2
Various implementations of a gaming system and method include generating and displaying a plurality of symbols, where at least some generated symbols are converted into different symbols when sandwiched between at least two columns containing the same or similar symbols. The gaming system may convert the sandwiched symbols into symbols that are the same or similar to the symbols in the at least two columns. The gaming system may evaluate the displayed symbols, including the converted sandwiched symbols, for winning symbol combinations and payout any determined awards.
US10818128B2
After determining that a player has won a base game, an electronic gaming machine may award one or more free instances of a game as a bonus game or a round of bonus games. If the EGM determines that a player has won a bonus game, the EGM may present a bonus wheel. The bonus wheel may be partitioned into segments, one of which corresponds to a top-level progressive award. Other segments may correspond to multipliers of an amount won in the bonus game. A player may have a chance to win the top-level progressive award during each spin of the bonus wheel, even if the player has already won the top-level progressive award during a prior spin of the bonus wheel during the same round of bonus games. The bonus wheel may be a “weighted” wheel.
US10818106B2
A system and method for pre-trip inspection of a tractor trailer are provided. The system includes a communications gateway configured for electronic communication with a vehicle control system of the tractor-trailer and a computing device configured for communication with the vehicle control system through the communications gateway. The device is configured to display an instruction to a user to perform a task of the pre-trip inspection and receive an input associated with the task from the user. The input is indicative of an operating characteristic of the tractor-trailer. The device may be further configured to determine whether the operating characteristic meets a predetermined condition. The device is further configured to transmit an instruction to the vehicle control system through the communications gateway when the operating characteristic does not meet the predetermined condition. The instruction establishes a restriction on operation of the tractor-trailer.
US10818104B2
A method deploys a remotely-maneuverable rolling platform from a faulty self-driving vehicle (SDV). The method detects a driving problem severity level for the faulty self-driving vehicle (SDV), where the driving problem severity level describes an amount of danger that is posed to other vehicles by the faulty SDV, and assesses environmental conditions at the location of the faulty SDV. The method determines an opportune position for deploying one or more road safety flares by the faulty SDV based on the environmental conditions at the location of the faulty SDV and the driving problem severity level, and then deploys a remotely-maneuverable rolling platform, from the faulty SDV to the opportune position, based on the amount of danger that is posed to the other vehicles by the faulty SDV, where the one or more road safety flares are coupled to the remotely-maneuverable rolling platform.
US10818103B2
An engine-mounted component life cycle data tracking system is provided. The system includes a plurality of RFID tags associated with, positioned proximate to, and configured to transmit and store identification, repair history, and dynamic data regarding a different engine component of a plurality of engine components, wherein the dynamic data includes engine usage, component usage, and/or component fault information. The system further includes an aircraft-mounted controller that includes non-transient computer readable storage media. The controller is configured to: store identification and repair history data retrieved from the RFID tags in the storage media; store dynamic data for the plurality of engine components in the storage media after each engine cycle; and transmit dynamic data to the RFID tags after each engine cycle for storage. After each engine cycle, the aircraft-mounted controller includes in its storage media the identification, repair history and dynamic data for the plurality of engine component.
US10818097B2
A user control apparatus has a laser emitter that emits a laser beam in a real-world environment. Further, the user control apparatus has an optical element that receives the laser beam and generates a plurality of laser beams such that a starting point and a plurality of endpoints, each corresponding to one of the plurality of laser beams, form a laser frustum. In addition, the user control apparatus has an image capture device that captures an image of a shape of the laser frustum based on a reflection of the plurality of laser beams from an object in the real-world environment so that a spatial position of the object in the real-world environment is determined for an augmented reality or virtual reality user experience.
US10818096B1
Systems and methods for conveying virtual content in an augmented reality environment comprising images of virtual content superimposed over physical objects and/or physical surroundings visible within a field of view of a user as if the images of the virtual content were present in the real world. Exemplary implementations may: obtain user information for a user associated with a presentation device physically present at a location of the system; compare the user information with the accessibility criteria for the virtual content to determine whether any portions of the virtual content are to be presented to the user based on the accessibility criteria and the user information for the user; and facilitate presentation of the virtual content to the user via presentation device of user based on the virtual content information, the field of view, and the correlations between the multiple linkage points and the reference frame of the virtual content.
US10818095B2
In one embodiment, a client system receives requests to display user interface elements in a virtual reality environment. The user interface elements being of the same type. The client system determines that the user interface elements include at least one user interface element generated by an operating system running on the client system. The client system determines that the user interface elements include at least one user interface element generated by a third-party application or based on third-party content. The client system displays the user interface elements with one or more predetermined indicators that allow a user to identify which of the user interface elements is generated by the operating system.
US10818092B2
Methods for disambiguation and tracking of two or more wireless hand-held controllers with passive optical and inertial tracking within a system having a head mounted virtual or augmented reality display device having a forward facing optical sensor having a field of view, and wherein the display device interfaces with wireless hand-held inertial controllers for providing user input to the display device, with each controller two passive optically reflective markers, one marker being position at or adjacent each end of the controller and being separated by a known distance, and each controller also including an onboard inertial measurement unit for providing inertial data corresponding to its orientation.
US10818091B2
A visualization system using mixed reality provides an “extended view” to the pilot or other crew of an aircraft. The extended view enables the user to visualize obstructed objects projected onto the real world scene viewed by the pilot using an optical the see-through display (OSTD) thus providing the user with greater situational awareness. A LIDAR point cloud model of the environment around the aircraft is generated from two or more laser scanning devices providing a 360 degree panoramic view. The combined point cloud model is aligned with the pilot's real world view based on the pilot's “pose” and projected onto the OSTD as an overlay so that the pilot sees the combined point cloud model in relation to the real world as seen by the pilot. One aspect of the invention is that the raw sensor data from the LIDAR devices is displayed on the actual real-world scene as a point cloud without any further image processing to enhance the user's perception.
US10818084B2
Using various embodiments, methods, and systems for implementing a dynamically customized three dimensional geospatial visualization techniques in a point cloud are disclosed. In one embodiment, a user's current area of interest can be determined to generate a dynamically customized three dimensional geospatial setting. In one embodiment, the area of interests can be determined based on a user's actions, behavior, and/or preferences. The geospatial (exterior or interior) settings or the content displayed within the settings can be dynamically customized in real time for each user.
US10818083B1
A depth-first walk of a tree structure is performed to populate nodes of the tree structure with corresponding merged tiles of a merged data pyramid to be generated during the walk from source tiles. At a first visit of a target node, a source tile from a first source data layer corresponding to the target is fetched and stored in memory as a first source-derived tile corresponding to the target. At a last visit of the target, a resampling on source-derived tiles from a second source data layer stored in memory corresponding to children nodes of the target node is performed to generate and store in memory a second source-derived tile corresponding to the target node. Also, at the last visit of the target, at least the first and second source-derived tiles are merged to generate a merged tile of the merged data pyramid corresponding to the target.
US10818079B2
Embodiments of the disclosure provide systems and method for rendering reflections. To add reflections to a pixel in an image, ray marching is used to attempt to find a ray intersection for primary reflections. When using rasterization to render a scene, objects outside the viewport are culled. As such, ray marching may fail in various situations, such as when a ray marched ray exits the viewport without intersecting any other object of the scene. In such a situation where ray marching fails, the ray can be re-cast as a ray traced ray. The ray traced ray is cast into the full 3D (three-dimensional) scene with all objects present (i.e., objects are not culled). Ray tracing is then used to attempt to find a ray intersection, i.e., for a primary reflection. The disclosed embodiments can be used in real-time or near-real time applications, such as video games.
US10818075B2
An electronic device includes a housing, a memory storing at least a piece of content and at least one application associated with an output of the content, a display exposed through one region of the housing and displaying the content, and a processor electrically connected to the memory and the display. The processor is configured to determine an attribute of at least part of the content, based on whether at least one specified condition is satisfied with respect to content selected by an input and, when it is determined that the attribute is associated with virtual reality (VR) content, to output the selected content based on execution of an application associated with an output of the VR content.
US10818070B2
Embodiments of the systems and methods described herein provide a virtual object aging system. The virtual object aging system can utilize artificial intelligence to modify virtual objects within a video game to age and/or deteriorate for a certain time period. The virtual object aging system can be used to determine erosion, melting ice, and/or other environmental effects on virtual objects within the game. The virtual object aging system can apply aging, rust, weathering, and/or other effects that cause persistent change to object meshes and textures.
US10818061B2
Systems, methods, and non-transitory computer-readable media can identify a virtual deformable geometric model to be animated in a real-time immersive environment. The virtual deformable geometric model comprises a virtual model mesh comprising a plurality of vertices, a plurality of edges, and a plurality of faces. The virtual model mesh is iteratively refined in one or more iterations to generate a refined mesh. Each iteration of the one or more iterations increases the number of vertices, the number of edges, and/or the number of faces. The refined mesh is presented during real-time animation of the virtual deformable geometric model within the real-time immersive environment.
US10818060B2
The system provides movement guidance to an actor using a motion capture movement reference system. The motion capture movement reference system includes a light strip having an elongated substrate with lights positioned in series along a length of the elongated substrate and a computing device configured to program the lights with an illumination protocol. Operationally, a user inputs into the computing device one or more variables to establish a number of lights to simultaneously activate and/or a rate of activating and deactivating the lights along the length of the elongated substrate. The light strip is programmed based upon the one or more variables. When the lights are activated and deactivated along the length of the elongated substrate, an actor chases the lights.
US10818058B1
The present disclosure relates to systems, methods, and non-transitory computer readable media for generating and providing an animated tutorial based on determining modifications made to a digital image. For example, the disclosed systems can determine modifications made to a digital image based on comparing an initial state of a digital image with a modified state of the digital image and/or based on analyzing an action history within a digital image editing application. The disclosed systems can generate an animated tutorial based on the determined modifications and can further generate a deep link that references the animated tutorial. In addition, the disclosed systems can provide the animated tutorial to a social networking system together with the deep link to cause devices to execute a digital image editing application and present the animated tutorial upon selection of the deep link.
US10818055B2
An object of the present disclosure is to provide a computer readable media including program instructions for displaying various contents in a superimposed manner in a region corresponding to a subject in a photographed image.An information processing apparatus obtains a photographed image by photographing a subject of an earth ball having a marker on a surface thereof. The information processing apparatus recognizes, based on the marker, the earth ball in the photographed image thus obtained. The information processing apparatus displays, on the recognized earth ball in the photographed image, a content image in such a manner as to cover the whole region of the earth ball.
US10818051B2
A pathway for each entity in a cohort may be extracted from raw data comprising a plurality of events. A common graph structure may be created based the extracted pathways. For each cohort, a relative signature trait may be computed for each edge based on a number of appearances of the edge in the extracted pathways that are associated with the cohort. A relationship expression may be obtained. The relationship expression may be with respect to at least two cohorts for which relative signature traits were computed. The common graph structure may be processed based on the relationship expression to determine an output label for each edge. A visualization of the common graph structure may be displayed.
US10818049B2
A system and method for reducing streak artifacts in a multiplanar reconstruction image are provided. The method may include: retrieving a first image volume from image data, the first image volume including multiple images, at least one of which includes a streak artifact including multiple streaks of a streak width along a first direction; determining a second image volume and a third image volume based on the first image volume; determining an initial error image volume based on the second image volume and the third image volume; determining a revised error image volume based on the initial error image volume; smoothing the revised error image volume to generate a final error image volume; correcting the first image volume according to the final error image volume; and, generating, based on the corrected first image volume, a corrected image volume.
US10818047B2
The disclosure includes a method for generating quantitative magnetic resonance (MR) images of an object under investigation. A first MR data set of the object under investigation is captured in an undersampled raw data space, wherein the object under investigation is captured in a plurality of 2D slices, in which the resolution in a slice plane of the slices is in each case higher than perpendicular to the slice plane, wherein the plurality of 2D slices are in each case shifted relative to one another by a distance which is smaller than the resolution perpendicular to the slice plane. Further MR raw data points of the first MR data set are reconstructed with the assistance of a model using a cost function which is minimized. The cost function takes account of the shift of the plurality of 2D slices perpendicular to the slice plane.
US10818046B2
Methods and devices for reconstructing a magnetic resonance image, and a non-transitory machine readable storage medium are provided. In an example, the method includes: obtaining a previous image; for each of channels, collecting k-space data of the channel by a partial sampling technology, generating original k-space data of the channel by mapping the previous image into k-space of the channel, and obtaining residue k-space data of the channel by subtracting the original k-space data of the channel from the k-space data of the channel; reconstructing a residue image with the residue k-space data of each of the channels by taking sparsity of the residue image as a constraint term and a difference between virtual residue k-space data of the channel and the residue k-space data of the channel as a data fidelity term; and obtaining a reconstructed magnetic resonance image by adding the residue image to the previous image.
US10818041B2
A mechanism is described for facilitating fabric-based compression and/or decompression of data at computing devices. A method of embodiments, as described herein, includes compressing contents of a data stream traveling through an internal fabric between a source component and a destination component, wherein the contents are compressed on the internal fabric.
US10818039B2
Embodiments of the present disclosure provide an image processing method, an image processing device, and a medical imaging device. The image processing method includes acquiring color image data, and generating grayscale image data based on the color image data. Luminance of a grayscale image represented by the grayscale image data is equivalent to luminance of a color image represented by the color image data. The image processing device includes an image acquisition unit configured to acquire color image data, and a processor configured to generate grayscale image data based on the color image data. The medical imaging device includes the image processing device described above, and a displayer configured to display an image according to the image data generated by the image processing device. Embodiments of the present disclosure may conveniently convert a color image into a grayscale image and improve display definition of the medical imaging device.
US10818038B2
Embodiments of the present disclosure techniques for modeling and capturing the dynamic appearance of skin. These techniques can couple dynamic reflectance parameters for skin (albedo and specular reflectance) with dynamic geometry. The disclosed techniques allow for capture and modeling of the dynamic appearance of skin for an actor. The techniques can re-render the actor's face accurately to accurately model the appearance of skin including the albedo of skin that can change primarily due to blood flow. The techniques can also re-render the actor's face accurately under multiple different lighting conditions.
US10818029B2
This present disclosure relates to systems and processes for capturing an unstructured light field in a plurality of images. In particular embodiments, a plurality of keypoints are identified on a first keyframe in a plurality of captured images. A first convex hull is computed from all keypoints in the first keyframe and merged with previous convex hulls corresponding to previous keyframes to form a convex hull union. Each keypoint is tracked from the first keyframe to a second image. The second image is adjusted to compensate for camera rotation during capture, and a second convex hull is computed from all keypoints in the second image. If the overlapping region between the second convex hull and the convex hull union is equal to, or less than, a predetermined size, the second image is designated as a new keyframe, and the convex hull union is augmented with the second convex hull.
US10818026B2
Systems and methods for hybrid depth regularization in accordance with various embodiments of the invention are disclosed. In one embodiment of the invention, a depth sensing system comprises a plurality of cameras; a processor; and a memory containing an image processing application. The image processing application may direct the processor to obtain image data for a plurality of images from multiple viewpoints, the image data comprising a reference image and at least one alternate view image; generate a raw depth map using a first depth estimation process, and a confidence map; and generate a regularized depth map. The regularized depth map may be generated by computing a secondary depth map using a second different depth estimation process; and computing a composite depth map by selecting depth estimates from the raw depth map and the secondary depth map based on the confidence map.
US10818020B2
The present invention generally relates to an apparatus and a method for obtaining a registration error map representing a level of sharpness of an image. Many methods are known which allow determining the position of a camera with respect to an object, based on the knowledge of a 3D model of the object and the intrinsic parameters of the camera. However, regardless of the visual servoing technique used, there is no control in the image space and the object may get out of the camera field of view during servoing. It is proposed to obtain a registration error map relating to an image of the object of interest generated by computing an intersection of a re-focusing surface obtained from a 3D model of said object of interest and a focal stack based on acquired four-dimensional light-field data relating to said object of interest.
US10818015B2
A method and system for selecting a region of interest (ROI) in a tissue or groups of cells, in which one or more of the steps can be automated. In various exemplary embodiments, the method and system can be fully-automated. In various exemplary embodiments, the method and system can be applied to centrosome analysis with excellent accuracy and precision. Centrosome analysis is an important tool in very early cancer diagnosis and cancer prognosis.
US10818014B2
A temporal object segmentation system determines a location of an object depicted in a video. In some cases, the temporal object segmentation system determines the object's location in a particular frame of the video based on information indicating a previous location of the object in a previous video frame. For example, an encoder neural network in the temporal object segmentation system extracts features describing image attributes of a video frame. A convolutional long-short term memory neural network determines the location of the object in the frame, based on the extracted image attributes and information indicating a previous location in a previous frame. A decoder neural network generates an image mask indicating the object's location in the frame. In some cases, a video editing system receives multiple generated masks for a video, and modifies one or more video frames based on the locations indicated by the masks.
US10818009B2
A method and a system for image reconstruction are provided. The method may include acquiring raw image data, wherein the raw image data may include a plurality of frequency domain undersampled image data samples. The method may include generating a first reconstruction result based on the raw image data using a first reconstruction method, and generating a second reconstruction result based on the raw image data using a second reconstruction method. The method may further include fusing the first reconstruction result and the second reconstruction result, and generating a reconstructed image based on a result of the fusion.
US10818006B2
A commodity monitoring device includes: an image acquisition unit (51) that sequentially acquires a sales floor image with the lapse of time; a shortage state detector (52) that detects a shortage state of commodities displayed on a sales floor based on the sales floor image, every time the image acquisition unit acquires the sales floor image; a duration acquisition unit (53) that acquires duration of the shortage state in a case where the shortage state of the commodities is detected by the shortage state detector; and a screen generator (54) that generates a state display image whose display form changes according to a length of the duration based on an output result of the duration acquisition unit to generate a monitoring screen including an image area in which the state display image is superimposed on the sales floor image.
US10817999B2
A metrology system includes a controller coupled to a detector to image a sample based on the light captured by an objective lens, where an object plane of the detector with respect to the sample is adjustable. The controller may direct the detector to generate reference images of an overlay target on the sample at multiple object planes including at least a first reference image at a first sample layer and a second reference image at a second sample layer. The controller may further determine a reference overlay between the first layer and the second layer at the overlay target based on the first reference image and the second reference image. The controller may further select a measurement object plane for single-image overlay determination that corresponds to the reference overlay within a selected tolerance. The controller may further determine overlay for additional overlay targets at the measurement plane.
US10817995B2
Provided are an image processing device, an image processing system, an image processing method, and an imaging optical system group capable of suppressing an increase in costs and appropriately restoring an image. In the imaging optical system, in a case where a first MTF curve M1 indicating an MTF value in a first azimuth direction with respect to an amount of defocus from a focal position is compared with a second MTF curve M2 indicating an MTF value in a second azimuth direction with respect to the amount of defocus from the focal position, a ratio of a peak value P1 of the first MTF curve M1 to a peak value P2 of the second MTF curve M2 is equal to or greater than 2, and a ratio of a half-value width HW2 of the second MTF curve M2 to a half-value width HW1 of the first MTF curve M1 is equal to or greater than 1.25. The restoration filter is a common filter corresponding to a representative value of transfer functions in a plurality of same type imaging optical systems.
US10817990B1
Provided are methods and apparatus related to Artificial Intelligence (AI) downscaling and upscaling and techniques related to reducing artifact problems. Some embodiments include down-scaling an original image through a Deep Neural Network (DNN); generating, from the original image and based on frequency transform coefficients, artifact information representing a region in the first image including an artifact in the first image. Post-processing may be performed based on the artifact information to change pixels in the first image, thus reducing the effect of artifacts.
US10817988B2
A terminal for receiving streaming data may receive information of a plurality of different quality versions of an image content; request, based on the information, a server for a version of the image content from among the plurality of different quality versions of the image content; when the requested version of the image content and artificial intelligence (AI) data corresponding to the requested version of the image content are received, determines whether to perform AI upscaling on the received version of the image content, based on the AI data; and based on a result of the determining whether to perform AI upscaling, performs AI upscaling on the received version of the image content through a upscaling deep neural network (DNN) that is trained jointly with a downscaling DNN of the server.
US10817987B2
A terminal for receiving streaming data may receive information of a plurality of different quality versions of an image content; request, based on the information, a server for a version of the image content from among the plurality of different quality versions of the image content; when the requested version of the image content and artificial intelligence (AI) data corresponding to the requested version of the image content are received, determines whether to perform AI upscaling on the received version of the image content, based on the AI data; and based on a result of the determining whether to perform AI upscaling, performs AI upscaling on the received version of the image content through a upscaling deep neural network (DNN) that is trained jointly with a downscaling DNN of the server.
US10817981B1
An online system is configured to provide content items to users. The content item includes an image, and is displayed with an interface element colored using an accent color to create a unified look and feel with the displayed image. The accent color is dynamically selected based upon the image, extracted color features of the image, and embeddings associated with the image indicating at least one object depicted in the image. A machine-trained classification model selects the color to be used in displaying the interface element from a quantized set of colors of the image, based upon the extracted color features and the embeddings associated with the image. As such, suitable accent colors can be selected automatically for large numbers of content items, in a flexible manner that can account for the context of the images and the context in which the content item is to be displayed.
US10817980B2
An information processing apparatus, an information processing system, a data generation method, and a recording medium storing program code. The information processing apparatus and data generation method include displaying a spherical image obtained by an imaging apparatus, reproducing three-dimensional audio data obtained by the imaging apparatus in association with the spherical image, accepting designation of a displaying direction on the spherical image, generating two-dimensional image data that corresponds to the displaying direction, based on data of the spherical image, and generating two-dimensional audio data that corresponds to the displaying direction, from the three-dimensional audio data. The information processing system includes the information processing, and an image processing server connected to the information processing apparatus through a communication network. The image processing server generates two-dimensional audio data that corresponds to the displaying direction, based on the three-dimensional audio data.
US10817978B2
Apparatus and methods for the stitch zone calculation of a generated projection of a spherical image. In one embodiment, a computing device is disclosed which includes logic configured to: obtain a plurality of images; map the plurality of images onto a spherical image; re-orient the spherical image in accordance with a desired stitch line and a desired projection for the desired stitch line; and map the spherical image to the desired projection having the desired stitch line. In a variant, the desired stitch line is mapped onto an optimal stitch zone, the optimal stitch zone characterized as a set of points that defines a single line on the desired projection in which the set of points along the desired projection lie closest to the spherical image in a mean square sense.
US10817969B2
A method includes receiving a corresponding location and corresponding device activity information of user devices and selecting a subset of the user devices that are within a threshold distance of each other. The method further includes, responsive to determining that a cumulative likelihood value of at least one of the subset of the user devices transmitting a transportation request is higher than a threshold likelihood value, determining a first location based on the corresponding location and the corresponding device activity information of each of the subset of the user devices. The method further includes transmitting navigation instructions to a driver device to cause the driver device to navigate towards the first location.
US10817962B2
A farm field management apparatus: in generation of each task plan candidate, selects at least one task that includes harvest task, selects, a resource that is used to carry out each selected task, determines a task time within a predetermined period in which each selected task is carried out, includes the selected task, the selected resource, and the determined task time in each task plan candidate; obtains; information about a harvest impeding factor that is predicted for a harvest time of each task plan candidate; calculate an income from a harvest of each task plan candidate, based on a relevant piece of the harvest impeding factor information, and on the quantity and unit price of each crop; and calculates task cost of each task plan candidate based on a resource utilization period of the resource included in each task plan candidate, and on the utilization cost.
US10817957B2
A system and method to detect changes in transaction parameters for the identification of a store of the merchant in a payment processing network. The system is configured to monitor input data, such as acquirer's merchant master file (AMMF), transaction records, to detect transaction parameters of a processing entity that partially match with the transaction parameters associated with an external, persistent identifier of the merchant and/or the store of the merchant, determine a change or difference introduced in the detect transaction parameters, and update the set of transaction parameters associated with the persistent identifier of the store of the merchant that can be used to identify the set of transaction parameters of the store in a communication external to the communication system of the payment processing network.
US10817955B2
A system provides on a graphical user interface user-selectable options corresponding to a first type and a second type of enhanced coverage options, available for a covered property, each of the enhanced coverage options providing one or more improvements to a property covered under a property insurance policy, in accordance with universal design principles, in the event of an incurred loss to the covered property. Responsive to user selection of a type, alternating images including an image of a damaged property and an image of the damaged property after repair and an improvement in accordance with universal design principles corresponding to the selected type of enhanced coverage option, are displayed.
US10817947B2
An exemplary system according to the present disclosure comprises a computing device that in operation, causes the system to receive financial product or financial portfolio data, map the financial product to a risk factor, execute a risk factor simulation process involving the risk factor, generate product profit and loss values for the financial product or portfolio profit and loss values for the financial portfolio based on the risk factor simulation process, and determine an initial margin for the financial product. The risk factor simulation process can be a filtered historical simulation process.
US10817946B2
A system for facilitating freight transactions that includes a secure portal for receiving users' (carriers, forwarders, shippers, and market makers) data that includes orders and capacity postings between destinations. The system also includes a back-end modules configured for collecting capacity/shipping volume data to generate forecast data, managing derivative contracts, determining best possible routing, given the orders and capacity postings, breaking the best possible routing into component segments that is then traded as derivative contracts, providing report, managing settlement and clearinghouse functions, and receiving risk assessment about the forecast data. The system further includes an interface layer for facilitating communications between the portal and the back-end modules. The system moreover includes a contract and capacity management module configured for enabling the carriers and the forwarders to strategically position their capacity. The system yet also includes a real time integration layer configured for enabling a external systems to interact with the system.
US10817943B2
Systems and methods are described for aggregating and filling Volume Attentive Trade (VAT) orders using a VAT Liquidity Builder. As described, in various aspects a first grouping of VAT orders may be aggregated by the VAT Liquidity Builder. A second grouping of VAT orders may also be aggregated by the VAT Liquidity Builder. Each of the VAT orders for the first and second groups may each include a set of VAT rules that define a limit price, a share quantity and a VAT delta. The VAT Liquidity Builder may then generate an effective limit price for each of the first group of VAT orders using the corresponding limit prices and VAT deltas, and generate an execution command to fill a particular VAT order having the largest share quantity from the second group of VAT orders with one or more qualifying VAT orders from the first group.
US10817937B1
A system and method for internal matching of electronic trading orders is provided. Orders for electronic trading are reviewed for potential matches in an internal order book of an internal matching system. If no potential matches are available, the order is listed on both the internal order book for the internal matching system and on the book of orders for the electronic exchange. If a potential match is available, the order is tentatively matched with a resting order on the internal order book. A message is sent to the electronic exchange to cancel the resting order on the book of exchange order book. If the deletion is successful, the order and the resting order are matched. If the deletion is unsuccessful, the internal order book on the internal matching system is checked again for a potential match.
US10817932B2
A system and method for dynamically discounting trade debt through the use of a forward auction is provided. In one example, a system that allows a seller to auction inventory to a plurality of bidders. According to this embodiment, the system may determine eligibility for acceptance of bids submitted by the bidders and a plurality of bids may be determined to be eligible for acceptance. Further, a margin by which the bids are acceptable may be determined and a representation of the margin may be communicated. In another example, a method is provided for discounting debt using an auction system. According to this embodiment, a seller may configure an auction event with auction parameters, such as hurdle rates, that will best serve the goals of the auction. The seller may alter event parameters while the event is ongoing, thus further enhancing the ability of the seller to meet auction objectives.
US10817921B2
Systems and methods are provided for customizing consumer products. A display device may present a rendering of a customizable product to a user. The display device may also present a set of customizations on a scrollable axis. An input interface such as a touch interface may receive a selection of at least one customization from the user, and the rendering of the product may be updated to display the customizations selected by the user. An electronic file may be generated that includes product manufacturing details, which indicate the customizations selected by the user. The product may be an article of footwear, and a printer may print the selected customizations on the article of footwear.
US10817920B2
A system and method for managing selection of a prescription drug plan, based on generating a request for proposal (RFP), submitting the RFP to prescription benefit management (PBM) vendors, receiving bids from PBM vendors, and calculating weighted scores of the bids to determine total score for the plan.
US10817918B2
A system for creating custom fragrances is described that allows a customer to interact with an employee and a Perfumer's Organ to interactively select several scents for base, middle and top notes. They can then iteratively adjust the scents chosen. In one embodiment, the scents selected by a customer are provided to a computing device having a prestored table which separates the scents into variable potency scents having variable perceived strengths and normal potency scents having standard, equal perceived strengths. The table indicates the amount of each variable potency scent to use to normalize the strengths. The remaining normal potency scents are then added with an equal amount. In an alternative embodiment, predetermined mixtures are provided to the computing device and used as ‘training data’ to adjust the coefficients of a generalized formula to create a prediction equation fit to the training data. The computing device receives the selected scents, the type of product to be made and the container size and uses the prediction equation to identify the amounts of each of the selected scents. In another optional embodiment, a filling device can automatically meter the scent liquids, a filling material, and provide them into the selected container. The filling device is driven by the computing device and determines the amounts of the selected scents and creates the custom fragrance according to one of the methods above.
US10817916B2
Methods and apparatus for client-selectable power source options for network-accessible service units are described. A programmatic interface is implemented to enable clients of a service to select, from among a plurality of power source categories including a renewable category and a non-renewable category, a power source category to be used for a service unit. Based on inputs received via the interface, the respective amounts of power to be obtained from renewable and non-renewable categories during a time period may be estimated. A verification operation comparing the estimated amounts to the amount of power that is actually obtained from the different sources may be performed.
US10817913B2
A server-side technique to detect and mitigate client-side content filtering, such as ad blocking. In operation, the technique operates on a server-side of a client-server communication path to provide real-time detect the existence of a client filter (e.g., an ad blocker plug-in) through transparent request exchanges, and then to mitigate (defeat) that filter through one or operations designed to modify the HTML response body or otherwise obscure URLs. Preferably, the publisher (the CDN customer) defines one or more criteria of the page resources being served by the overlay (CDN) and that need to be protected against the client-side filtering.
US10817911B2
A computer receives a request for graphical display source code for a computerized graphical advertisement display. The computer retrieves one or more seed layout descriptions, each seed layout description specifying associated constrained layout characteristics, and generates candidate layout descriptions based on at least the seed layout descriptions, each candidate layout description specifying associated constrained layout characteristics, where one or more of the candidate layout descriptions are generated by the computer altering one or more associated constrained layout characteristics of a seed layout description. The computer generates layout scores, each layout score associated with a candidate layout description. The computer selects a selected layout description from the candidate layout descriptions based on the layout scores. The computer generates the graphical display source code based on the selected layout description, a size of the computerized graphical advertisement display, and display capabilities of a user device.
US10817909B2
A method of operating a health tracking system includes utilizing user profile data for a user and health parameter data received from a health tracking device associated with the user to derive parameters relating to the user. The parameters are compared to tags associated with content pages or objects to determine a relevancy or match. Particular ones of a plurality of content pages or objects are selected for delivery to the user based on the comparison.
US10817907B2
A digital advertisement display stand comprising a product display unit having multiple spaces for supporting, displaying, and advertising goods and services, at least one static display located on the product display unit, at least one live action monitor located on the product display unit with the live action monitor having a touch screen, a central processing unit located in the live action monitor, a memory storage unit connected to the central processing unit, and a long distance wireless data transmission device connected to the central processing unit and at least one offsite control center in wireless communication with the long distance wireless data transmission device of the live action monitor.
US10817900B2
According to a first aspect of the invention, a computer-implemented method for determining an effectiveness of an electronic advertisement received at a user device is provided, the method including, at a server: receiving a notification message in response to the electronic advertisement being downloaded; generating a unique identifier and a time stamp in response to the download of the electronic advertisement, the unique identifier identifying the user device, and the time stamp identifying a time at which the electronic advertisement is downloaded; and receiving transaction data relating to a transaction initiated by the user using the downloaded electronic advertisement, the transaction data indicating the electronic advertisement has been used and including the unique identifier and the time stamp; determining the effectiveness of the electronic advertisement based on the transaction data and a relevance score of the user, the relevance score indicating the relevance of the electronic advertisement to the user.
US10817890B2
A motivational system computer platform may retrieve a current motivational rule set (e.g., a program's motivational mechanism) from a motivational rule set data store. The system may then arrange to execute the program such that inputs from a remote user device are applied to the current motivational rule set resulting in current motivational feedback that is stored into a current motivational feedback data store and transmitted to the user device. The motivational system computer platform may also retrieve a shadow motivational rule set from the motivational rule set data store. The system may then arrange to execute the program such that inputs from the user device are also applied to the shadow motivational rule set, in parallel with the current motivational rule set, resulting in shadow motivational feedback that is stored into a shadow motivational feedback data store without being transmitted to the user device.
US10817886B2
A method, apparatus and computer program product are provided for identifying a service need via a promotional system, and offering the service need to a third party. Promotions may be offered via a promotional system for a consumer to purchase in exchange for a discounted product or service from a provider. Demand information, which may be collected based on promotions and/or other sources. A residual demand may be calculated based on the demand information and available inventory. The residual demand may be utilized to identify a service need. The service need may be identified in a geographic area having a similar demographic to a geographic area having an associated successful promotion. A service need may be provided to a third party or provider, and may indicate the need for a new business or expansion of a current business.
US10817880B2
Computer implemented systems and methods are disclosed involving technological advancements in the processing of electronic transaction processing. A system may comprise a networked environment including heterogeneous or homogenous payment processing systems. A centrally accessible server machine storing an automatic savings program module and rules controls the generation and dissemination of new transactions derived from incoming transactions. Moreover, the networked system may be used to control authorization of electronic transactions in a near real-time manner. The networked system may be used to distribute a financial health of a user in a user-friendly, mobile form factor.
US10817879B2
A device may obtain a notification that a transaction occurred, where the transaction is associated with a financial account of a user, and a merchant. The device may determine that the merchant is associated with providing confirmation messages for transactions, and may process, based on determining that the merchant is associated with providing confirmation messages, one or more messages in a messaging account associated with the user to determine whether the messaging account includes a confirmation message associated with the transaction. The device may determine that the messaging account does not include any confirmation message associated with the transaction, may determine a likelihood that the transaction was unauthorized based on the messaging account not including a confirmation message, and may perform an action associated with the financial account of the user based on the likelihood that the transaction was unauthorized.
US10817864B2
A sales data processing apparatus includes a sending control section and a printing control section. The sending control section performs control to send, to a predetermined terminal apparatus, sales data obtained by aggregating predetermined transaction data. The printing control section performs control to print, together with the sales data, sending result information indicating whether or not the sales data has been sent.
US10817863B1
A method of processing payments in a location-based sales venue such as a restaurant. Each customer location has a physical identity target attached in proximity thereto comprising a unique system-wide identifier readable by mobile customer devices. Targets might be visually readable, using QR codes or the like, or might be a short range radio beacon broadcasting the identifier (NFC, RFID etc.)—they do not contain human-readable location indication information. The identifiers associated with the targets do not contain location- or venue-specific information, and are recorded in relation to location records corresponding to individual customer locations in the venue in a location database held on a server. On reading of a target by a customer device and a related location transmission to the server, the server can associate the transmission with its related customer location in the venue-associated POS system, facilitate a payment transaction for the amount owing at the selected customer location through a transaction gateway, and provide a transaction completion indication to the POS system. The method allows for enhanced velocity in deployment and Maintenance of location targets, and enables mobile device-based payment in venues previously not offering same. Systems and software are also disclosed.
US10817857B2
A networking system for transmitting a data message from one or more remote client devices to a central processing hub is provided. The system includes a plurality of communications networks each connecting the central processing hub with the one or more remote client devices. The plurality of communications networks includes at least two separate communications networks. The system also includes at least one interface processor and a communication routing (CR) computing device connected to each of the communications networks. The CR computing device is configured to receive a data message from the one or more remote client devices, and direct the data message to one of the communications networks for transmission to the central processing hub. The data message is a payment transaction data message.
US10817853B1
In one embodiment, a method includes receiving a request for payment associated with a transaction between a merchant and a customer, where a payment amount is specified in a fiat currency, determining a preference of the customer to pay for the transaction using a security asset, and verifying that a value of the security asset held by the payment system and assigned to the customer is sufficient to satisfy the payment amount. The method also includes initiating a transfer of at least a portion of the value of the security asset from a customer balance of the customer to a service balance of the payment service, initiating a transfer of a value in the fiat currency from the service balance of the payment service to a merchant balance of the merchant, and storing a record of the transaction between the customer and the merchant.
US10817852B2
Embodiments of the present invention provide a system for executing, securing, and non-repudiation of pooled conditional smart contracts over a distributed blockchain network. In particular, the system may receive an instrument request from a beneficiary entity, where the instrument request includes an instrument amount. The system can then identify a lead contribution amount that a lead entity is willing to provide to meet a portion of the instrument amount. A set of supporting entities can be identified as willing to provide supporting contribution amounts to meet the remainder of the instrument amount. A conditional contract can be sent to each supporting entity that, when signed, authorizes the system to transfer contribution amounts, which may be in the form of cryptocurrency, from blockchain addresses of the lead and supporting entities to a blockchain address of the beneficiary entity. Once the instrument amount has been secured, the system executes the transactions.
US10817850B2
A system is disclosed for managing services at a customer location. The system may have at least one offboard utility meter, a communication device, and a controller in communication with the at least one offboard utility meter via the communication device. The controller may be configured to receive information from the at least one offboard utility meter during a waste service activity at the customer location by a waste service vehicle and to determine based on the information from the at least one offboard utility meter a fee associated with at least one utility service provided at the customer location. The controller may also be configured to generate at least one invoice for the waste service activity and for the fee associated with the at least one utility service.
US10817847B2
A computer-implemented method for effective electronic meeting rescheduling under which time information for a meeting information is received. Invitees to the meeting is identified. An earliest counter time slot for the said meeting is identified. A first set of metadata for the earliest counter time slot is created. A latest counter time slot for said meeting is identified. A second set of metadata for the latest counter time slot is created. Furthermore, the first and second set of metadata to the invitees are sent.
US10817845B2
This disclosure involves modifying messaging data having unknown attribute values associated with entities to facilitate retrieval of address data for communications with the entities. For example, a system accesses a mapping of first addresses to an attribute, wherein the first addresses include (1) a target address for a target entity and (2) addresses associated with first entities in turn associated with first known values of the attribute. The system accesses a mapping of second addresses to an attribute, wherein the second addresses include (1) the target address for the target entity and (2) addresses associated with second entities in turn associated with second known values of the attribute. The system determines distributions of the first known values and the second known values, predicts a value of the attribute for the target entity based thereon, updates the messaging data therewith, and services a query for addresses having the predicted value.
US10817829B2
A method for executing a smart recall of a plurality of manufactured units is provided. The method may include, inter alia, using a database architecture to administer a supply chain for the units, assigning each component of the units a distributed ledger (blockchain) identification (ID), and additional pieces of information such as a serial number of the component, a date of manufacture of the component, a location of manufacture of the component, an ID associated with the source of the component, and/or the ID(s) of one or more subcomponent unit(s) of the component. The assigned information is stored in the database architecture. The method may also include generating a private database supplier key and a manufacturer key. The method further includes: transmitting a notice to downstream manufacturers, transmitting a notice to a regulatory agency to implement safety procedures and/or unit and transmitting a recall notice.
US10817824B2
A parcel box includes a weather resistant housing, a temperature control system, a communication module, and electrical circuitry. The weather resistant housing includes a lockable door for providing access to a protected cavity configured for receiving a parcel for temporary secure storage of the parcel. The temperature control system selectively controls a temperature inside the protected cavity. The communication module receives delivery data including an estimated delivery time for the parcel. The electrical circuitry operates the temperature control system to adjust the temperature of the protected cavity to within a preferred temperature range prior to the estimated delivery time of the parcel and maintains the temperature for at least a specified period of time.
US10817823B2
A method and device for generating data services from heterogeneous systems is disclosed. The method includes generating an asset data model for a parent asset based on at least one data attribute associated with the parent asset. The method further includes populating the asset data model with at least one sub-asset associated with each of the at least one data attribute and at least one event associated with the at least one sub-asset and the at least one data attribute. The method includes creating a plurality of role hierarchies across multiple organizations associated with the parent asset. The method further includes associating a plurality of stakeholders with each of the plurality of role hierarchies. The method includes associating data contracts with each of the plurality of stakeholders and each of the at least one sub-asset based on the plurality of role hierarchies and the asset data model.
US10817819B2
A method includes compiling a workflow that is defined in a high-level flow language to generate a plurality of execution units that are executable so as to execute the workflow.
US10817807B2
In responsive to receiving a user interaction with a map graphical user interface (GUI) of a client device, the system identifies an origin, and determines a map zoom level and map position based on the interaction. The system identifies and ranks candidate destinations for the origin. The system automatically selects destinations from the ranked candidates for inclusion in the map based on the zoom level and the position. Each selected destination for which a destination location indicator would be obscured in the map by an indicator of a higher ranked destination is automatically determined by the system. The system then deselects each destination for which a location indicator has been determined to be obscured by an indicator of a higher ranked destination, forming a revised set of destinations. The system transmits instructions to display a location indicator for each destination in the revised set to the client device.
US10817805B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for learning a data augmentation policy for training a machine learning model. In one aspect, a method includes: receiving training data for training a machine learning model to perform a particular machine learning task; determining multiple data augmentation policies, comprising, at each of multiple time steps: generating a current data augmentation policy based on quality measures of data augmentation policies generated at previous time steps; training a machine learning model on the training data using the current data augmentation policy; and determining a quality measure of the current data augmentation policy using the machine learning model after it has been trained using the current data augmentation policy; and selecting a final data augmentation policy based on the quality measures of the determined data augmentation policies.
US10817803B2
Techniques are described for applying what-f analytics to simulate performance of computing resources in cloud and other computing environments. In one or more embodiments, a plurality of time-series datasets are received including time-series datasets representing a plurality of demands on a resource and datasets representing performance metrics for a resource. Based on the datasets at least one demand propagation model and at least one resource prediction model are trained. Responsive to receiving an adjustment to a first set of one or more values associated with a first demand: (a) a second adjustment is generated for a second set of one or more values associated with a second demand; and (b) a third adjustment is generated for a third set of one or more values that is associated with the resource performance metric.
US10817801B2
A method for modeling a system that includes a disturbance rejection model configured for modeling an operation of the system so to generate a predicted value for a system output. The disturbance rejection model having a network for mapping system inputs to the system output, and input-output pairings, each representing a unique pairing of one of the system inputs with the system output. The method may include the steps of: calculating a confidence metric for a selected input-output pairing of the disturbance rejection model; and recommending a modification be made to the disturbance rejection model based upon the confidence metric calculated for the selected one of the input-output pairing. The confidence metric may indicate a probability that a predicted sign of a gain in the system output made by the disturbance rejection model is correct when the system input of the selected input-output pairing is varied.
US10817792B2
The invention relates to a method of delivering content to a device, comprising: receiving a prediction of a context of the device; determining a communication profile for the device based on the predicted context; receiving an identification of content to be transferred to the device; and planning a data transfer to the device in dependence on the communication profile of the predicted context and the identified content. Adjusting data transfer in a vehicle based on download volume forecast.
US10817784B2
System and methods for machine learning are described. A first input value is obtained. A second input value is also obtained. A decision to use for generating a cycle output is selected based on a randomness factor. The decision is at least one of a random decision or a best decision from a previous cycle. A cycle output for the first and second inputs is generated using the selected decision. The selected decision and the resulting cycle output are stored.
US10817781B2
A method includes receiving, via a graphical user interface including a plurality of document elements and a plurality of class elements, user input associating a first document element of the plurality of document elements with a first class element of the plurality of class elements. Each document element represents a corresponding document of a plurality of documents, and each class element represents a corresponding class of a plurality of classes. The method also includes generating a document classifier using supervised training data, where the supervised training data indicates, based on the user input, that a first document represented by the first document element is assigned to a first class associated with the first class element.
US10817779B2
Data includes data with labels and data without labels. For data without labels a fuzzy rules system assigns pseudo labels. A computer processes the data with labels using a first cognitive neural network; processes the data with pseudo labels using a second cognitive neural network; and produces system outcomes by combining the results of the first and second cognitive neural networks. The computer obtains feedback on the system outcomes, and modifies parameters of the fuzzy rule system in response to the feedback.
US10817775B2
Embodiments are described for minimizing a wait time for a rider after sending a ride request for a vehicle. An example computer-implemented method includes receiving a ride request, the request being for travel from a starting location to a zone in a geographic region during a specified timeslot. The method further includes predicting travel demand based on a number of ride requests in the zone during the specified timeslot. The method further includes requesting transport of one or more vehicles to the zone in response to the predicted number of ride requests when the travel demand is predicted to exceed a number of vehicles in the zone during the specified timeslot.
US10817767B2
According to one embodiment, an IC card includes an antenna, a charge unit, a memory, and a first processor. The charge unit is configured to be charged by a current induced electromagnetically in the antenna. The memory is configured to store processing execution information for discontinuously executing a plurality of processing. The first processor is configured to operate by a current from the charge unit, and discontinuously execute a plurality of processing by providing an interval based on the processing execution information.
US10817762B2
A printing device includes: an acquisition section that acquires print information including the number of print sheets and the number of print copies relating to a print job; and a control section that performs a control to output a print product to a first output section, to switch from the first output section to a second output section using the print information if the number of prints will exceed a full storage capacity of the first output section halfway through a process from first print of a first job to Y-th copy of an X-th job, provided that X and Y are not simultaneously 1, and to output a print product to the second output section from first print of the Y-th copy of the X-th job.
US10817761B2
A printing apparatus, including a printing device, a communication interface, a memory, and a controller, is provided. In a case where the controller determines that an image in image data is to be rotated and that a predetermined condition is satisfied, the controller conducts rotation of the image in the image data concurrently with rasterization of the image data and stores raster data including the rotated image in the memory. In a case where the controller determines that the image in the image data is to be rotated and that the predetermined condition is not satisfied, the controller conducts rasterization of the image data without rotating the image in the image data, and rotates a raster image in the raster data stored in the memory and generates the print data from the raster data including the rotated raster image.
US10817756B2
An information processing apparatus includes a determination, first, second and third receiving, and first and second checking units, and a controller. When a determination result matches a first determination result, the first checking unit outputs a matching determination result as the final output. The second checking unit checks the first determination result against a second. The first and second determination results are respectively received by the first and second receiving units. When the first determination result matches the second, the second checking unit outputs the matching determination result as the final output. When the input information is received, the controller operates the determination, first receiving, and first checking units. When it is determined that the determination result does not match the first determination result, the controller operates selectively one of a unit set and the third receiving unit. The unit set is constituted by the second receiving and checking units.
US10817754B2
This disclosure describes a system and a method for assigning pixels within agricultural imagery collected from overhead platforms to one or more classes based on spectral and/or spatial content. The system comprises one or more hardware processors configured by machine-readable instructions to: receive output signals provided by one or more remote sensing devices mounted to an overhead platform, the output signals conveying information related to one or more agricultural images; and assign pixels within the agricultural images to one or more classes based on spectral and/or spatial content of the agricultural images, wherein the one or more classes include a signal class and a noise class.
US10817749B2
An image-based product classification and recommender system employs a machine learning (ML) model for analyzing images for providing relevant recommendations to the users. An input image received from a user device is analyzed by the model for extraction of the image features that correspond to various attributes of a product in the image. A first subset of the image features is initially extracted and then applied to the input image to extract a next set of image features. The output from the model is then used for identifying products that match the user-selected product in the input image. The image-based product classification and recommender system also categorizes products in received images based on product attributes identified from the received images.
US10817748B2
Embodiments of the present disclosure disclose a method and apparatus for outputting information. A specific embodiment of the method comprises: importing a first obstacle point cloud and a second obstacle point cloud having a to-be-calculated similarity into a pre-trained similarity calculation model to generate a similarity between the first obstacle point cloud and the second obstacle point cloud, the similarity calculation model being used for characterizing a corresponding relationship between the two obstacle point clouds and the similarity; and finally outputting the generated similarity. The embodiments have effectively reduced labor and time cost as result of determining various parameters for calculating the similarity.
US10817745B2
A platform for design of a lighting installation generally includes an automated search engine for retrieving and storing a plurality of lighting objects in a lighting object library and a lighting design environment providing a visual representation of a lighting space containing lighting space objects and lighting objects. The visual representation is based on properties of the lighting space objects and lighting objects obtained from the lighting object library. A plurality of aesthetic filters is configured to permit a designer in a design environment to adjust parameters of the plurality of lighting objects handled in the design environment to provide a desired collective lighting effect using the plurality of lighting objects.
US10817741B2
In an optical character recognition system, a word segmentation method, comprising: acquiring a sample image comprising a word spacing marker or a non-word spacing marker; processing the sample image with a convolutional neural network to obtain a first eigenvector corresponding to the sample image, a word spacing probability value and/or a non-word spacing probability value corresponding to the first eigenvector; acquiring a to-be-tested image, and processing the to-be-tested image with the convolutional neural network to obtain a second eigenvector corresponding to the to-be-tested image, a word spacing probability value or a non-word spacing probability value corresponding to the second eigenvector; and performing word segmentation on the to-be-tested image by using the just obtained word spacing probability value or the non-word spacing probability value. In embodiments, word segmentation can be performed accurately, so that accuracy and speed of the word segmentation are improved, and user's experience is enhanced.
US10817738B2
Various example implementations of the present invention are directed towards systems and methods to quantify biometric acquisition and identification. A test facility evaluates the acquisition by a biometric station of biometric information. Evaluations can relate to biometric information acquisition speed, rates of acquisition failure, rates of biometric information extraction failure, rates of biometric match failure, calculating a true identification rate, and/or calculating other metrics related to quantifying biometric acquisition and identification. The test facility can calculate an efficiency metric and an effectiveness metric of the quantification determinations, and output such results.
US10817731B2
Object detection systems and methods can include identifying an object of interest within an image obtained from a camera, obtaining a first supplemental portion of data associated with the object of interest determining an estimated location of the object of interest within three-dimensional space based at least in part on the first supplemental portion of data and a known relative location of the camera, determining a portion of the LIDAR point data corresponding to the object of interest based at least in part on the estimated location of the object of interest within three-dimensional space, and providing one or more of at least a portion of the image corresponding to the object of interest and the portion of LIDAR point data corresponding to the object of interest as an output.
US10817729B2
Aspects of the disclosure relate to dynamic driving metric output platforms that utilize improved computer vision methods to determine vehicle metrics from video footage. A computing platform may receive video footage from a vehicle camera. The computing platform may determine that a reference marker in the video footage has reached a beginning and an end of a road marker based on brightness transitions, and may insert time stamps into the video accordingly. Based on the time stamps, the computing platform may determine an amount of time during which the reference marker covered the road marking. Based on a known length of the road marking and the amount of time during which the reference marker covered the road marking, the computing platform may determine a vehicle speed. The computing platform may generate driving metric output information, based on the vehicle speed, which may be displayed by an accident analysis platform. Based on known dimensions of pavement markings the computing platform may obtain the parameters of the camera (e.g., focal length, camera height above ground plane and camera tilt angle) used to generate the video footage and use the camera parameters to determine the distance between the camera and any object in the video footage.
US10817726B2
Physical storage media accessible to a remote device may store video information defining video content. The video content may be characterized by capture information. The remote device may transmit at least a portion of the capture information to a computing device. The computing device may identify one or more portions of the video content based on the transmitted capture information. The remote device may receive the identification of the identified portion(s) of the video content from the computing device. Responsive to the reception of the identification, the remote device may transmit the video information defining at least some of the identified portion(s) of the video content to the computing device.
US10817723B2
An information-display method for use in a transparent display is provided. The method includes the steps of: capturing a background image of the transparent display, recognizing a target object from the background image and obtaining candidate background image sub-areas around the target object; processing the candidate background image sub-areas and generating candidate display information corresponding to each background image sub-area; calculating a color ranking score for each piece of candidate display information on each candidate background image sub-area; determining display information and a corresponding background image sub-area; determining whether the color ranking score of the display information satisfies a predetermined condition; if so, directly displaying the display information on the background image sub-area of the transparent display; if not, adding a color feature on the display information, and displaying the display information and the color feature on the background image sub-area of the transparent display.
US10817722B1
A system for biometric security having a iris or face scanner for capturing biometric data over a first field of view of a subject, a topology scanner, and one or more processors utilizing the biometric data received from the biometric scanner to select one or more locations within the first field of view indicative of a biometric presentation to the biometric scanner, directing the topology scanner to capture topology data over a second field of view of the subject at one or more of the selected one or more locations, and determining in accordance with the topology data captured structures or measurements thereof, associated with ocular or extraocular features, to differentiate the subject between being fake and real in order to detect when the first field of view contains a possible fake presentation to the biometric scanner.
US10817719B2
A signal processing device includes: a basis storage that stores an acoustic event basis group; a model storage that stores an identification model, as a feature amount, a combination of activation levels of spectral; an identification signal analysis unit that, upon input of a spectrogram of an acoustic signal for identification, performs sound source separation on the spectrogram by using a spectral basis set that is obtained by appending spectral bases corresponding to an unknown acoustic event that is an acoustic event other than the acoustic event specified as a detection target to the acoustic event basis group and causing only unknown spectral bases within the spectral basis set to be learned, and thereby calculating activation levels of spectral bases of the acoustic events in the spectrogram of the acoustic signal for identification; and a signal identify unit that identifies an acoustic event included in the acoustic signal for identification.
US10817712B2
A gesture recognition system executes a gesture recognition method. The gesture recognition method includes steps of: receiving a training signal; selecting one of the sensing frames of the sensing signal; generating a sensing map; selecting a cell having the max-amplitude; determining a frame amplitude, a frame phase, and a frame range of the selected one of the sensing frames; setting the frame amplitudes, the frame phases, and the frame ranges of all of the sensing frames to input data of a neural network to classify a gesture event. The present invention just uses a few data to be the input data of the neural network. Therefore, the neural network may not require high computational complexity, the gesture recognition system may decrease the calculation load of the processing unit, and the gesture recognition function may not influence a normal operation of a smart device.
US10817697B2
A fingerprint identification component is provided. The fingerprint identification component forms a micro-slit fingerprint collection region and includes a plurality of fingerprint collection modules arranged in the micro-slit fingerprint collection region. Each of the fingerprint collection modules includes a resonance transmitter and a resonance sensor. The resonance transmitter is configured to transmit a resonance signal to a fingerprint texture of a user. The resonance sensor is configured to receive the resonance signal after being reflected by the fingerprint texture, such that a fingerprint of the user can be collected or identified. An electronic device and a fingerprint collection method are also provided.
US10817692B2
This disclosure includes a parcel terminal that may include a shelving unit comprising a plurality of shelves that are separated by respective predetermined distances along a dimension of the unit. In an embodiment, the plurality of shelves may be evenly spaced. The parcel terminal may further include a receptable for receiving a parcel from a user, a loader configured to transfer the parcel from the receptacle to a shelf on the shelving unit, and an electronic controller in electronic communication with the loader. The electronic controller may be configured to determine a number of open shelves required to accommodate the parcel based on a size of the parcel and on the respective predetermined distances, to select a set of shelves having at least the required number of open shelves, and to initiate a movement of the loader so as to place the parcel within the selected set of shelves.
US10817691B1
Systems and methods for adapting swipe speeds for barcode readers. A barcode reader includes a housing and an optical imaging assembly positioned at least partially within the housing. The optical imaging assembly has a field of view (FOV). The optical imaging assembly is operable to capture one or more images of the FOV. The barcode reader also includes a processor communicatively coupled to the optical imaging assembly. The processor is configured to initiate an identification session when a target at least one of (i) enters the FOV and (ii) is in the FOV. The processor further is configured to, responsive to initiation of the identification session: terminate the identification session in response to identifying a product code associated with the target resulting in a termination of the identification session; responsive to the termination of the identification session, prevent initiation of a subsequent identification session until a detection of the target exiting the FOV; and responsive to the detection of the target exiting the FOV, enable initiation of a subsequent identification session.
US10817685B2
A code reader may include a light source configured to illuminate a target area in which items are to be located for reading machine-readable indicia associated with the items, an image sensor configured to capture an image of the target area, an illumination drive circuit in electrical communication with the light source, and an image capture circuit. The image capture circuit may be configured to (i) enable and disable the image sensor to capture an image of the target area during the high illumination and a portion(s) of the low illumination of the target area, and (ii) read an image captured by the image sensor. The illumination drive signals may cause the illumination drive circuit to generate a high illumination drive signal to cause the light source to produce a high illumination, and generate a low illumination drive current to cause said light source to produce a low illumination.
US10817684B2
A semiconductor device, a non-contact electronic device, and a period detection method are provided. The semiconductor device includes an edge detection unit that detects edges of one of rises and falls of a data signal received via radio waves, a counting unit that counts a number of N-divided clock signals having a frequency which is 1/N (N is an integer equal to or greater than 2) of a frequency of a reference clock signal having a predetermined frequency according to the data signal in a section of the adjacent edges, a fraction counting unit that counts fractions of the N-divided clock signals determined according to a phase difference between the edge and the N-divided clock signal, and a first addition unit that adds a value obtained by multiplying the counted number by N to the fractions, and outputs a resultant value as a period of the data signal.
US10817682B2
An antenna assembly for a radio frequency identification (RFID) reader includes: a support member having an inner surface and an opposing outer surface; a first bifilar helical antenna element wound about a first helical axis extending from the outer surface of the support member, wherein the first helical axis is exclusive to the first helical antenna element; a first control terminal on the support member, electrically connected with the first bifilar helical antenna element; a second bifilar helical antenna element wound about a second helical axis extending from the outer surface of the support member, wherein the second helical axis is exclusive to the second helical antenna element; and a second control terminal on the support member, electrically connected with the second bifilar helical antenna element.
US10817680B2
Devices and methods for reading multiple types of RFID tags having different frequencies and/or encoding schemes are disclosed. One or more search signals covering a plurality of RFID bands are transmitted. A presence indication of an RFID tag in one of the plurality of RFID bands is detected. An interrogating signal having a carrier frequency tuned to a frequency at which the presence indication is detected is transmitted. A tag response signal comprising tag information associated with the RFID tag is received. A digital response signal based on the tag response signal is digital signal processed to obtain the tag information.
US10817676B2
A source content routing system is described for distributing source content received from clients such as documents, to translators for performing translation services on the source content. The routing system extracts source content features, which may be represented as vectors. The vectors may be assembled into an input matrix, which may be processed using an artificial neural network, classifier, perceptron, CRF model, and/or the like, to select a translator such as a machine translation system and/or human. The translator provides translation services translation from a source language to a target language, post translation editing, proof reading, quality analysis of a machine, quality analysis of human translation, and/or the like and returns the product to the content routing system or clients.
US10817669B2
A method, a system, and a computer program product are provided. A training set of adverse event text fragments assigned to medical codes is analyzed to determine first text fragments having frequently occurring medical code assignments and second text fragments having infrequently occurring medical code assignments. The training set is modified to undersample the first text fragments and to oversample the second text fragments such that the text fragments of the modified training set correspond to a substantially uniform assignment of the medical codes. At least one machine learning model is generated and trained with the modified training set. Some parameters of the at least one machine learning model are updated based on errors detected during the training. After completing the training, an adverse event text fragment is applied to the at least one machine learning model to assign at least one medical code.
US10817656B2
Enabling a computer to automatically enter information into a unified database from heterogenous documents. An image file is received. The image file is displayed in a first area of a window rendered on a tangible display device. The fields for data entry are displayed in a second area of the window. Optical character recognition is performed on the image file. At least one parameter of text is identified in the image file. The at least one parameter of the text is compared to at least one of a plurality of stored parameters. The text is sorted according to the at least one of the plurality of stored parameters into a plurality of categories, wherein sorted text is formed. The fields are auto-populated and displayed in the second area of the window based on the sorted text.
US10817647B1
An apparatus, computer program product and method are provided for managing automatic generation of reports using computer program queries. Embodiments intelligently determining if a report is needed based on application data, and if so, automatically generating the report. The application data may include data from a calendar application, communication application, social media application, user profile, and/or the like. The application data is analyzed to determine report parameters, including a type of report data, range of the report data, and grouping characteristic of the report data. The report parameters may be further based on a report request history, and/or user profiles, in which a user may indicate generally what data may be desired in a report. In some examples, no user input is required for a particular report to be generated. Reports that are no longer needed may be automatically prevented from being generated.
US10817645B2
A method for reducing voltage hot spots in a power grid for a circuit design is implemented on a computer system and includes the following steps. The computer system (e.g., an EDA tool) accesses the circuit design. The circuit design includes a power grid that distributes power throughout the circuit design. The computer system identifies spots in the power grid with excessive voltage drops. These will be referred to as hot spots. The power grid is augmented by adding local conductors at the hot spots. These local conductors provide additional electrical paths through the power grid at the hot spots. This in turn reduces the voltage drops at the hot spots.
US10817642B1
Various embodiments are directed to a mechanism for reserving power resources to address non-uniform and complex routings on a redistribution layer of a flip-chip. Reserving power resources may be performed by rerouting RDL nets by, for example, identifying an initial RDL net route for a RDL net; defining an outer boundary relative to the initial RDL net route, wherein a perimeter of the outer boundary is defined at a defined distance away from the initial RDL net route; defining one or more blockages extending from bumps to intersect the outer boundary; subdividing the initial RDL net route into a plurality of net portions, wherein each net portion is bounded by a portion of the outer boundary and one or more of the blockages; and rerouting at least one of the plurality of net portions to be adjacent at least one blockage bounding the circuit net portion.
US10817639B1
Systems and techniques are described for transparent hierarchical routing in an integrated circuit (IC) design. A logical netlist can be analyzed in the IC design to identify endpoints of a physical route that crosses at least one physical hierarchy boundary. Next, a set of routing shapes can be created to electrically connect the endpoints of the physical route. The set of routing shapes can then be transformed to corresponding routing shapes in each physical hierarchy context along the physical route.
US10817635B2
Disclosed is a method of fabricating an integrated circuit (IC) using a multiple (N>2) patterning technique. The method provides a layout of the IC having a set of IC features. The method further includes deriving a graph from the layout, the graph having vertices connected by edges, the vertices representing the IC features, and the edges representing spacing between the IC features. The method further includes selecting vertices, wherein the selected vertices are not directly connected by an edge, and share at least one neighboring vertex that is connected by N edges. The method further includes using a computerized IC tool to merge the selected vertices, thereby reducing a number of edges connecting the neighboring vertex to be below N. The method further includes removing a portion of the vertices that are connected by less than N edges.