A component mounting positional deviation amount measurement unit is set in a feeder setting section of a component mounting machine so as to be exchangeable with a cassette-type feeder, and includes measurement nozzle placement sections in which measurement nozzles exchangeably held in a mounting head of the component mounting machine are placed; measurement component placement sections in which measurement components are placed; and a measurement mounting table on which a measurement fiducial mark is provided. When a component mounting positional deviation amount of the component mounting machine is measured, the measurement component is sucked by the measurement nozzle by holding the measurement nozzle in the mounting head, the measurement component is mounted on the measurement mounting table, and a deviation amount of a mounting position of the measurement component with respect to the measurement fiducial mark is measured as a component mounting positional deviation amount of the component mounting machine.
A component transfer device including: a component mounting tool mounted on a movable mounting head, the component mounting tool being configured to collect a component from a component supply device and mount the component on a board; a side imaging section configured to image the component held by the component mounting tool from the side; a cleaning nozzle having an emission port on a side surface only of the cleaning nozzle that opens toward the side imaging section; and a positive pressure air supply section configured to supply positive pressure air to the cleaning nozzle and blow out the positive pressure air from the emission port toward the side imaging section.
In one embodiment, an optical module cage includes a first opening for slidably receiving an optical module, a second opening positioned adjacent to the first opening for slidably receiving a riding heatsink separate from the optical module or an integrated heatsink connected to the optical module, and a guide rail interposed between the first opening and the second opening, wherein the guide rail is configured to support the riding heatsink and not interfere with insertion of the integrated heatsink.
A modular arrangement is provided for housing electronic equipment and associated cooling structure in a data center environment. The modular units provide cooling air on an as-needed basis to individual pieces of equipment by way of individual plenums and associated valves. The units can be interconnected by vertical stacking, in side-to-side arrangements, and back-to-back arrangements. A number of units can be interconnected to form a cell. The cells can be interconnected to form larger units. In this manner, data centers can be configured in any desired arrangement without requiring complicated cooling design.
A server chassis including a chassis, a motherboard, a processing assembly and a storage assembly. The chassis includes a bottom plate. The bottom plate has a front side and a rear side that are opposite to each other. The chassis has a first area and a second area. The first area is located adjacent to the front side, and the second area is located adjacent to the rear side. The motherboard is disposed on the bottom plate and located between the front side and the rear side. The processing assembly is disposed on the bottom plate and selectively disposed in the first area or the second area. The storage assembly is disposed on the bottom plate and located adjacent to the front side.
According to exemplary embodiments, a method for manufacturing a display device may include providing a bending object on a stage, bending the bending object by bringing a bending bar into contact with the bending object, and measuring a movement route of the bending bar.
The disclosure describes a soft-matter electronic device having micron-scale features, and methods to fabricate the electronic device. In some embodiments, the device comprises an elastomer mold having microchannels, which are filled with an eutectic alloy to create an electrically conductive element. The microchannels are sealed with a polymer to prevent the alloy from escaping the microchannels. In some embodiments, the alloy is drawn into the microchannels using a micro-transfer printing technique. Additionally, the molds can be created using soft-lithography or other fabrication techniques. The method described herein allows creation of micron-scale circuit features with a line width and spacing that is an order-of-magnitude smaller than those previously demonstrated.
Apparatuses and methods related to the field of microchip assembly and handling, in particular to devices and methods for assembling and handling microchips manufactured with solid edge-to-edge interconnects, such as Quilt Packaging® interconnect technology. Specialized assembly tools are configured to pick up one or more microchips, place the microchips in a specified location aligned to a substrate, package, or another microchip, and facilitate electrical contact through one of a variety of approaches, including solder reflow. This specialized assembly tooling performs heating functions to reflow solder to establish electrical and mechanical interconnections between multiple microchips. Additionally, the interconnected microchips may be arranged in an arbitrarily large array.
A wiring substrate includes a core layer, first conductor layers including first inner, outer and intermediate conductor layers, second conductor layers including second inner, outer and intermediate conductor layers, and interlayer insulating layers interposed between the first conductor layers and between the second conductor layers. The first and/or second inner conductor layers has a first laminated structure including a metal foil layer and a plating film layer, the first and/or second outer conductor layers has the first laminated structure, the first and/or second intermediate conductor layers has a second laminated structure including a metal foil layer and a plating film layer, and the first and second laminated structures are formed such that a surface of the second laminated structure on a side away from the core layer has unevenness smaller than unevenness of a surface of the first laminated structure on a side away from the core layer.
In order to reduce the amount of electrical insulation needed for voltage isolation of large voltages generated by a voltage multiplier, the voltage multiplier can be shaped to smooth out electric field gradients. The voltage multiplier can comprise multiple sections, each section located in a different plane. The voltage multiplier can comprise a negative voltage multiplier and a positive voltage multiplier, each inclined at different angles with respect to each other. The voltage multiplier can include a curved shape.
A system for controlling a plurality of light sources particularly LED's that are provided in a number of different arrangements including a light string and controlled from a controller that includes an input microphone for detecting an audio signal, at least one pre-amplifier, a microcomputer unit receiving signals from the pre-amplifier, and a circuit for driving a plurality of LED and that enables lighting control of the plurality of LED's in accordance with the input audio signal and within a wide dynamic range.
An apparatus is disclosed. The apparatus has a controller, a main power source, an electrical converter configured to receive a first electrical signal from the main power source, and a capacitor electrically connected to the electrical converter. The apparatus also has an electrical selector switch electrically connected to at least one of the electrical converter and the capacitor, an electrical driver electrically connected to the electrical selector switch, at least one electrical output component electrically connected to the electrical driver, and at least one electrical component that is configured to receive a second electrical signal via the at least one electrical output component. The controller controls an operation of the at least one electrical component based on the second electrical signal, independently of control of the first electrical signal.
The present disclosure provides a method for implementation of wireless relaying. The method is applied to a wireless relay device. The method comprises: a wireless relay device sends a probe request packet carrying a first detection code and device information of the wireless relay device; receive a probe response packet sent by a first wireless routing device, the probe response packet carrying an SSID and a password corresponding to the first wireless routing device; and send an authentication request packet to a second wireless routing device, the authentication request packet carrying the SSID and the password that is carried in the probe response packet sent by the second wireless routing device to the wireless relay device, and the second wireless routing device being one of the first wireless routing devices.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may generate an uplink random access message, including a random access preamble and an uplink shared channel resource unit, of a two-step random access procedure. The UE may identify configuration information for uplink control information (UCI) multiplexing. The UE may identify a trigger for inclusion of UCI with the uplink random access message. The UE may multiplex the UCI and a reference signal with the uplink shared channel resource unit and map the uplink control information to resource elements in the uplink shared channel resource unit based on a priority of the uplink control information and a location of resource elements to which the reference signal is mapped. The UE may transmit the uplink random access message comprising the uplink control information and an indication of the used UCI configuration to the base station.
A random access method and a device are provided, to enable a device in the Internet of Things to implement random access. The method includes: selecting, by a terminal from at least two frequencies, frequencies used to send a physical random access channel PRACH signal, as frequencies occupied by target PRACH resources, where the at least two frequencies each have a preset bandwidth, and there is no intersection between frequency bands of the at least two frequencies; generating, by the terminal, a target PRACH signal based on the frequencies occupied by the target PRACH resources, a root allocated by a base station, and a cyclic shift corresponding to the root allocated by the base station; and sending, by the terminal, the target PRACH signal to the base station on the target PRACH resources.
The present specification relates to a method for transmitting and receiving data in a wireless communication system supporting device-to-device (D2D) communication, and the method performed by a first terminal comprises the steps of: acquiring a resource pool used for D2D communication, wherein the resource pool includes either a scheduling assignment (SA) resource pool indicating a resource region through which an SA is transmitted or a data resource pool indicating a resource region through which D2D data is transmitted; transmitting, to a second terminal through the SA resource pool, the SA including information related to D2D data transmission; and transmitting the D2D data to the second terminal.
A method performed by a wireless device (121, 122) for determining Channel State Information, CSI, estimates to be transmitted in a CSI report for the wireless device (121, 122) to a network node (110) in a radio communications network (100) is provided. The wireless device (121, 122) receives a message comprising an indication to use CSI estimates corresponding to a determined period of time. In response to said message, the wireless device (121, 122) determines CSI estimates to be used in the CSI report to the network node (110) according to the received indication. A wireless device (121, 122) is also described.
A network node (110) and method therein for controlling CSI estimates transmitted by one or more wireless devices (121, 122) in CSI reports to the network node (110) in a radio communications network (100) are also provided.
A method, device and system for creating resources during a user equipment (UE) hands over from a non-3rd Generation Partnership Project (non-3GPP) system to a 3GPP system are provided. A serving gateway (Serving GW) receives a first resource request message, such as Create Default Bearer Request message, including handover indication information indicating the handover from a mobility management network device, e.g., a MME. As the received resource request message includes the handover indication information, the Serving GW includes the handover indication information in a second resource request message and then sends the second resource request message to a PDN GW. After receiving the second resource request message, the PDN GW policy and charging control (PCC) rules to be used by the UE in the 3GPP access system so as to create the resources used by the UE in the 3GPP system.
The present disclosure presents method, network nodes and computer program for improving a dual band user equipment, UE/STA, mobility from a first access node, e.g. an eNB, arranged to operate according to a first radio access technology to at least one second access node, e.g. a WLAN AP, arranged to operate according to a second radio access technology. A communications interface is arranged for direct communication between the first access node and the respective second access node. The method, as performed in the first access node, comprises retrieving (S32) resource management related information of the second access node relevant for the user equipment UE/STA over the communications interface. Radio resources provided to the dual-mode user equipment, UE/STA, by both the first and the second access node, are coordinately controlled (S33), over the communications interface, based on the retrieved resource management related information and internal resource management related information for the first node.
Certain aspects of the present disclosure provide techniques communicating in a wireless network. In one embodiment, a method includes monitoring for a paging downlink control channel comprising downlink control information, wherein the downlink control information comprises a first short message; processing the first short message; determining if the control information further comprises scheduling information; processing the scheduling information if the downlink control information comprises scheduling information and the UE is not in a connected state; and ignoring the scheduling information if the downlink control information comprises scheduling information and the UE is in a connected state.
The present invention relates to a method for receiving control information by a UE in a wireless communication system, and an apparatus for same. More specifically, the method includes a step of receiving reconfiguration downlink control information (DCI), wherein the reconfiguration DCI includes a plurality of reconfigurations relating to a UE group including the UE and is configured so as to be received on the basis of a radio network temporary identifier (RNTI) defined for the reconfiguration DCI.
A mobile station device includes an information acquisition unit that is configured to and/or programmed to acquire information, which specifies a system bandwidth and a carrier frequency of a second downlink carrier component different from a first downlink carrier component, transmitted using RRC signaling via a physical downlink shared channel within the first downlink carrier component and a communication unit that is configured to communicate with the base station device by aggregate use of both the first downlink carrier component and the second downlink carrier component, where the first downlink carrier component and the second downlink carrier component have different carrier frequencies and each of the first downlink carrier component and the second downlink carrier component has its own downlink system bandwidth.
A method and a device in a UE and a base station used for wireless communication are provided. First information and a first target signal are received, the first information indicates a listening type; it's determined whether a first time-frequency resource is used for wireless transmission based on the listening type indicated by the first information; if yes, a first radio signal is transmitted with a first power on the first time-frequency resource; wherein if the listening type indicated by the first information is a first listening type, the first power cannot exceed a first maximum transmitting power, receiving quality of the first target signal is used for determining the first maximum transmitting power; if the listening type indicated by the first information is a second listening type, the first power cannot exceed a second maximum transmitting power. The method ensures equity and improves transmission efficiency and spectral utilization ratio.
A first radio terminal transmits and receives a radio signal by using a limited frequency band limited to a bandwidth of a predetermined number of resource blocks. A second radio terminal transmits and receives a radio signal by using a frequency band wider than the limited frequency band. A base station transmits configuration information of SC-MTCH by SC-MCCH. The base station sets a first period to the first radio terminal and sets a second period shorter than the first period to the second radio terminal as an SC-MCCH change period in which the configuration information of the SC-MTCH can be changed. The base station receives an MBMS interest indication from the first radio terminal, the first radio terminal being in a connected mode, and determines whether or not to shift the first radio terminal to an idle mode based on the MBMS interest indication.
A computer device may include a processor configured to detect a condition to page a user equipment (UE) device, retrieve mobility category information associated with the UE device from a mobility database, and use the retrieved mobility category information to determine a paging policy. The computer device may be further configured to select a number of base station cells to which the computer device is to send a paging message based on the determined paging policy and page the UE device using the selected number of base station cells.
A base station and terminal use methods of obtaining synchronization and system information in a wireless communication system. An operation of a base station includes generating a synchronization signal to be transmitted through a Synchronization Channel (SCH), generating a broadcast signal to be transmitted through a Broadcast Channel (BCH), and transmitting repetitively the SCH and the BCH by performing beamforming on the channels with different transmission beams.
The time of transmission and reception between stations A and B is exchanged, and any deviation in time is calculated in a corresponding manner in the stations. Using the transmission time TXA from station A to B, the transmission time TYB from station B to A, the time TXB of a clock at station B in a transmission from station A to station B, and the clock time TYA at station A in a transmission from station B to A, the following are measured in sequence: 1) station A records the time TXA at which TXA and TYA were transmitted, 2) station B measures the time TXB at which TXA and TYA were received, 3) station B records the time TYB at which TXB and TYB were transmitted, and 4) station A measures the time TYA at which TXB and TYB were received, the transfer time between stations A and B being derived at each station on the basis of the average of the increase ΔTXB-A from TXA to TXB and the increase ΔTYA-B from TYB to TYA, or the deviation in time for a transfer between stations A and B being determined by subtracting the increase ΔTXB-A from the transfer time. The transmission time TXA from station A to B may also be measured using a reflection signal from a transmission terminal.
The present invention relates to an apparatus and method for controlling uplink transmission power in a multiple element carrier wave system. The method for controlling uplink transmission power by a terminal in a multiple element carrier wave system includes the steps of: generating an uplink signal to be transmitted in a first serving cell; receiving, from a base station, random access start information for commanding the start of a random access procedure for a second serving cell; calculating the estimated surplus power from first transmission power scheduled for an uplink signal transmission, and second transmission power scheduled for a transmission of a PRACH to which a random access preamble is mapped; and when the estimated surplus power is smaller than a threshold power, adjusting the first transmission power or the second transmission power on the basis of power allocation priority.
Apparatuses, methods, and systems are disclosed for uplink power control. One method includes receiving uplink power control parameters. The method includes determining a first transmit power for the first uplink transmission based on a corresponding first set of uplink power control parameters. The method includes determining a second transmit power for the second uplink transmission based on a corresponding second set of uplink power control parameters. The method includes performing the first uplink transmission using a first uplink transmission beam pattern or a first spatial domain transmission filter based on the first transmit power. The method includes performing the second uplink transmission using a second uplink transmission beam pattern or a second spatial domain transmission filter based on the second transmit power.
This application provides a wake-up method, a station, and an access point. The method is performed in a communications system. The communications system can include an access point (AP) and at least one station (STA). The AP includes a wake-up transceiver (WUR) and a main transceiver. The method can include determining, by a first STA, that the AP is in a sleep state, where when the AP is in the sleep state, the main transceiver of the AP is in an off state. The method can also include transmitting, by the first STA, a wake-up frame to the WUR of the AP, where the wake-up frame triggers the WUR of the AP to wake up the main transceiver of the AP. Therefore, an uplink data transmission latency can be reduced.
A method and apparatus for allocating resources to a low cost user equipment (UE) in a wireless communication system is provided. A base station (BS) allocates resource blocks including a punctured direct current (DC) subcarrier to a low cost UE, and communicating with the low cost UE by using the allocated resource blocks. The allocated resource blocks may not be located at center of a set of resource blocks that the low cost UE can access at a given subframe.
The present invention provides a congestion control method and apparatus. The method includes: sending, by a user equipment, a first network connection request to a network device of a first mobile network; receiving, by the user equipment, a first network connection rejection message from the network device, where the first network connection rejection message includes network switching indication information, where the network switching indication information is used for instructing the user equipment to switch to a second mobile network, and the network switching indication information is from a subscription manager SM; and accessing, by the user equipment, the second mobile network according to the network switching indication information. The present invention ensures normal execution of a service on an eUICC user equipment when network congestion occurs.
Techniques for connectivity using a geographic phone number are described. According to various implementations, techniques described herein enable various policies pertaining to the use of telephone numbers at different locations to be enforced. For instance, techniques described herein enable a client device that is outside of a permitted geographic area for a geographic phone number to use a non-geographic phone number to connect a call, while the call can be routed using the geographic phone number.
Techniques are disclosed for predictive media streaming using microlocation. Microlocations of a mobile device can be determined by measuring one or more sensor values at one or more times, the one or more sensor values are determined from one or more signals emitted by a corresponding one or more signal sources. Streaming events can be stored at the mobile device. Each streaming event may include a destination device for playing media and a cluster location, the cluster location corresponding to sensor values that are spatially near each other. A selection of a media item is detected and one or more current sensor values are measured. A current cluster location can be identified using the one or more current sensor value. The current cluster location and the streaming events can identify a particular destination device for playing the selected media item.
A method and apparatus for supporting a fast link recovery and link status reporting in a wireless communication system is provided. When a node detects a radio link problem on a wireless backhaul link between integrated access and backhaul (IAB) nodes from the node to a donor node of an TAB network, the node reselects a cell operated by a gNB which is directly connected to the donor node, and performs a random access procedure towards the cell operated by the gNB to report information on the radio link problem to the cell. The donor node may establish a new path for the node.
Embodiments of the disclosure generally relate to primary cell change. A network device detects whether layer 2 context being kept and/or one or more serving secondary cells remain for a primary cell change for a terminal device. Then, the network device configures a message indicating the primary cell change based on the detecting and transmits the message to the terminal device. The time period of primary cell change can be reduced efficiently and the data transmission during the primary cell change can be optimized.
Techniques are described for improving handover performance in the context of UEs incorporated into unmanned aerial vehicles (UAVs, a.k.a., drones). A database is constructed that relates locations in a three-dimensional flying space to handover information that may include optimum scanning directions, optimum handover parameters, and/or optimum target cells to be monitored for possible handover.
A UE receives a handover command from a source eNB, and transmits a handover indication message to the source eNB while maintaining a connection to the source eNB. After transmitting the handover indication message, the UE disconnects the connection to the source eNB. Further, the UE accesses to a target eNB. A handover command includes information indicating timing advance if a handover without a random access procedure is configured.
According to one configuration, a communication management resource in a wireless network environment records a location of a wireless base station. The communication management resource then defines a region of wireless coverage provided by the wireless base station based on feedback received from the wireless base station. For example, in one arrangement, the user equipment provides performance metrics to the wireless base station. The wireless base station uses the performance metrics to determine boundaries associated with a region of wireless coverage provided by the wireless base station. The wireless base station communicates the boundary information to the communication management resource. Subsequent to identifying the location of the wireless base station and defining the determined region of wireless coverage associated with the wireless base station, the communication management resource then controls allocation of wireless bandwidth in a vicinity of the region of wireless coverage to protect the wireless base station from interference.
In wireless communications for a 20 megahertz (MHz) channel bandwidth, a first device may determine a high efficiency long training field (HE-LTF) mode. The first device may generate an HE-LTF symbol by using a portion or an entirety of an HE-LTF sequence corresponding to the channel bandwidth and HE-LTF mode. The first device may transmit, in the channel bandwidth, a high efficiency physical layer protocol data unit (HE PPDU) that includes the HE-LTF symbol. A second device may receive, in the 20 MHz channel bandwidth, a downlink HE PPDU that includes an HE-LTF symbol. The second device may obtain, from the HE-LTF symbol, a portion or an entirety of an HE-LTF sequence corresponding to the channel bandwidth and an HE-LTF mode of the HE-LTF symbol. The downlink HE PPDU may be the HE PPDU from the first device. Other methods, apparatus, and computer-readable media are also disclosed.
A method for transmitting a frame includes generating an omni portion of the frame, the omni portion including a non-beamformed long training field and a signal field, the non-beamformed long training field including channel estimation information used to decode the signal field, the non-beamformed long training field configured to be transmitted through one of multiple antennas and multiple streams. The method also includes generating a multi-stream portion of the frame, the multi-stream portion including a data field and a multi-stream long training field, the multi-stream long training field including station-specific decoding information for station-specific data in the data field. The method further includes applying a beamforming indicator to the signal field of the omni portion, and transmitting the frame.
Control techniques of broadcast information reception operations at user equipment having coverage enhancement functionalities are disclosed. One aspect of the present invention relates to user equipment, comprising: a transmission and reception unit configured to transmit and receive radio signals to/from a base station; and a broadcast information combination unit configured to receive system information blocks from a cell across multiple windows.
The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for performing a buffer status reporting in a D2D communication system, the method comprising: configuring a plurality of sidelink logical channels, wherein each of the plurality of sidelink logical channels has an associated priority and belongs to a LCG, and one or more of LCGs belong to a ProSe Destination; generating a SL BSR MAC CE including buffer sizes of LCGs in decreasing order of a LCG priority, wherein the LCG priority of a LCG is determined as a highest priority of a logical channel among priorities of logical channels belonging to the LCG; and transmitting a MAC PDU including the SL BSR MAC CE.
A data transmission rate control terminal device receives beam indication information and scheduling information from a base station. The terminal device determines at least one beam based on a set of N candidate beam pair links (BPLs). The terminal device determines second modulation and coding indication information according to first modulation and coding indication information, and the terminal device transmits data on the at least one beam according to resource indication information and the second modulation and coding indication information.
Disclosed are methods, circuits, devices, systems and associated computer executable code for operating a wireless communication network. According to embodiments of the present invention, one or more network appliances functioning within a Radio Access Network (RAN), at or near an access point, of an exemplary network may identify within a multiplexed downstream communication line leading towards a wireless access point a packet stream addressed to a destination mobile communication device communicatively coupled to the access point and located within a sector or portion of a coverage area of the access point. The same or another appliance may correlate an identifier of the packet stream destination device with an estimated device location within the coverage area along with an associated coverage area sector. By measuring one or more packet stream parameters of the identified packet stream, an estimate of a data service capacity level providable within the specific sector may be estimated and used to adjust network communication resource allocation.
A method for handling measurements by a wireless device (130) on a set of serving cells comprising a first cell (121). The wireless device (130) determines (202) one or more types of signals to perform measurements on for each cell in the set. The determination is based on an obtained configuration, per configured event, of one or more events, each setting a condition to trigger a measurement report. At least one of the events is configured in at least one reportConfig linked to a measurement object whose RS Type within the reportConfig is set to one type of signal. The wireless device (130) determines to perform the measurements on the one type of signal that is set. The wireless device (130) then initiates (203) sending an indication to a network node (110) serving the wireless device (130). The indication is based on the measurements on the determined one or more types of signals.
An automated antenna testing device is disclosed. A carrying stand for objects-to-be-tested to be carried thereon, and an antenna stand corresponding to the carrying stand are installed in a receiving space of a cavity part on a machine part, and a conveyance device for moving the objects-to-be-tested to the carrying stand is installed on the machine part. The conveyance device and the cavity part are installed independently, therefore, an OTA testing environment can be prevented from being affected by external factors.
Provided are a method for receiving, by a base station, a user equipment identity (UE ID) in a wireless communication system, and a device for supporting the same. The base station transmits, to a mobility management entity (MME), uplink data and release assistance information transmitted by the UE and receives the UE ID from the MME, wherein the release assistance information can indicate whether transmission of downlink data according to transmission of uplink data is expected.
A communication system is disclosed in which a control node generates configuration data for each of a plurality of MMEs operating in overlay networks. The configuration data defines a type of user equipment (UE) or a type of UE traffic to be serviced by each MME. The MME configuration data is provided to a base station and used to control selection of an MME to service a request from a UE. The control node monitors network traffic within and across the overlay networks and can reconfigure one or more MMEs to service different UE traffic types. This allows for improved flexibility in load balancing with overlay networks.
Provided are methods of detecting a Diameter spoofing attack. According to an embodiment, the method comprises, obtaining a normal International Mobile Subscriber Identity (IMSI) from a packet of a Diameter S6a protocol transmitted from a Mobile Management Entity (MME) to a Home Subscriber Server (HSS) of a home network, adding a record comprising the normal IMSI to a session table, obtaining an Insert Subscriber Data Request (IDR) message of the Diameter S6a protocol and determining a category of the IDR message.
A method of controlling an inter-vehicle communication system includes: monitoring a current situation based on at least one piece of input information; determining whether the current situation corresponds to an emergency condition; preparing a message corresponding to the emergency condition upon determining that the current situation corresponds to the emergency condition; and broadcasting the prepared message to at least one neighboring vehicle.
An airtime card and associated methods of using the airtime card for the sale and/or authorization of wireless services is disclosed. The methods and airtime card include the use of an airtime card with a near field communication tag with a unique identifier code used to improve a user's experience and ease of authorization/provisioning of services for the wireless device. In some aspects, the unique identifier may be protected by a security code programmed at the point-of-sale of the airtime card. The services to be purchased and authorized may include at least one of the following: out of the box activation, device upgrades, device reactivations, wireless number changes, wireless number porting, and the addition or purchasing of services including airtime, data, and/or SMS enrollments or data content.
In one aspect, a system for receiving communications while a user operates a motor vehicle is provided. The system may include (1) a Bluetooth interface configured to establish a connection to a Bluetooth device associated with the motor vehicle, (2) a wireless communication interface configured to receive a wireless communication from a remote device, and (3) a processor coupled to the wireless communication interface and the Bluetooth interface, and configured to: (a) determine the user is operating the motor vehicle based upon the connection to the Bluetooth device, and (b) suppress a notification of the user of receipt of the wireless communication while the user is operating the motor vehicle.
Disclosed herein is a mobile phone with the Near Field Communication (NFC) technology and method of operating the mobile phone. The mobile phone includes a display; a baseband chip; a near field communication (NFC) module comprising an RF antenna, an NFC tag circuit and an NFC main chip; and the RF antenna configured to receive incoming RF signals.
A wireless water timer and valve control system includes a control unit in wireless WiFi communication with a router and a valve unit in wireless communication with the control unit and designed to connect to a faucet. The valve unit includes a valve that is operated wirelessly via a signal received by the control unit.
Based on control data (1002) indicative of a user engagement in a mobile edge application (1001) which is being executed on a source mobile edge server (201-203) of a mobile edge system (200) and on a terminal (130), relocation of the mobile edge application (1001) from the source mobile edge server (201-203) to a target mobile edge server (201-203) is facilitated.
Methods and systems are provided for a transportation vehicle. One method includes detecting a location of a personal electronic device (PED) on a transportation vehicle based on a signal transmitted by a wireless beacon to the PED; using sensor data to automatically determine usage of a resource on the transportation vehicle, the resource including on the transportation vehicle at least one of a lavatory, a passenger seat, a luggage bin, and a cart; indicating a status of the resource to the PED based on the determined usage; and updating a data store for tracking the usage, after an action is taken associated with the resource, in response to receiving the status.
A charging method includes: determining, by a control plane function entity (CP), that a data flow that is transmitted by user equipment (UE) on a first data session needs to be migrated to a second data session; charging, by the CP, the data flow on the first UP through a first charging session between the CP and a charging system; obtaining, by the CP, charging information of the data flow before the migration that is counted by the first UP; and determining, by the CP, a quota that is used for the data flow after the migration is necessary to be delivered to the second UP, and delivering the quota to the second UP, thereby charging a service data flow of a user in a case of migration between user planes.
Methods, systems, user interfaces, media, and devices are described for sharing the location of participants of a communication session established via a messaging system. Consistent with some embodiments, an electronic communication containing location information is received from a location sensor coupled to a first client device. A current location of the first user is determined based on the location information. A current location of the first user is displayed, on a display screen of a second client device, the current location of the first user being displayed within a messaging UI during a communication session between the computing device and the second computing device. The location information may be updated during the communication session as messages are exchanged and as a current location changes. Various embodiments may include additional information with the current location, such as a time period associated with the location, or other such information.
Mobility observations may be analyzed to create so-called mobility genes, which may be intermediate data forms from which various analyses may be performed. The mobility genes may include a trajectory gene, which may describe a trajectory through which a user may have travelled. The trajectory gene may be analyzed from raw location observations and processed into a form that may be more easily managed. The trajectory genes may be made available to third parties for analysis, and may represent a large number of location observations that may have been condensed, smoothed, and anonymized. By analyzing only trajectories, a third party may forego having to analyze huge numbers of individual observations, and may have valuable data from which to make decisions.
Methods, systems, and mobile devices for providing users with social media-related information about other users based on the relative geographic locations of the users.
The principles described herein provide methods and systems for locating a tracking device. In particular, one disclosed method includes associating a user with a tracking device, receiving an indication that the tracking device is lost, setting a flag indicating that the tracking device is lost, receiving a location within a proximity of the tracking device from one of a plurality of mobile devices associated with a community of users, and providing the location to the user.
The invention relates to a communication system comprising a hearing aid, a communication unit, a relay server, a rule processing server, and at least one external device, wherein the rule processing server comprises a data communication interface to communicate with said relay server and with a plurality of external devices over a plurality of data communication channels, a rule processor, and a rule base comprising a set of rules, each rule defining an action to be triggered in response to a trigger event. Said rule processor is configured to generate an action request signal in response to an event signal representing a trigger event. Said action request signal is configured to cause an action of at least one of the hearing aid, the communication unit, the relay server or the external device, and wherein said action request signal carries information that designates at least one of said devices and at least one action to be performed of said at least one device. Said communication system further comprises an event detector that is configured to detect a trigger event and to generate the event signal in response to a detection of the trigger event.
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that reduce the size of headphones and allow for small form-factor storage configurations are discussed. User convenience features that include synchronizing earpiece stem positions and automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
A system may include an input configured to receive an audio signal, a filter having a negative group delay within a range of frequencies which are human-audible, the filter configured to receive the audio signal and filter the audio signal to generate a filtered audio signal, and a modulator configured to receive the filtered audio signal and modulate the filtered audio signal to generate a modulated filtered audio signal for communication over a digital interface.
A method for sound collection includes: converting time domain signals with a number of M collected by devices for sound collecting with a number of M into original frequency domain signals with a number of M; performing beam-forming on the M original frequency domain signals at each of preset grid points, to obtain beam-forming frequency domain signals with a number of N in one-to-one correspondence with the preset grid points; determining an average amplitude of frequency components with a number of N corresponding to each of frequency points with a number of K based on the beam-forming frequency domain signals with a number of N, and synthesizing a synthesized frequency domain signal including the frequency points and having an average amplitude as an amplitude at the each of the frequency points with a number of K; and converting the synthesized frequency domain signal into a synthesized time domain signal.
An unmanned aircraft includes: a sensor that includes at least a microphone that generates sound data; and a processor. The processor determines the quality of a target sound by use of the sound data generated by the microphone, identifies a sound source direction from the unmanned aircraft to the sound source of the target sound by use of data generated by the sensor, and controls an unmanned aircraft state that is a state of the unmanned aircraft such that a direction of a sound pickup area is aligned with the sound source direction, in accordance with the determined quality. The sound pickup area is a range in which sound pickup quality of the microphone is higher than that of another area.
A vibration-proof structure and electronic device utilizing the same is disclosed. The electronic device includes a housing in which a display or a circuit board is mounted. The electronic device further includes a vibration-generating component mounted within the housing a vibration-proof member coupled with the vibration-generating component, the vibration-proof member having an insertion hole formed centrally therein, and a fixing protrusion protruding from a surface of the housing, the fixing protrusion having an extended shoulder disposed at an end of the fixing protrusion, and inserted into the insertion hole of the vibration-proof member to dampen vibrations from the vibration-generating component when the housing is coupled to the vibration-proof member and the vibration-generating component.
Disclosed is a display apparatus including a display panel configured to display an image by emitting light, a rear surface structure configured to surround lateral and rear surfaces of the display panel, a vibration generating device connected with the rear surface structure and configured to vibrate the display panel, a rear sound emitting portion between the display panel and the rear surface structure, a rear sound guide between the display panel and the rear surface structure to surround the vibration generating device in a spiral shape and configured to connect with the rear sound emitting portion.
A protective cover assembly is disclosed that includes a membrane and a layered assembly bonded to the membrane. The membrane is positioned in an acoustic pathway and has a first side and a second side, the first side facing toward an acoustic cavity and the second side of the membrane facing toward an opening of the acoustic pathway. The layered assembly includes at least one curable support layer bonded to a side of the membrane formed of a polymer adhesive and defining at least a portion of a wall for the acoustic pathway.
A microphone assembly includes a printed circuit board that defines a tab that is configured to extend into an opening defined by a substrate layer of a headliner. The microphone assembly includes a microphone element mounted on the tab. The microphone assembly includes a sealing element that surrounds the tab and the microphone element and is configured to fill the opening and define an air path from a cabin side of the substrate layer to the printed circuit board or the microphone element.
Speaker performance may be improved by increasing the effective acoustic chamber volume by fluidically connecting a speaker chamber containing a speaker with a mechanical housing. Additionally, the performance of left and right speakers may be balanced. Such balancing may be through equalization of the left and right speakers, balancing the acoustic impedance through sizing the openings between the speaker chambers and mechanical housings, and/or balancing of acoustic volumes within the speakers through use of ballast or acoustic expansion material to increase or decrease the effective acoustic volume of one of the speakers.
Methods and systems for providing information to a user are described. Multiple mobile devices can individually collect data and feed the data to beacons in a location. The information can include sound data, light data, motion data, health and wellness related data, humidity data, and/or temperature data. The beacons receive this data from multiple users and transmit it to a service provider. The service provider collects the data from the beacons and provides the data to one or more users.
The present invention provides a method for customizing video based on viewer behaviors, by performing the following steps: receiving/preparing plurality variations of customized video related to one video template, wherein each video variation has different features including at least one of: different scenario scene, different characters, different style, different objects displaying plurality of video variations to plurality of viewers; tracking viewer behavior while watching the video and after watching the video, wherein the viewers are identified by their profile in relation to real time context parameters; grading viewer behavior based on predefined viewers target (behavior) criteria; training a neural network to select video variants having specific features per each video presentation of a specific customizable video template in relation to viewer profile and context parameters, for maximizing viewer behavior grading in relation to said video variant. applying said neural network to a given viewer profile to determine for specific video template the video features for maximizing viewer behavior grading; streaming the determined a video based on determined video features.
A content provider may receive an indication for supplemental content to be output to a target audience, determine a first content item to be viewed by the target audience based on one or more characteristics of the target audience, and may send an indication for the supplemental content to be output at a time associated with the output of the first content item. The content provider may determine a quantity of devices which output the supplemental content for a first time and may determine that this quantity of devices is below a target quantity of devices to output the supplemental content for the first time during a particular time period. The content provider may determine a second content item to be viewed by the target audience and may send an indication for the supplemental content to be output at a time associated with output of the second content item.
A transmitting method according to one aspect of the present disclosure includes transmitting a first stream, the first stream including: timing update identification information id1 indicating whether or not a correspondence relationship between a first reference clock and a second reference clock has been updated, the first reference clock being used to transmit and receive the first stream, and the second reference clock being used to transmit and receive a second stream related to another content to be reproduced in synchronization with the content related to the first stream; a first time according to the first reference clock; and a second time according to the second reference clock, the second time being associated with the first time based on the updated correspondence relationship.
A computer-implemented method of using video program viewer interaction data that has been loaded to a media measurement database as input to a measurement engine which then calculates Linear, DVR, and VOD asset viewing activity at three levels: (a) Video Program, (b) Video Program Airing, (c) Video Program Airing Segment, where each level provides summary metrics for groupings of Demographic, Geographic, and/or Device Characteristic, and also second-by-second viewing metrics, including counting advertising impressions, within the Demographic, Geographic, Device groupings. System also accounts for reduced value of ad viewing when viewer is using trick plays or when viewer delays viewing recorded content. Together these metrics provide detailed information on customer viewing behavior which can be used to drive business decisions for service providers, advertisers, and content producers. Additionally, a viewing histogram analysis is produced.
The present disclosure provides a data transmission method of a system in an IP based broadcasting network, the data transmission method comprising the steps of: generating an MPEG media transport protocol (MMTP) packet using a media processing unit (MPU) for a service; generating an IP packet using the MMTP packet; generating a layer 2 (L2) packet using the IP packet and generating a layer 1 (L1) packet stream using the L2 packet; and transmitting the L1 packet stream, wherein absolute time information of the system is included in one of a transmission frame of the L1 packet stream and the L2 packet.
A method is provided for presenting a program having a selected program rating when a user request is received through a client device to present a program at a selected program rating level. A version of the program is selected from among a plurality of different versions which corresponds to the selected program rating level. The selected version of the program is caused to be presented on a display device associated with the client device.
Aspects of the disclosure provide a method of video coding includes receiving input data associated with a first block and a second block of an image frame. The method further includes identifying a reference size and performing a deblocking process if it is determined that the deblocking process is to be performed. The preforming the deblocking process may include processing pixels adjacent to the block boundary using a first set of deblocking filter settings if a first block size of the first block and a second block size of the second block are greater than the reference size, and processing the pixels using a second set of deblocking filter settings if the first block size or the second block size is not greater than the reference size.
A decoding apparatus is provided. The decoding apparatus includes a communication unit for receiving multiple encoding data respectively corresponding to multiple areas constituting one image, and reference data including attribute information of each of the multiple areas, and a processor for generating multiple divided images by decoding the multiple encoding data respectively, changing the resolutions of some divided images among the multiple divided images on the basis of the received attribute information, and generating a reconstructed image by merging the some divided images having the changed resolutions and the remaining divided images.
In one aspect, a compressed video bit stream is received and divided into packets that comprise either video data or supplemental information. Each packet is marked with a first subset identifier associated with a corresponding bit stream subset. A first sequence parameter set (SPS) is marked with the same first subset identifier as its associated bit stream subset. The first SPS comprises a second subset identifier indicating a decoding dependency of the bit stream subset associated with the first subset identifier on a bit stream subset associated with the second subset identifier. In another aspect, the packets from the bit stream are received and the first SPS is extracted. The first and second subset identifiers are used as relevant subset identifiers, and for each received packet, the first subset identifier is inspected and the packet is extracted when the first subset identifier matches one of the relevant subset identifiers.
An embodiment of a motion estimator apparatus may include technology to receive a compound message, and perform rate distortion estimation and check refinement for two or more coding unit descriptions for a source block based on the received compound message. Other embodiments are disclosed and claimed.
An apparatus for encoding image data, the image data being decomposed into a plurality of different subbands, each subband having a plurality of coefficients, wherein a precinct has different sets of coefficients from different subbands, wherein two sets of coefficients of a first precinct belong to a first spatial region of an image represented by the image data, the apparatus having: a processor for determining, for each group of coefficients within a set, a greatest coded line index (GCLI); an encoder for encoding the greatest coded line indices associated with a first set of the first precinct in accordance with a first encoding mode, and for encoding the greatest coded line indices associated with a second set of the first precinct in accordance with a second encoding mode, the second encoding mode being different from the first encoding mode; and an output interface for outputting an encoded image signal having data on the encoded greatest coded line indices and data on the coefficients.
A low-complexity method and apparatus for frame accurate field of view switching for virtual reality systems may be used principally for streaming virtual reality data systems, allowing optimal and consistent quality for field of view based VR streaming engines. The method and apparatus may also be used for other virtual reality data systems.
A method and apparatus for decoding JVET video, including receiving a bitstream, and parsing said bitstream to identify a syntax element indicating an intra direction mode to use for generating at least one predictor. The intra direction mode is a first intra direction mode in a plurality of intra direction modes that includes at least one weighted intra direction mode that corresponds to a non-weighted intra direction mode. The syntax element may identify whether to use a non-weighted or weighted intra direction mode to generate the at least one predictor. Thus, the coding unit may be coded in accordance with the at least one generated predictor associated with the selected intra direction mode.
A method and apparatus use a geometric modified image for video encoding/decoding. The encoding method may include: generating a geometric modified reference picture by geometrically modifying a reference picture; generating a prediction block of a current block within an encoding target picture by performing inter prediction by referencing the reference picture or the geometrically modified reference picture; and encoding inter-prediction information of the current block.
Systems and methods for dynamically calibrating an array camera to accommodate variations in geometry that can occur throughout its operational life are disclosed. The dynamic calibration processes can include acquiring a set of images of a scene and identifying corresponding features within the images. Geometric calibration data can be used to rectify the images and determine residual vectors for the geometric calibration data at locations where corresponding features are observed. The residual vectors can then be used to determine updated geometric calibration data for the camera array. In several embodiments, the residual vectors are used to generate a residual vector calibration data field that updates the geometric calibration data. In many embodiments, the residual vectors are used to select a set of geometric calibration from amongst a number of different sets of geometric calibration data that is the best fit for the current geometry of the camera array.
An apparatus comprises receiver (101) receiving a light intensity image, confidence map, and image property map. A filter unit (103) is arranged to filter the image property map in response to the light intensity image and the confidence map. Specifically, for a first position, the filter unit (103) determines a combined neighborhood image property value in response to a weighted combination of neighborhood image property values in a neighborhood around the first position, the weight for a first neighborhood image property value at a second position being dependent on a confidence value for the first neighborhood image property value and a difference between light intensity values for the first position and for the second position; and determines a first filtered image property value for the first position as a combination of a first image property value at the first position in the image property map and the combined neighbor image property value.
Systems and methods are provided for transmitting functional safety statistics within a system. A video source produces a video data stream. A functional safety system driver accumulates functional safety statistics from at least one system and writes the functional safety statistics onto an associated system memory. A display sub-system driver writes a frame of the video data stream to the system memory. The display sub-system driver formats the functional safety statistics as video data and appends the functional safety statistics to a portion of the frame of video that is reserved for the functional safety statistics. A display sub-system transmits the frame of the video data stream to a host processor, which extracts the functional safety statistics from the video frame.
A processor device includes: an image acquisition unit that acquires a static image of an object to be observed; an embedding unit that embeds a correction profile, which is created by a creation unit according to tone change-related information about a change in the tone of the static image, in the static image; and an output unit that outputs the static image, in which the correction profile is embedded, to the outside. In an image display device, a static image in which a correction profile is embedded is received and correction is performed on the static image by using the correction profile. Then, the static image on which the subjected has been performed is displayed on a display.
A method for setting up a projector (10) for a passenger cabin (4) of an aeroplane (2), wherein the passenger cabin (4) comprises a projection surface (14) with a known configuration (G) and the projector (10) in the passenger cabin (4) is in a known relative position (RP) with respect to the projection surface (14) in a mounting position (M), geometrical data (16) relating to the configuration (G) and relative position (RP) are received by the projector (10), and predistortion data (22) are determined from the geometrical data (16) according to an imaging rule (18) in order to predistort the images (12) and represent them as rectified images (12″) on the projection surface, and the projector (10) is set up by storing the predistortion data (22) in the projector (10).
A projector (10) contains an imaging rule (18) and an input (20) for geometrical data (16), and is configured to carry out the method according to the invention and, during operation when set up, to predistort images (12) with the aid of the predistortion data (22) and to project them.
A passenger cabin (4) having at least one projector (10) and at least one projection surface (14) has at least one of the projectors (10) according to the invention.
An image sensor is disclosed. The image sensor includes a substrate including an active region and a dummy region, a plurality of unit pixels on the active region, a transparent conductive layer on a first surface of the substrate, a light-blocking layer on the transparent conductive layer and electrically connected to the transparent conductive layer, the light-blocking layer having a grid structure adjacent light transmission regions, and a pad electrically connected to the light-blocking layer, on the dummy region.
A smart motion detection device with a determining method includes a memory, a processor, and a sensor array coupled to the memory and the processor. An image captured by the sensor array is processed by the processor. The sensor array is adapted to pre-store the image into the memory when the processor is operated in the sleep mode, and the pre-stored image is transmitted to the processor when the processor is operated in the wakeup mode. The sensor array includes a comparator adapted to generate an alarm signal for switching the processor from the sleep mode to the wakeup mode in accordance with a comparison result of the pre-stored image. The determining method includes the processor analyzing images captured by the sensor array when the sensor array is activated to capture the images, and the processor analyzing images pre-stored inside the memory when the sensor array is not activated.
An intercom system for collective housing comprises a main entrance station with a camera, a residential entrance substation with a camera and a residential master station for each residence in the housing, a storage unit that stores videos (V1) of visitors shot by the camera of the main entrance station by associating the videos with residence IDs of the respective residences to visit, and a control unit. The control unit includes a check unit that checks the videos (V1) against a video (V2) shot by the camera of a residential entrance substation. If the check by the check unit indicates a match, the control unit compares the residence ID associated with the match stored in the storage unit with that of the residence in which a call button of the residential entrance substation has been operated. The operation of the call button is invalidated if the IDs are different.
An imaging system is provided that includes a pixel array having a plurality of columns with rows of pixels and with each pixel having a plurality of photodiodes and a common readout circuit that stores respective accumulation voltages from each of the plurality of photodiodes. Moreover, the system includes row driver circuitry that control the pixel array for pixel addressing and readout, such that the respective accumulation voltages of the photodiodes is read out on a readout channel coupled to a bit line column, and a hybrid multiplexer that multiplexes and routes output signals from the pixel array to a video imaging device to be displayed thereon.
An exemplary system includes a scene processing module configured to receive a single frame comprising a first set of pixel data comprising a first combined scene including a fluorescence scene component and a second set of pixel data comprising a second combined scene including a combination of a visible color component scene and the fluorescence scene component. The scene processing module is further configured to extract a display fluorescence scene component from the first combined scene and extract a display visible scene component from the second combined scene. The system further includes a display unit configured to generate, based on the display fluorescence scene component and the display visible scene component, a displayed scene.
A rear-facing camera of an electronic mirror device acquires a rear image of an area to the rear of a vehicle, and a left rear-side facing camera and a right rear-side facing camera acquire rear side-images of areas to the rearward sides of the vehicle. An electronic mirror ECU then creates a normal synthesized image by synthesizing the rear image acquired by the rear-facing camera with the rear side-images acquired by the rear-side facing cameras, and then displays the normal synthesized image on a display unit. Additionally, the electronic mirror ECU creates a blind spot priority synthesized image in which the rear side-image that contains an image area corresponding to the object is superimposed onto the rear image, and switches the image displayed on the display unit to this blind spot priority synthesized image.
Systems, methods, and computer-readable media are disclosed for reducing flickering artifacts in imaged light sources. Example methods may include receiving images corresponding to a scene captured by a camera; determining a light source in the scene using at least one artificial intelligence (AI)-based algorithm; determining, using an event-based camera, data representing flickering of the light source, the flickering having a frequency; determining, based on the data, that a time duration of overlap between an on state of the light source and an exposure time of the camera is below a threshold; and delaying the exposure time of the camera by a delay time to increase the time duration of overlap.
Digital image generation through use of capture support data is described. In one example, an image capture device is configured to obtain capture support data from an imaging support system via a network through inclusion of a pre-capture system. The pre-capture system, for instance, is configured to obtain capture support data from an imaging support system via a network. The capture support data is configured for use by digital image processor along with raw image data received from an image sensor to generate a digital image, e.g., that is configured for rendering.
A computerized method for computing the photo quality of a captured image in a device image acquisition system, comprising on-board combining of a plurality of quality indicators computed from said captured image and its previous image frames quality indicators and a confidence level for at least one of said quality indicators; and using a processor to determine, based on said combining, whether photo quality is acceptable and taking differential action depending on whether quality is or is not acceptable.
A system for guiding image sensor angle settings in different environments. The system may include a memory storing executable instructions, and at least one processor configured to execute the instructions to perform operations. The operations may include obtaining a plurality of synthetic images, the synthetic images representing a plurality of scenes; training a classification model to classify, based on the synthetic images, a plurality of images captured from an environment of a user by an image sensor; determining, based on the classification, whether the image sensor is positioned at a predetermined angle; and adjusting, based on the determination, a position of the image sensor.
The accessory apparatus provides, with an image-capturing apparatus, a notification channel used for providing a notice from the image-capturing apparatus to the accessory apparatus, a first data communication channel used for data transmission from the accessory apparatus to the image-capturing apparatus, and a second data communication channel used for data transmission from the image-capturing apparatus to the accessory apparatus. An accessory controller acquires from a timer, in response to receiving a transmission request as the notice, a first time of receiving the transmission request and acquires, in response to receiving a specific command through the second data communication channel from the image-capturing apparatus, accessory information corresponding to the first time or a second time acquired based on the first time. The accessory controller transmits the accessory information to the image-capturing apparatus through the first data communication channel.
Transferable mini-camera for a plurality of devices. In an embodiment, the mini-camera comprises a connector configured to attach to a socket and detach from the socket on a plurality of devices, a rechargeable battery configured to charge from each of the plurality of devices when the connector is attached to the socket of that device, a wireless transceiver configured to wirelessly communicate with a first device when the connector is detached from the socket of the first device, a camera configured to capture image data, and at least one processor. The at least one processor is configured to wirelessly transmit image data, captured by the camera, to the first device via the wireless transceiver, while the connector is attached to the socket of a second device and not the socket of the first device.
There are provided a printing system, a method of generating a halftone processing rule, a method of acquiring a characteristic parameter, image processing device and method, a halftone processing rule, a halftone image, a method of manufacturing a printed material, an ink jet printing system, and a program which are capable of reducing an operation load of a user and acquiring a halftone processing rule appropriate for the printing system. A characteristic parameter acquisition chart including a pattern for acquiring characteristic parameters related to characteristics of the printing system is output, and the output characteristic parameter acquisition chart is read by image reading means. The characteristic parameters are acquired by analyzing the read image of the characteristic parameter acquisition chart, and halftone processing rules that define the processing contents of halftone processes used in the printing system are generated based on the acquired characteristic parameters.
An imaging device includes: an imaging unit that divides an object to be imaged into multiple areas, and captures multiple divided images; a correcting unit that corrects the multiple divided images captured by the imaging unit; and a generating unit that generates one composite image by compositing the multiple divided images after being corrected by the correcting unit.
An image forming apparatus includes an executing unit configured to, if there is a shortage of storage capacity for image information necessary to perform image formation, execute the image formation at a reduced image quality below a required image quality, and an informing unit configured to inform that image formation has been executed at a reduced image quality, and inform an effective measure to enable image formation that does not involve a reduction in image quality, the effective measure including at least one of making a setting change to storage capacity allocation and increasing storage capacity.
A document transport assistance member for an image processing device including a transport roller and a reading part provided upstream of the transport roller in a transport path, the document transport assistance member including a cover sheet, a support sheet, and a bonding part that serves as a bonding part where the cover sheet and the support sheet are bonded together, and bonds a first end portion at a first direction side along a first axis, wherein a length between a side end of the document transport assistance member at the first direction side and a rear end of the bonding part at the opposite side from the first direction is greater than a length between a reading position where the reading part can read the document and a position of a nipping part where the transport roller performs nip on the document transport assistance member in the transport path.
An image reading apparatus includes a manuscript reader, a communication device, a distance determination device, a manuscript leaving determination device, a controller, and an approaching person determination device. The manuscript leaving determination device determines whether a manuscript is left in the image reading apparatus. The communication device performs wireless communication with a portable device carried by a user. The approaching person determination device determines presence and absence of a person approaching the image reading apparatus. The controller transmits, to the portable device, warning information indicating a risk of information leakage when the distance determination device determines that a distance between the image reading device and the portable device has reached a predetermined first threshold value and the approaching person determination device determines that there is an approaching person in a state in which the manuscript leaving determination device has determined that a manuscript is left in the image reading apparatus.
An image processing apparatus includes an operation unit having a display device, and includes a sensor to detect an abnormality of the operation unit. Where the sensor detects an operation unit abnormality, display data is generated for performing display including an error notification regarding the detected abnormality. The generated display data is provided to at least one of the display device and an information processing apparatus. In a case where (i) first data for performing display includes the error notification, includes an instruction portion to receive an instruction to continuously use the image processing apparatus, and is provided as provided display data, and (ii) an instruction to continuously use the image processing apparatus is received via the instruction portion, screen data is provided, in place of the generated display data, the provided display data for displaying a screen for using an the image processing apparatus function.
Methods and systems for routing voice over internet protocol (VOIP) are described. A service provider may provide a VOIP infrastructure for routing VOIP calls. One or more other service providers may join the VOIP infrastructure. A computing device may identify the service provider servicing the VOIP calls and may further process the calls accordingly.
A communications system according to certain embodiments includes a mobile device and a second type of communications system, such as a landline telephone system, that share usage information. The shared information can include call logs of in-coming and out-going calls, missed calls, text messages, address book information, GPS data, internet browsing data, and the like.
A system may facilitate communication between a messaging platform associating a hash tag with a message and a content matching platform. A natural language processing (NLP) facility may produce at least one of an understanding, theme, emotion, and intent of a message. A metadata matching facility may identify candidate hash tags by determining similarity from a pool of hash tags with an output of the NLP, where the content matching facility communicates at least one of the candidate hash tags to the messaging platform. In another aspect, a method may include communicating a message to a content matching platform, and processing text of the message with NLP to generate NLP output including at least one of a theme, understanding, intent, and emotion of the message. A candidate hash tag may then be determined and communicated based on similarity of the NLP output with a plurality of hash tags.
A content distribution network includes a first server in communication with an anycast server that provides content via a unicast signal, and with a multicast server that provides the content via a multicast signal. The first server is configured to receive a list of source addresses associated with the content, and to provide a metadata file including an anycast Internet protocol address of the anycast server from the list of source addresses as an Internet protocol address of the content in response to a first request for the content. When the number of client devices requesting the content exceeds a first threshold, the first server receives an updated list of sources including a multicast Internet protocol address of a multicast server, and provides the multicast Internet protocol address of the multicast server as the Internet protocol address of the content in the metadata file.
A method of registering distributed devices includes discovering a plurality of devices at a central panel or server, localizing the devices, and authorizing the devices with a mobile device communicating with the central panel or server. The method also includes registering the devices with the central panel. The model can include verifying link quality with each of the devices before registering the devices with the central panel by comparing signal quality between each device and a central panel with a pre-defined threshold level.
A socket service may be used to link a peer socket to another peer socket. The peer socket is for communicating data to and from a client device and the other peer socket is for communicating data to and from another client device. If a socket opens and the corresponding peer socket is not yet open then the socket waits for the corresponding peer socket to open. When a client device requests a socket to be opened, the client device requests a particular client-defined function mapping to be associated with the socket. When the socket is opened, the endpoint specified in the client-defined function mapping is invoked. An identifier associated with the client device is sent to the endpoint. If the endpoint returns a socket identifier for another socket, then the socket service links the peer socket to the other peer socket, linking the client device to another client device.
Network traffic in a cloud computing system is monitored in response to a request to capture network traffic of a tenant port of a first virtual machine (VM) executing in the cloud computing system, wherein the first VM is associated with a first tenant organization different from a second organization managing the cloud computing system. A decapsulating VM having a first network interface and a second network interface is instantiated, wherein the decapsulating VM is inaccessible to the first tenant organization. An encapsulated port mirroring session from the tenant port of the first VM to the first network interface of the decapsulating VM is then established. A plurality of packets comprising captured network traffic received via the encapsulated port mirroring session are decapsulated, and the captured network traffic is forwarded via the second network interface of the decapsulating VM to a sniffer VM.
Described are examples for obtaining data from a single stream output. An indication of requested data from multiple stream sources can be received from an application. A single stream output including one or more output frames can be received from a stream server where at least one output frame includes at least data from each of the multiple stream sources. The requested data can be extracted from the single stream output and provided to the application.
Implementations are provided herein for organizing present and future reads from a tiered streaming data storage layer. Implementations allow for access to multi-tiered streaming data organized in different append-only segments, some of which may be related to each other. Streaming data can be read from fast local tier 1 storage, streaming data can be retrieved from fold tier 2 storage, and registrations can be made to read streaming data that has not yet been written to the storage layer.
Aspects of the subject disclosure may include, for example, a system for indicating a program boundary in an adaptive bitrate media stream, where the system includes a memory and a processor that performs operations including generating multiple transcoded media output streams of different bit rates from an input linear media stream, fragmenting the multiple transcoded media output streams into chunks, detecting a program boundary in the input linear media stream, and supplying a program change indicator in a manifest file for implementing program change features in mobile communication devices. Other embodiments are disclosed.
A resident of a controlled-environment facility is provided with messaging-initiated interactive sessions. A non-resident records a message for a resident. At a later time, the resident requests use of a resident device. Use of the resident device is authorized and the resident is notified of the message from the non-resident. The message is presented to the resident for review via the resident device. If requested by the resident, approval for an interactive session between the resident and the non-resident is determined. The immediate availability of the non-resident for the requested interactive session is determined. If the non-resident is available, a request is issued to the non-resident for the approved interactive session. The non-resident may be notified of the remaining time the resident has access has access to the resident device and may be presented an option for the approved interactive session during this time window.
Techniques for providing network slice-based security in mobile networks (e.g., service provider networks for mobile subscribers) are disclosed. In some embodiments, a system/process/computer program product for network slice-based security in mobile networks in accordance with some embodiments includes monitoring network traffic on a service provider network at a security platform to identify a new session, wherein the service provider network includes a 5G network or a converged 5G network; extracting network slice information for user traffic associated with the new session at the security platform; and determining a security policy to apply at the security platform to the new session based on the network slice information.
A system for cybersecurity rating using active and passive external reconnaissance, that uses a web crawler that sends message prompts to external hosts and receives responses from external hosts, a time-series data store that produces time-series data from the message responses, and a directed computational graph module that analyzes the time-series data to produce a weighted score representing the overall cybersecurity state of an organization.
A system is disclosed herein including a plurality of information handling systems (IHSs) coupled to and managed by a remote management system (RMS). According to one embodiment, each IHS may be configured to monitor data pertaining to the IHS, determine if the data triggers one or more events, and transmit a notification to the RMS if one or more events are triggered. The RMS may be configured to receive a notification transmitted from at least one IHS, select a policy to be applied to one or more of the IHSs based on the received notification, and transmit the selected policy to the one or more IHS s. The one or more IHSs may be further configured to receive the selected policy from the RMS, store the selected policy, and perform actions specified by the selected policy when policy rules specified by the selected policy are violated.
Phishing enhancement and phishing detection enhancement technologies. The technologies can include determinations of an effectiveness rate of one or more phishing threat actors. The technologies can also include selection of effective URLs from at least one effective phishing threat actor. The technologies can also include generation or adjustment of a phishing system using a machine learning process to identify patterns in the selected effective URLs that enable the selected effective URLs to avoid detection by the phishing detection system. The technologies can also include generation of synthetic phishing URLs using the phishing system and the identified patterns. The technologies can also include adjustments or training of the phishing system or the phishing detection system according to the synthetic phishing URLs to enhance the systems.
Provided herein are systems and methods for verifying online communications. A sender and/or a recipient of an online communication can be a registered user of a verification system. Upon request by the sender and/or the recipient in relation to a particular instance of an online communication, the verification system can (1) confirm that the sender and/or the recipient is a registered user of the verification system, (2) verify that the sender and/or the recipient has sent and/or received, respectively, the particular instance of the online communication, and (3) communicate the verification of the particular instance of online communication to the sender and/or the recipient.
Embodiments can identify requests that may be tied to a DDOS attack. For example, the primary identifiers (e.g., a source address) of requests for a network resource (e.g., an entire website or a particular element of the website) can be tracked. In one embodiment, a statistical analysis of how often a particular source address (or other primary identifier) normally makes a request can be used to identify source addresses that make substantially more requests. A normal amount can correspond to an average number of request that a source address makes. According to some embodiments, a system can use statistical analysis methods on various request data in web server logs to identify potential attacks and send data concerned potential attacks to an HBA system for further analysis.
A dynamic denial of service (DDoS) mitigation system comprising a BGP address family exchange connected to at least one DDoS mitigation route reflector, and at least one DDoS mitigation route reflector being an address family identifier specific route reflector, where each DDoS mitigation route reflector advertises BGP content in a first address family to the BGP family exchange. The BGP address family exchange translates the BGP content from the first address family to a destination address family and announces the translated content to a destination route reflector, and wherein the destination address family includes a flow specification diversion route.
Disclosed computer-implemented methods for identifying malicious domain names from a passive domain name system server log (DNS log) may include, in some examples, (1) creating a pool of domain names from the DNS log, (2) identifying respective features of each name in the pool, (3) preparing a list of known benign names and respective features of each known benign name, (4) preparing a list of known malicious names and features of each known malicious name, (5) computing a classification model based on (A) the features of each benign name on the list of benign names and (B) the features of each malicious name on the list of malicious names, (6) identifying respective features of an unclassified domain name, and (7) classifying, using the classification model, the unclassified domain name as malicious, based on the respective features of the unclassified domain name. Various other methods, systems, and computer-readable media are also disclosed.
Systems, methods, and apparatus, including computer programs encoded on computer storage media, for obtaining, processing, and presenting data related to security events, and for implementing courses of action to protect assets in response to the security events. An event management module identifies malicious activity present on a first network domain and/or a second network domain based on received network domain activity. A threat intelligence module receives data identifying the malicious activity in first data constructs of a predefined data structure. The threat intelligence module obtains additional data related to the identified malicious activity and generates second data constructs that include enriched data regarding the malicious activity. The enriched data includes data describing a campaign in which at least a portion of the malicious activity is involved and one or more courses of action. A course of action module receives the second data constructs and implements a given course of action.
Systems and methods are disclosed for computing network operations. For example, methods may include identifying one or more partial matches between a value associated with a configuration item and a value associated with one or more computing resource types from a set of computing resource types; forming a search query based on the one or more partial matches; invoking a search of one or more information sources using the search query to obtain ranked search results; selecting one computing resource type from the set of computing resource types based on a ranking of the search results; and updating the configuration item to associate the configuration item with the selected computing resource type.
Mechanisms are provided for training a classifier to identify adversarial input data. A neural network processes original input data representing a plurality of non-adversarial original input data and mean output learning logic determines a mean response for each intermediate layer of the neural network based on results of processing the original input data. The neural network processes adversarial input data and layer-wise comparison logic compares, for each intermediate layer of the neural network, a response generated by the intermediate layer based on processing the adversarial input data, to the mean response associated with the intermediate layer, to thereby generate a distance metric for the intermediate layer. The layer-wise comparison logic generates a vector output based on the distance metrics that is used to train a classifier to identify adversarial input data based on responses generated by intermediate layers of the neural network.
Devices and methods are provided for determining computer resource connectivity and providing computer resource protection. A computer system may identify a first indication of each network configuration between a computing resource and a data resource. The system may identify a second indication of a request for credentials associated with accessing at least one of the computing resource or the data resource. The system may determine an action including accessing the computing resource and the data resource using a network configuration and a credential. The system may determine that the action has occurred a number of times that is less than a threshold. The system may cancel a credential or network configuration associated with the action.
A method comprising: pre-generating insights for each of a plurality of user-content combinations, each user-content combination comprising a different respective combination one of a plurality of first users and one of a plurality of first pieces of content, wherein each insight specifies a relationship type and other content having that relationship with the respective first content; subsequently receiving a query seeking insights on a target one of the first users and first pieces of content; based on the query, identifying the respective set of insights for that user-content combination; subsequently pruning away one or more insights which specify no related pieces of content to which the target user is permitted access; and outputting at least one of the remaining subset of insights to the target user.
Methods and electronic devices are provided for configuring a sharing target device. A method includes transmitting, to an authentication server associated with a mobile network operator for managing data usage, a device configuration request message for configuring the sharing target device to share a data usage amount assigned to the electronic device; receiving, from the authentication server, in response to the device configuration request message, an access code permitting access to the authentication server; and transmitting the received access code to the sharing target device, wherein the sharing target device receives, using the access code, a subscriber profile from the authentication server for sharing the data usage amount assigned to the electronic device.
Novel tools and techniques might provide for implementing application, service, and/or content access control. Based at least in part on a consumer's choice of applications, services, content, and/or content providers—particular in exchange for a subsidy on content and/or network access fees provided to the consumer by chosen content providers—, a computing system may determine whether access to applications, services, and/or content not associated with the chosen content providers (“other content”) should be allowed or restricted. If restricted, the computing system might utilize various network access techniques and/or technologies to block the consumer's access to the other content, to allow access to the other content on a charge per access basis, or to allow access to the other content at reduced network access speeds. In some embodiments, an access provider (e.g., an Internet service provider, etc.) might perform both determination and implementation of content access and restriction.
A method for integrating an email system based on Internet of Things Enabled Email Address (IoTEEA) with IoT devices to establish a standard. According to embodiments of the invention, a method for creating an email account, installing IoTEEA into the IoT device memory, connecting the IoT device to the email account by the information from IoTEEA, using IoTEEA to claim the ownership of the IoT device, gathering data, encrypting the data, and sending the data to the email account sub folder by the IoT device, decrypting the data by the IoTEEA owner, analyzing the data, providing controller, transferring the ownership of the IoT device to another owner from the email account, and making minimal configuration as Plug and Play.
A method for reading an identity document, a readout terminal and a readout system, which simplifies the multiple reading of identity documents. According to the method, an authentication key and an information item are stored in hidden fashion in the chip of the identity document.
Disclosed are various examples for single-sign on by way of managed mobile devices using Kerberos. For example, a certificate is received from a client device. In response, a Kerberos ticket-granting ticket is generated and sent to the client device. A request for a service ticket is later received from the client device. The request for the service ticket can include the ticket-granting ticket. The service ticket is then generated and sent to the client device. Subsequently, the service ticket is received from the client device and a security assertion markup language (SAML) response is sent to the client device in reply. The SAML response can provide authentication credentials for a service provider associated with the service ticket.
An authentication apparatus including an input interface to acquires an image of a hologram label on an access object including key information; a processing history storage table that correlates a first image with the key information and stores the correlated image; an information determination circuit that refers to the processing history storage table, based on key information included in a second image that is being acquired after the first image, and determines whether the key information corresponds to key information of the second image; and a processing determination circuit that compares feature data of the second image that is not key information with feature data of the first image that is not key information in response to the information determination circuit determining the key information of the first image as being present, and uses the results of the comparison to determine whether to execute processing using the second image.
Disclosed are various examples for securing the streaming of a media file from a web service to a media player. A request for a portion of a media file can be received including an authentication key. A web service can validate the authentication key. If the authentication key validates, the web service can send the portion of media to a media player. The media player can render the media on a display of a client device. Requests can be iteratively sent for each portion of the media file.
A novel method for managing firewall configuration of a software defined data center is provided. Such a firewall configuration is divided into multiple sections that each contains a set of firewall rules. Each tenant of the software defined data center has a corresponding set of sections in the firewall configuration. The method allows each tenant to independently access and update/manage its own corresponding set of sections. Multiple tenants or users are allowed to make changes to the firewall configuration simultaneously.
A request for a network address corresponding to a domain name is received. From a plurality of network addresses associated with the domain name, a network address is identified based at least in part on a request-property-based address selection criterion. The network address is included in a response to the request.
This disclosure relates to dynamic determination of data-transmission characteristics based on historical data accesses. For example, some embodiments include accessing a content stream having (i) a first content item and a second content item to be provided to one or more user devices associated with a user and (ii) a trigger condition for providing the second content item. In addition, some embodiments include detecting that the first content item has been consumed at the one or more user devices through a first communication channel and, further, determining that the trigger condition has been met. A machine-learning model inputs action data to determine a second communication channel from among two or more available communication channels. In some cases, the second content item is triggered to be delivered via the second communication channel, responsive to the first content item being consumed and the trigger condition being met.
A method of processing messages executes at a computing device having one or more processors and memory. The memory stores one or more programs configured for execution by the one or more processors. A first message for a user is analyzed for a structured content element. When found, content from a data source distinct from the message is obtained by executing an associated action. A first message display state is formed for the message comprising a message notification and the content. A messaging application user interface, comprising an electronic message list with a plurality of objects, is updated. Responsive to selection of a first object of the plurality of objects, the first object representing the first message, the user is enabled to toggle the first message display state between first and second display states, the second display state differing from the first by providing direct access to the first message.
A method and device for publishing at least one message and a storage medium is provided. The method includes the following steps. A first message published by a first session account in a first session of an instant messaging client is acquired, and session accounts participating in the first session include at least three session accounts containing the first session account, and the first message is used for allowing reply information of at least one reply of at least one session account participating in the first session to the first message to be displayed in the first message. And the first message is displayed in the first session.
Responsive to a search query received from a remote user device, retrieve one or more channel based communication and engagement objects (CBCEO). Each CBCEO comprises a primary communication channel which is associated with an enterprise data source. Each primary communication channel facilitates electronic communication between the respective enterprise data source of the primary communication channel and users. The one or more retrieved CBCEO are integrated into an advertising unit of a data source. The advertising unit is rendered on a display page by the data source to a display of the user device. An enterprise data source is selected via the one or more CBCEO of the rendered advertising unit from the user device and a secure bidirectional conversation is established. The secure bidirectional conversation comprises an exchange of messages between the user device and the enterprise data source through a primary communication channel of the enterprise data source.
The present disclosure provides a method and a device for processing live commenting messages, and a terminal. The method includes: obtaining a total number of a plurality of first live commenting messages sent by a plurality of first terminals in a unit time; calculating a ratio of the total number of the plurality of first live commenting messages to a first threshold; grouping the plurality of first live commenting messages based on the ratio, wherein the grouped plurality of first live commenting messages serve as second live commenting messages; grouping a plurality of second terminals based on the ratio, wherein the plurality of second terminals are configured to receive the second live commenting messages; and sending the second live commenting messages in each group to a corresponding group of second terminals.
In some examples, a method can include monitoring data traffic along an uplink port and along at least a subset of a plurality of host ports, determining whether the uplink port is oversubscribed based on the monitored data traffic, determining whether a given host port of the at least a subset of host ports is receiving excessive data traffic in response to determining that the uplink port is oversubscribed, and flagging a host port that is determined to be receiving excessive data traffic.
The present invention relates to communications methods, apparatus and systems for collecting metrics and/or traffic routing using SDN principles. In an exemplary method embodiment, the method includes the steps of: operating a SBC to: (i) receive a session initiation signal used to initiate a first media session; (ii) send to an SDN controller session identification information identifying a first RTCP packet stream corresponding to the first media session and causing said SDN controller to control a first open flow switch to establish an entry in a table to cause the first open flow switch to send a copy of the RTCP packets corresponding to the first RTCP packet stream to the SBC while also communicating the RTCP packets corresponding to the first RTCP packet stream towards the intended first RTCP packet stream destination.
An information processing apparatus includes a plurality of offload devices each of which offloads and executes a relay process of a virtual switch, each of the plurality of offload devices including a memory that stores port conversion information, the port conversion information associating virtual port identifiers for identifying virtual ports before and after a virtual port to which a virtual machine executed by the information processing apparatus is connected is moved between the offload devices, and a processor coupled to the memory and that converts an input virtual port identifier for identifying an input virtual port into which a packet is input based on the port conversion information, searches an output virtual port identifier for identifying an output virtual port of the packet by using the converted input virtual port identifier, and converts the searched output virtual port identifier based on the port conversion information.
Some embodiments provide a method for forwarding a data message. The method performs a lookup to map a set of header fields of the data message to an identifier corresponding to a service that performs non-forwarding processing on data messages. The method uses a dynamically-updated data structure for the identifier to retrieve instructions for forwarding data messages to the service. The method forwards the data message according to the retrieved instructions from the data structure for the identifier.
A time series system is updated using a data-verification system. The aggregation system may include one or more aggregators. When an upgrade is appropriate, a shadow aggregator may be added to the set of active aggregators. Metrics are provided from one or more collectors to an active aggregator. The shadow aggregator may receive the metrics intended for a particular aggregator, process the metric, and then pass the metric to the intended aggregator for processing. After a period of time, the shadow aggregator data is verified against the intended aggregator data. If the shadow aggregator data is verified, the shadow aggregator becomes an active aggregator and processes data as normal.
An example system includes a database disposed within a remote network management platform that manages a managed network, where one or more worker nodes are configured to execute containerized software applications on behalf of the managed network. The system also includes a computing device configured to request and receive configuration data identifying the applications; access traffic data generated by packet detection modules disposed amongst the one or more worker nodes and configured to (i) monitor network traffic between the applications and (ii) generate and store the traffic data which is indicative of the monitored network traffic; parse the traffic data for one or more patterns indicative of communicative relationships between the applications; based on the one or more patterns being present in the traffic data, generate mappings between the applications that have communicative relationships therebetween; and store, in the database, the configuration data and the mappings.
A plurality of sniffing policies describing deep packet inspection processes performed on network traffic at sniffing access points from the plurality of access points is received. Network traffic levels are monitored at the plurality of access points and a level of sniffed traffic backhauled over the Wi-Fi network for analysis. A change can be detected in network traffic affecting a sniffing policy. Responsive to exceeding a certain level of sniffed traffic being backhauled, an amount of sniffed traffic sent upstream for analysis is adjusted. More specifically, a programmable policy engine at each of a sniffing access points serving as intrusion detection sensors to sniff traffic at various locations on the Wi-Fi network are reprogrammed dynamically. The adjustments reprogram a sniffing pipeline at each of the intrusion detection sensors including adjusting an endpoint device for sending sniffed traffic and dropping more traffic during deep packet inspection.
The disclosure provides a secure and scalable approach for (a) exchanging, between a first network and a second network, provisioning requirements of a user device, (b) executing a smart contract that includes the provisioning requirements, and (c) connecting the user device to one of the networks. The method comprises connecting the user device to a first network, and connecting the first and second networks through a scalable blockchain network. The method further comprises sending a smart contract, by the first network to the second network, through the blockchain network. The second network either accepts or rejects the contract. If the second network accepts, then the user device connects to the second network and the second network provides network services to the user device. The provided network services comply with the conditions or parameters of the smart contract.
There is provided a node of a network and a method of operating the same. According to the method, data transmissions between a plurality of resources at the node of the network are monitored (400). A pattern in the monitored data transmissions is identified between the plurality of resources at the node of the network (402). A distribution of the plurality of resources at the node of the network the network is adapted based on the identified pattern in the monitored data transmissions (404).
Embodiments described herein enable a receipt of a first input representative of a risk score for a data type and a plurality of second inputs representative of a plurality of a plurality of setting evaluations of a network-based application; and a presentation of a first polygonal shape based on the first input, a plurality of second polygonal shapes, and a third polygonal shape based on the second inputs such that the first polygonal shape and the second polygonal shapes are concentric with each other and such that the first polygonal shape and the third polygonal shape are presented over the second polygonal shapes. The presentation enables a user to readily visualize a set of areas where the first polygonal shape and the third polygonal shape differ in order to determine how the network-based application is compliant and non-compliant with the first input.
Application performance can be simulated based on captured application-specific traffic flows through a managed network. Traffic flows may be captured across the managed network and associated with a particular application. The captured flows can be used to generate trend lines and models. The generated trend lines and models may be used to simulate application performance responsive to changes in network characteristics and provided to a user through a graphical user interface as a graph. The user may then adjust simulated network characteristics through the graphical user interface to perform various hypothetical network simulations.
A Wi-Fi device includes a controller coupled to a writeable memory implementing a MAC and PHY layer and to a transceiver. Connection data stored in the writeable memory includes Wi-Fi connection parameters including ≥1 router MAC level information or a most recently utilized (MRU) channel used, and IP addresses including ≥1 of an IP address of the Wi-Fi device, IP address of the MRU router, an IP address of a MRU target server, and an IP address of a network connected device. An accelerated reconnecting to a Wi-Fi network algorithm is implemented by the processor is for starting from being in a network disconnected state, establishing current connection parameters for a current Wi-Fi network connection using the Wi-Fi connection parameters for at least one MAC layer parameter for the MAC layer.
A bearer configuration method and related products are disclosed. The method comprises: a first network device configures a bearer sequence number for at least one first bearer of a terminal, wherein the first bearer and at least one second bearer configured by the first network device for the terminal support a data duplication function, the first network device and a second network device provide dual connectivity (DC) transmission for the terminal, and a difference between a first bit to which a bearer sequence number of each first bearer is mapped and a most significant bit is greater than a difference between a second bit to which a bearer sequence number of each second bearer is mapped and the most significant bit.
Embodiments include a system for prognosis of a wireless aircraft network including a network manager including a network prognostic manager, one or more data controllers operably coupled to the network manager over a first connection, and one or more wireless nodes operably coupled to the one or more data controllers over a second connection, wherein the second connection is a different type of connection than the first connection, wherein the network manager includes a network prognostic manager, wherein the network prognostic manager. The network manager performs a method of receiving measured parameters from a wireless communications network, computing thresholds associated with the parameters, comparing the received parameters to the computed thresholds, identifying a failure condition based on the comparison of the received parameters to the computed thresholds, and based at least in part on the identified failure condition, executing a corrective action.
A transmission apparatus includes a transmission signal generator which, in operation, generates a transmission signal having an aggregate physical layer protocol data unit (PPDU) that includes a legacy preamble, a legacy header, a non-legacy preamble, a plurality of non-legacy headers and a plurality of data fields; and a transmitter which, in operation, transmits the generated transmission signal, wherein the legacy preamble, the legacy header and the plurality of non-legacy headers are transmitted using a standard bandwidth, the non-legacy preamble and the plurality of data fields are transmitted using a variable bandwidth that is larger than the standard bandwidth and wherein a plurality of sets of each of the plurality of non-legacy headers and each of the plurality of data fields are transmitted sequentially in a time domain.
Disclosed herein is a method and apparatus for a User Equipment to perform a phase tracking in a wireless communication system. According to the present invention, it may be provided the method and apparatus including receiving, from a base station, a Demodulation Reference Signal (DMRS) configured according to a specific pattern through a DMRS symbol; receiving, from the base station, a plurality of reference signals used for the phase tracking, wherein the plurality of reference signals is transmitted on a specific antenna port, and received through a specific resource region identical to at least one different reference signal transmitted on a different antenna port for the phase tracking; and performing the phase tracking based on at least one of the DMRS or the plurality of reference signals.
A method for data transmission of a random access procedure for a user equipment of a wireless communication system is disclosed. The method comprises transmitting a preamble and data of the random access procedure in one message to a network of the wireless communication system, wherein the step of transmitting the preamble and the data comprises transmitting the data with the same numerology as that of the preamble.
Embodiments described herein involve appliance migration. Embodiments include connecting, by a second appliance that is configured to perform a service, to a first uplink and a first downlink of a first appliance that is configured to perform the service. Embodiments include connecting, by the second appliance, to a first endpoint and a second endpoint to which the first appliance is connected. Embodiments include determining, by the second appliance, existing flows processed by the first appliance. Embodiments include processing, by the second appliance, a plurality of packets received via the first endpoint by: forwarding, by the second appliance, first packets of the plurality of packets that correspond to the existing flows to the first appliance; and performing, by the second appliance, the service for second packets of the plurality of packets that do not correspond to the existing flows.
An authorization method using provisioned certificates is disclosed. The method includes writing security attributes to fields within a certificate and issuing the certificate to a software application on a principal node. The software application requests to perform actions on one or more resources on a resource node, sending one or more action requests along with a copy of its certificate. The resource node has an agent which verifies the permissions from the certificate and routes the request to its designated resource. The resource node returns one or more messages to the principal node, verifying whether or not complete the requests.
Some embodiments provide a method for recovering user data for a device. To initiate recovery, the method sends to a first server a first request including at least (i) a device identifier and (ii) a first set of cryptographic data for a second set of servers with which the first server communicates. If the first server verifies the device identifier with an attestation authority, the method receives from the second set of servers a second set of cryptographic data generated by the second set of servers. After receiving input of a device passcode for the device, the method sends to the first server a second request comprising at least a third set of cryptographic data for the second set of servers generated based on the device passcode. If the first server verifies the device passcode with the second set of servers, the method receives access to the user data.
A computer-implemented method, computerized apparatus and computer program product for supporting fairness in secure computations. A trusted execution platform with remote attestation (“enclave”) is provided to each of a plurality of participants. An authenticated public ledger accessible by all participants is also provided. Each of the enclaves is configured for obtaining at least a portion of an input to a function for computing a joint secret output, complementing the input by obtaining any remainder portion(s) thereof from one or more other enclaves, and, responsive to obtaining an indication from the ledger that the output can be computed by each of the enclaves, providing to the owner participant the output computed using the function and input. At least one of the enclaves is further configured for providing the indication to the ledger responsive to obtaining knowledge that the output can be computed by each of the enclaves.
Hardware circuitry, in response to receiving a request for an authentication value of a plurality of authentication values of a replaceable item from a host device to which the replaceable item has been connected, determines that the authentication value was not previously sent. The circuitry responsively determines that the replaceable item previously sent a maximum number of unique authentication values of the authentication values. The maximum number of unique authentication values is less than a total number of the authentication values. The circuitry responsively sends the authentication value to the host device. The circuitry, once the authentication value has been sent or will have been sent to the host device, determines that the maximum number of unique authentication values has now been sent, and in response prohibits the authentication values that have not been sent from being sent later.
The present disclosure provides a key storing method, a key managing method and apparatus which belong to terminal technologies. An example method includes generating a terminal root secret key. A first key digest of the terminal root secret key is generated. The terminal root secret key is stored in a first specified storage region of a terminal, the first specified storage region being a password protected region. The first key digest is stored in a second specified storage region in the terminal, the second specified storage region being a programmable hardware region with fusible features.
A method for operating system to transmit a plurality of frames from a first communication device to a second communication device is disclosed. The method incudes generating a security-sequence using a security-sequence-counter-value, changing the security-sequence-counter-value to a new security-sequence-counter-value; encrypting, at the first communication device, the security-sequence using a first-derived-session-key to provide an encrypted-security-sequence-counter-value; providing, at the first communication device, a frame comprising the security-sequence and encrypted-security-sequence-counter-value, transmitting a first-type frame from the first communication device to the second communication device, decrypting the encrypted-security-sequence-counter-value using the first-derived-session-key to provide the security-sequence-counter-value, configuring a security-sequence detector to detect a security-sequence using the security-sequence-counter-value, setting a key-validity-counter-value in accordance with the number of first-type frames transmitted since the first-derived-session-key was updated; and updating the first-derived-session-key based on a master-session-key in response to the key-validity-counter-value reaching an update value.
An event interface system facilitates the creation of a blockchain object and deployment of the blockchain object on a blockchain. The system also provides an interface between events that may affect the blockchain object and the blockchain object stored on the blockchain. Additionally, the system can monitor a state of the blockchain object and control interactions with the blockchain object and updates to the blockchain object according to the determined state.
A method and apparatus for reducing a variable number of pre-key bits to a fix key size is disclosed. The resulting key is used with a symmetric block cipher to descramble content. By being able to directly adapt a large and variable number of bits, it is possible to use cryptographic algorithms that were not thought possible, such as the output of modem public key and hashing functions, in order to create a key to directly use with a symmetric block cipher. Some or all of the pre-key bits may be used in the creation of the key.
A backscatter communication method and apparatus based on pattern-based demodulation is disclosed. The backscatter communication method includes receiving a communication signal, and demodulating the communication signal based on a slope of the communication signal at an edge of each time interval.
Uplink carrier aggregation architecture. In some embodiments, an uplink (UL) carrier aggregation (CA) architecture may include a first antenna port and a second antenna port. The UL CA architecture may also include a first radio-frequency (RF) circuit configured to route a first transmit (TX) signal and a first receive (RX) signal to and from the first antenna port, respectively, the first RF circuit further configured to route a second RX signal from the first antenna port. The UL CA architecture may further include a second RF circuit configured to route a second TX signal to the second antenna port to provide UL CA capability between the first and second TX signals.
A wireless communication device (alternatively, device, WDEV, etc.) includes at least one processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. The WDEV generate a first orthogonal frequency division multiple access (OFDMA) frame that specifies information regarding resource unit (RUs) to be used by other WDEV. The WDEV transmits the first OFDMA frame to other WDEVs and receives a second OFDMA frame from the WDEVs based on some RUs specified within the first OFDMA frame. The WDEV then generates and transmits a third OFDMA frame to the other WDEVs (e.g., based on RU(s) spanning RU(s) within which information is received in the second OFDMA frame).
A technique for transferring data in a radio communication is described. As to one method aspect of the technique, the data is received in at least two hybrid automatic repeat request (HARQ) processes (580, 582). For each of the at least two HARQ processes (580, 582), an error detection scheme is performed for the received data. For each of the at least two HARQ processes (580, 582), a feedback (596, 598) is sent based on a logical combination (589) of results (585, 587) of the error detection scheme for the at least two HARQ processes (580, 582).
A device includes a transmitting unit configured to transmit a first allocation signal synthesized by use of the superimposed coding to plenty of user equipment at least including a first and a second user equipment, and the first allocation signal at least including a first power signal part for the first user equipment and a second power signal part for the second user equipment; a receiving unit that receives at least a feedback retransmission request from the first and the second user equipment; and a processing unit that processes the first and the second power signal parts with a preset processing coefficient to obtain a second allocation signal in response to the retransmission request.
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
The present invention discloses a device and a method for monitoring two-stage faults of a TDM-PON with high precision. A two-stage TDM-PON system includes an OLT I, a feeder fiber II, a stage-1 1:n optical splitter III, a stage-1 branch fiber IV, a stage-2 1:n optical splitter V, a stage-2 branch fiber VI, and an optical network unit (ONU) VII. A two-stage optical network monitoring system includes a monitoring part on the OLT I side and a monitoring part on the ONU VII side, where the monitoring part on the OLT I side includes a control-end isolator-free semiconductor laser, a control-end coupler, a control-end optical coupling device, a control-end photodetector, an integrated signal acquisition and processing device, and an optical coupling device; and the monitoring part on the ONU VII side is similar to the monitoring part of the OLT I side.
Provided is an anti-interference method and system. The anti-interference method includes: setting an orthogonal code division sequence according to a subcarrier position in a frequency domain of resource elements (REs) of a data channel in at least one sub-frame; and configuring transmitting frequency domain symbols of the REs by using the orthogonal code division sequence corresponding to the subcarrier position of the REs.
An optical interconnect computing module having free space optical interconnects that form communication links with other systems with like optical interconnects and with computer blades contained within the computing module. The computing module adapts to changes in the position and orientation and other factors of the optical interconnects. The optical interconnects utilize solid-state electronic and optoelectronic components and optical components. The ability to adapt is controlled by an algorithm implemented in software, firmware and logic circuits. Computing modules within an equipment rack and between equipment racks as well as blades contained within a computing module may experience changes in position and orientation due to installation misalignment, servicing of equipment, vibrations, floor sagging, thermal expansion and contraction, earthquakes, line-of-sight obstructions, manufacturing imperfections and other sources.
Thermal control is provided for external light sources for silicon photonics based pluggable modules. In one embodiment, an apparatus comprises a first circuit board; a light source disposed upon the first circuit board; a silicon photonics modulator; a connector comprising a first portion and a second portion, wherein: the first and second portions are physically matable and separable; mating the first and second portions of the connector optically couples the first and second portions, the first portion is disposed upon the first circuit board, and is optically coupled to an output of the light source, and the second portion is optically coupled to an input of the silicon photonics modulator; and a thermal controller to control a temperature of the light source. Some embodiments disable the light source when the connector is separated.
In high data rate receivers, comprising a photodetector (PD) and a transimpedance amplifier (TIA), a transmitted optical signal typically has poor extinction ratio, which translates into a small modulated current with a large DC current at the output of the PD. The large DC current saturates the TIA, which significantly degrades the gain and bandwidth performance. Accordingly, cancelling photo diode DC current in high data rate receivers is important for proper receiver operation. A DC current cancellation loop, comprising a low pass filter section and a trans-conductance cell (GM) are connected to the input of the TIA. PD DC current IDC is drawn from the input node of the TIA in the GM cell, such that the cancellation loop maintains the DC voltage value of the TIA input node to be the same as a reference voltage (VREF).
A method and structure for tap centering in a coherent optical receiver device. The center of gravity (CG) of the filter coefficients can be used to evaluate a proper convergence of a time-domain adaptive equalizer. However, the computation of CG in a dual-polarization optical coherent receiver is difficult when a frequency domain (FD) adaptive equalizer is adopted. In this case, the implementation of several inverse fast-Fourier transform (IFFT) stages is required to back time domain impulse response. Here, examples of the present invention estimate CG directly from the FD equalizer taps and compensate for an error of convergence based off of the estimated CG. This estimation method and associated device architecture is able to achieve an excellent tradeoff between accuracy and complexity.
A reflection-type coherent optical communication system combined with unidirectional optical signal amplification, comprises a polarization controller, a polarization beam splitter, a polarization maintaining optical circulator, an In-line polarizer, an optical modulator, a photoelectric converter, an electrical comparator, an optical amplifier, a laser, a coupler, a reflection end and a coherent receiver. A light source is disposed at a receiving end, and the laser emits an optical carrier. The optical carrier is transmitted through the coupler and an optical fiber. Thereafter, the polarization state of the optical carrier is controlled by two ways, the optical carrier passes through the polarization controller in a first way, and two beams of light are output by the polarization beam splitter. A beam of light with high-power is modulated through a first branch, and the modulation signal is returned along an original optical path.
A coherent optical receiver for AM optical signals has a photonic integrated circuit (PIC) as an optical front-end. The PIC includes a polarization beam splitter followed by two optical hybrids each followed by an opto-electric (OE) converter. Each OE converter includes one or more differential detectors and one or more squaring circuits, which outputs may be summed. The PIC may further include integrated polarization controllers, wavelength demultiplexers, and/or tunable dispersion compensators.
An optical module includes a photoelectric converter configured to receive an optical signal having an intensity that changes at one of a first frequency or a second frequency that is higher than the first frequency, and convert the optical signal into a current signal corresponding to the intensity of the optical signal; a signal processor configured to acquire, when the optical signal has the intensity that changes at the first frequency, wavelength information set on a transmitting side based on a ratio between a plurality of signal intensities included in the current signal relating to the optical signal having the intensity that changes at the first frequency; and a decoder configured to generate, when the optical signal has the intensity that changes at the second frequency, communication data from the current signal relating to the optical signal having the intensity that changes at the second frequency.
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
A method and an apparatus for predicting a fault of an optical circuit includes determining a classification threshold of an operating parameter based on a classification sample set corresponding to the operating parameter of optical circuit and predicting, based on comparison results between the classification threshold and a plurality of measured values in a sequence, whether a fault occurs in the future on the optical circuit corresponding to the sequence.
Examples disclosed herein relate to a high gain active relay antenna system. The active relay antenna system comprises a first antenna pair having a first receive antenna and a first transmit antenna to communicate wireless signals in a forward link from a base station to a plurality of users; and a second antenna pair having a second receive antenna and a second transmit antenna to communicate wireless signals in a return link from the plurality of users to the base station. The active relay antenna system further comprises a first active relay section and a second active relay section to provide for adjustable power gain in the wireless signals.
A wireless communication device includes a look-up table that stores a beam pattern table, and at least one beamforming antenna transmitting or receiving a radio signal with a beam pattern specified by a set of antenna weight vectors selected from the beam pattern table, where a number of antenna weight vectors for obtaining a beam pattern with a narrow half power beam width for transmission included in the beam pattern table is larger than a number of antenna weight vectors for obtaining a beam pattern with a narrow half power beam width for reception.
Methods, systems, and devices for wireless communication are described. A network device, such as a base station, may transmit a request message to a user equipment (UE). The request message may include a request for the UE to transmit a set of sounding reference signals (SRSs). The set of SRSs may include two (or more) beamformed signals. The network device may receive the set of SRSs according to the request message. The network device may identify, based on a co-phasing parameter associated with the two (or more) beamformed signals, an antenna port precoder configuration to use for communicating with the UE.
The present invention relates to a 5th-generation (5G) or pre-5G communication system provided for supporting higher data transmission rates than 4th-generation (4G) communication system such as long term evolution (LTE). The present invention relates to a method in which an access point (AP) operates a full-duplex scheme in a communication system supporting a beam-forming scheme, the method comprising the steps of: generating a magnetic interference intensity table according to transmitted beam patterns and received beam patterns; determining, by the AP, a transmitted beam pattern and a received beam pattern for all stations (STAs) on the basis of channel measurement feedback information received from the stations, which provide service, and the electromagnetic-interference intensity table; and performing a communication operation with each of the stations on the basis of the determined transmitted beam pattern and received beam pattern.
Devices and methods are disclosed for generating on the basis of a first protograph matrix P1 of size m×n, wherein the first protograph matrix P1 defines a first code H1, a second protograph matrix P2 of size (m+d)×(n+d), wherein the second protograph matrix P2 defines a second code H2. The device comprises a processor configured to: generate an auxiliary protograph matrix P′ of size (m+d1)×(n+d1) on the basis of the first protograph matrix P1 using row splitting; generate d2 random integer numbers, wherein d2=d−d1; generate a binary matrix M of size d2×(n−m), wherein rows of the binary matrix M are generated on the basis of the d2 random integer numbers; generate a matrix M′ by lifting the binary matrix M; Other operation steps are also included.
Entropy agnostic data encoding includes: receiving, by an encoder, input data including a bit string; generating a plurality of candidate codewords, including encoding the input data bit string with a plurality of binary vectors, wherein the plurality of binary vectors includes a set of deterministic biased binary vectors and a set of random binary vectors; selecting, in dependence upon a predefined criteria, one of the plurality of candidate codewords; and transmitting the selected candidate codeword to a decoder.
Disclosed examples include a segmented DAC circuit, including an R-2R resistor DAC to convert a first subword to a first analog output signal, an interpolation DAC to offset the first analog output signal based on an N-bit digital interpolation code signal to provide the analog output signal, and a Sigma Delta modulator to modulate a modulator code to provide the N-bit digital interpolation code signal that represents a value of second and third subwords.
An apparatus and method for sampling an analog signal with analog-to-digital converters (ADCs) is disclosed. The ADCs may be separated into a group of interleaved ADCs and a spare ADC. The interleaved ADCs can sample the analog signal according to an interleaving sequence. An interleaved ADC controller can monitor the inactivity of the spare ADC and can replace one of the interleaved ADCs in the interleaving sequence with the spare ADC based on the inactivity.
Methods and circuits are provided for range extension of a phase-locked loop (PLL). The PLL uses a phase subtractor with a limited unextended range. It also includes first and second registers and combinatorial logic. The phase subtractor calculates the current phase difference. The first register stores the previous phase difference. The combinatorial logic determines, from the current phase difference and the previous phase difference, if a range excursion occurs, and if it is upward or downward. When an upward excursion occurs, the value in the second register is incremented. When a downward excursion occurs, the value of the second register is decremented. The bits in the second register are combined with the bits of the current phase difference to obtain an extended current phase difference.
A CDR method/circuit utilizes a closed-loop clock alignment circuit and a duplicate clock to align a sampling point clock to both mid-interval and optimal sample point phases during data receiving processes. An initial clock is generated having the mid-interval sampling point phase, then the closed-loop clock alignment circuit generates a phase correction signal based on a phase difference between the data sampling clock and the initial clock, and then the phase correction signal is fed back to a high-speed phase mixer to adjust/align the sampling point clock to the initial clock. Subsequently, the duplicate clock is generated and utilized to determine an optimal sampling point phase while the data sampling clock is utilized to read the received data signal, and then the closed-loop clock alignment circuit is re-used to re-align the data sampling clock to the duplicate clock when the optimal sampling point phase is identified.
The various embodiments described herein include methods, devices, and systems for operating superconducting circuitry. In one aspect, a programmable circuit includes: (1) a superconducting component arranged in a multi-dimensional array of alternating narrow and wide portions, the superconducting component having an input terminal at a first end and an output terminal at a second end opposite of the first end; and (2) control circuitry coupled to the narrow portions of the superconducting component, the control circuitry configured to transition the narrow portions between superconducting and non-superconducting states.
To provide a semiconductor device that generates a stable negative potential with high accuracy and achieves lower power consumption. The semiconductor device includes a voltage conversion circuit, a comparator, a logic circuit, a transistor, and a capacitor. The voltage conversion circuit has a function of outputting, as a second signal, a signal obtained by conversion of a voltage of an input first signal in response to a clock signal output from the logic circuit. The comparator has a function of being controlled to be supplied with or not supplied with a power supply voltage in response to a power gating signal. The transistor has a function of holding an output voltage of the comparator in the capacitor in a period during which the transistor is in an off state. The logic circuit has a function of switching between supply and stop of the clock signal on the basis of the voltage held in the capacitor in a period during which the power supply voltage to the comparator is stopped.
A drive device for a semiconductor element includes a drive circuit receiving from outside a pulsed drive signal for driving ON/OFF of the semiconductor element; and a protection circuit receiving a signal representing a chip temperature of the semiconductor element and, when the detected chip temperature exceeds an overheating threshold temperature, controlling operation of the drive circuit so as to adjust a drive control voltage that is provided to the semiconductor element; and a drive information output circuit externally outputting drive information corresponding to the adjusted drive control voltage that is provided to the semiconductor element by the drive circuit.
In a switch circuit for use in a vehicle, conduction between a drain electrode and a gate electrode of each of a first main transistor and a second main transistor is switched on or off depending on a voltage between the gate electrode and a source electrode. A first surge protection device is connected between the drain electrodes of the first main transistor and the second main transistor. The first surge protection device keeps a voltage that is applied to the first surge protection device at a first predetermined voltage or lower. A sub transistor is provided between the gate electrodes and the source electrodes of the first main transistor and the second main transistor. The sub transistor is turned on when the first main transistor and the second main transistor are turned off.
A delay line includes a delay chain, a pulse generator generating a pulse based on a received input signal, and a delay chain control circuit. The delay chain control circuit has a first input receiving the pulse, a second input receiving output from a last element of the delay chain, and a selection input receiving a delayed version of the received input signal. The delay chain control circuit has an output coupled to provide input to a first element of the delay chain in response to the delayed version of the received input signal. An output selection circuit receives outputs from each element of the delay chain, counts assertions of the output of the last element of the delay chain and, in response to the count being equal to a desired count, passes a desired one of the outputs of the elements of the delay chain as output.
In certain aspects, a delay circuit includes a multiplexer, a first delay path coupled between an input of the delay circuit and a first input of the multiplexer, and a second delay path coupled between the input of the delay circuit and a second input of the multiplexer. The first delay path includes a first delay device, and the second delay path includes a first inverter, a second delay device, and a second inverter. In other aspects, a delay circuit includes a latch including a first input, a second input, and an output. The first input of the latch is coupled to an input of the delay circuit. The delay circuit also includes a delay path coupled between the input of the delay circuit and the second input of the latch, wherein the delay path includes a pulse generator and a delay device.
A filter includes a series arm resonator, a first parallel arm resonance circuit and a second parallel arm resonance circuit. The each of the first parallel arm resonance circuit and the second parallel arm resonance circuit includes: a parallel arm resonator that is connected to a node; a pair of elements consisting of a capacitor and a switch, which are connected in parallel with each other, that is connected in series with the parallel arm resonator; and an inductor that is provided on a path that connects the node and ground to each other via the switch. The inductance value of the inductor of the first parallel arm resonance circuit and the inductance value of the inductor of the second parallel arm resonance circuit are substantially equal to each other.
Duplexers for high power applications are disclosed. In some embodiments, a duplexer includes 2N band pass filters, where N is an integer greater than 1. The 2N band pass filters each have an input and an output and are in an electrically parallel configuration. The duplexer includes a first adaptation circuit configured to couple a transmit signal received from a transmitter to each one of the 2N band pass filters. The duplexer includes a second adaptation circuit configured to couple outputs of the 2N band pass filters to an antenna, the second adaptation circuit providing an isolated path between the antenna and a receiver.
Broadband power splitter. In some embodiments, a power splitter can include an input port, a first output port and a second output port. The power splitter can further include a first signal path implemented between the input port and the first output port, and a second signal path implemented between the input port and the second output port. Each of the first and second signal paths can include a variable capacitance configured to provide a plurality of capacitance values that result in different frequency responses of the respective signal path.
In an embodiment, a class-AB amplifier includes: an output stage that includes a pair of half-bridges configured to be coupled to a load; and a current sensing circuit coupled to a first half-bridge of the pair of half-bridges. The current sensing circuit includes a resistive element and is configured to sense a load current flowing through the load by: mirroring a current flowing through a first transistor of the first half-bridge to generate a mirrored current, flowing the mirrored current through the resistive element, and sensing the load current based on a voltage of the resistive element.
A configurable amplifier module is disclosed. The configurable amplifier module includes a first amplifier having a non-inverting input, an inverting input, and a first output; a second amplifier having a non-inverting input, an inverting input, and a second output; a first resistor; a second resistor; a third resistor; a detecting unit connected to the second output of the second amplifier and configured to detect whether a current flows through the detecting unit; and a control unit connected to the second resistor and the detecting unit and configured to control the second resistor to be connected to the third resistor or a direct current signal.
The present disclosure relates to a power amplifier circuit. The power amplifier circuit includes a voltage-controlled current source and a current mirror. The voltage-controlled current source is configured to receive a first voltage and to generate a first current. The current mirror is connected to the voltage-controlled current source and to generate a second current in response to the first current. The second current continuously changes from 0 mA to about 120 mA as the first voltage continuously changes from 0 V to about 1 V.
A quartz crystal resonator is coupled to an electronic circuit. A capacitive or resistive element is provided for adjusting a frequency of the quartz crystal resonator on activation or deactivation of a function of a circuit. Control is made according to a model of an expected variation of a temperature of the quartz crystal resonator.
A quartz crystal resonator is connected to an array of switchable capacitors or resistors. The switched actuation of elements of the array is controlled by bits of a control word. At least one of the bits of the control word is controlled by pulse width modulation to effectuate a tuning of the oscillation frequency of the quartz crystal resonator.
A cable management system includes a cable-retaining spacer block defining a plurality of cylindrical passages arranged to define a rectangular array. Each cylindrical passage is configured to receive a transmission cable. Brackets are configured to support ends of the cable-retaining spacer block and enable suspension from a support cable. Another cable management system includes a center base, first and second intermediate wings configured to operably couple to the center base to define a first plurality of cylindrical passages configured to retain transmission cables therein, and first and second outer wings configured to operably couple to the first and second intermediate wings to define a second plurality of cylindrical passages configured to retain transmission cables therein. These cable management systems enable snap-together engagement without the use of tools, thus facilitating assembly.
A system for controlling a rotation of one or more solar panels about an axis of rotation, comprising one or more solar panels defining a longitudinal axis, one or more bellows actuators coupled to the one or more solar panels and defining an axis of rotation parallel to the longitudinal axis of the panels, a fluid source, a first valve circuit coupled to the bellows actuators and the fluid source, a second valve circuit coupled to the bellows actuators and the fluid source, and a controller, wherein introduction or release of fluid from one or more of the bellows actuators is configured to cause rotation of the one or more actuators about the axis of rotation.
A power apparatus applied in an SST structure includes a first AC-to-DC conversion unit, a first DC bus, an isolated transformer, a DC-to-AC conversion unit, a second AC-to-DC conversion unit, and a second DC bus. The first AC-to-DC conversion unit has a first three-level bridge arm and a second three-level bridge arm. The first DC bus provides a first DC voltage. The isolated transformer has a primary side and a secondary side. The DC-to-AC conversion unit has a third three-level bridge arm and a fourth three-level bridge arm. The second AC-to-DC conversion unit has a fifth three-level bridge arm and a sixth three-level bridge arm. The second DC bus provides a second DC voltage.
Embodiments herein relate to a three-phase paralleled passive front-end drive, that includes a rectifier bridge, a coupling reactance operably connected to the rectifier bridge and configured to transfer power from the rectifier to a first direct current (DC) bus, and a bus coupler operably coupling the first DC bus to a second DC bus. The paralleled drive also includes a first inverter operably connected to the first DC bus; a second inverter operably connected the second DC bus, the first inverter and second the inverter each configured to provide a plurality of motor excitation signals, respectively. The paralleled drive also includes a plurality of interphase inductors operable to combine the plurality of motor excitation signals from the first inverter with the plurality of motor excitation signals from the second inverter.
Provided is a power converter capable of being miniaturized while securing noise resistance and insulation between a power semiconductor module and a drive circuit board.
The power converter according to the present invention includes a power semiconductor module that converts DC power into AC power, a driving signal circuit board that outputs a driving signal for driving the power semiconductor module, and a resin support member that supports the driving signal circuit board, in which the power semiconductor module has a signal terminal that transmits the driving signal and a main terminal that transmits an input of the DC power and an output of the AC power, the support member is disposed between the driving signal circuit board and the power semiconductor module, the signal terminal and the main terminal are provided on a side of the power semiconductor module that faces the support member, and a metal shielding plate is embedded in a region between the driving signal circuit board in the support member and the main terminal.
Voltage regulator circuits and methods therefor provided. In some embodiments, a voltage regulator circuit comprises: a first switch coupled to a power input; a second switch coupled to the first switch; a switching node between the first switch and the second switch; an inductor coupled between the switching node and an output node; a capacitor coupled between the output node and ground; a driver configured to operate the first and second switches according to a pulse-width-modulated (PWM) signal; a PWM circuit configured to generate the PWM signal based on at least an error signal; and a phase detector configured to generate the error signal based on a phase difference between the PWM signal and a clock reference signal.
An ultrasound transducer may be driven by a driver circuit having one or more charge pumps and a multi-level inverter. The one or more charge pumps are configured to drive the ultrasound transducer only during output transitions of the inverter.
An LLC converter includes a transformer that includes a primary winding and a secondary winding, a resonant stage that includes the primary winding, a switching stage that includes switches and that is connected to an input voltage and the resonant stage, a rectifying stage that is connected to the secondary winding and that provides an output voltage, and a controller that senses the output voltage and that controls switching of the switches based on proportional-integral control of the output voltage to reduce errors in the output voltage with respect to a DC voltage and based on quasi-resonant control of the output voltage to reduce errors in the output voltage with respect to a range of voltages with a frequency bandwidth.
A transport system includes: a mover having a first magnet group arranged in parallel to a first direction and a second magnet group arranged in parallel to a second direction crossing the first direction; and a plurality of coils arranged in parallel to the first direction so as to be able to face the first magnet group and the second magnet group, and the mover is able to move in the first direction along the plurality of coils by electromagnetic force received by the first magnetic group from the plurality of coils while an attitude of the mover is controlled by electromagnetic force received by the first magnetic group or the second magnetic group from the plurality of coils.
A device for storing kinetic energy, which has a flywheel in a housing. The flywheel is mounted in the housing via a shaft. A motor-generator unit is provided for storing energy as well as for energy recovery. In order to improve efficiency, a vacuum pump for evacuating the interior is arranged in the housing. The vacuum pump is disposed on the shaft.
A rotary electric rotor includes a rotor core having a shaft through-hole; a rotor shaft having a male screw portion on its first side; a washer having an annular structure with cutouts elastically deformable in a radial direction, having a washer tapered surface, and having an annular projection portion that extends in an axial direction from an end surface and is fixed to the rotor core in a state of being disposed in a gap between an inner circumferential surface of the shaft through-hole and an outer circumferential surface of the rotor shaft and pressing the inner circumferential surface of the shaft through-hole, the end surface and the washer tapered surface are opposite surfaces of the washer; and a nut having a female screw portion that meshes with the male screw portion and having a nut tapered surface that faces the washer tapered surface.
Disclosed herein are a motor and a method of manufacturing the motor. The motor includes a rotor, a stator including a plurality of coil bobbin unit groups, and a coil prepared on coil bobbin units by winding a wire sequentially on coil bobbin units of each coil bobbin unit group, cutting the wound wire at a cutting point, connecting one end of the cut wire to a neutral point port, and connecting the other end of the cut wire to a driving point port.
In order to reduce a power transmission antenna and power receiving antenna of a wireless power supply device for supplying power underwater to a size suitable for an underwater mobile body and sensor, this underwater wireless power supply device 101 wirelessly transmits energy by resonating at a frequency determined by the impedance of a power transmission antenna 103 that transmits energy wirelessly in a good conductor medium 102, the impedance of a power receiving antenna 104 which receives energy transmitted from the power transmission antenna 103, and the impedance of the good conductor medium 102. The power transmission antenna 103 and the power receiving antenna 104 have the multiple antenna coils 105, 106, and at least one dielectric 107, 108 arranged between the multiple antenna coils 105, 106, and the multiple antenna coils 105, 106 each has multiple laminated coils 109.
A transmitter coil inductively couples to a receiver coil contained in a contact lens. In one approach, the transmitter coil is contained in a headgear, for example a head band. When the user wears the headgear, the transmitter coil is positioned on a side of the user's head and between the user's ear and the user's eye opening. In one implementation, a head band loops from one ear behind the user's head to the other ear, and also extends slightly forward of each ear. The transmitter coil(s) may be located in the portion of the headband that extends forward of each ear. This places the transmitter coil close to the receiver coil, typically within 40-50 mm of the user's eye opening, while still maintaining an unobtrusive aesthetic.
A power tool charging device includes a charging unit that charges a rechargeable battery of a power tool, a condition detection unit that detects condition information of the rechargeable battery, and an information processing unit that receives the condition information of the rechargeable battery from the condition detection unit and outputs the received condition information of the rechargeable battery to a communication unit capable of performing near field communication with another device.
The device housing includes a roller cradle. The device can include a device support roller rotationally located in the roller cradle, the device support roller being removably couplable with the roller cradle. Also, a release mechanism can be include, where the release mechanism includes a push button operably coupled to a coupler mechanism that is operably coupled to the device support roller. The release mechanism and/or coupler mechanism are biased. When the release mechanism is not activated, the device support roller is engaged, and when the release mechanism is active, the device support roller is disengaged. The system can include a plurality of device support rollers, each device support roller having a device-receiving slot, each device-receiving slot being of a different shape and/or dimension from the other device-receiving slots of the other device support rollers.
Embodiments of this application disclose a charging method and related devices. An example charging method includes: sending a charging start request for a packet data unit (PDU) session to a charging function apparatus, where the charging start request carries an indication receiving address; receiving an indication message that is sent by the charging function apparatus based on the indication receiving address, where the indication message carries an indication type; and performing charging processing based on the indication type.
An ESD circuit is connected to a power pad and a first node. The ESD circuit includes a RC circuit and a first ESD current path. The RC circuit is connected between the power pad and the first node. The RC circuit is capable of providing a first control voltage and a second control voltage. The first ESD current path is connected between the power pad and the first node. When the power pad receives a positive ESD zap, the first ESD current path is turned on in response to the first control voltage and the second control voltages provided by the RC circuit, so that an ESD current flows from the power pad to the first node through the first ESD current path.
A closing control method for a high-voltage DC circuit breaker. The method comprises: closing breaking units of the transfer branch (2) group by group, then closing the main branch (1), and finally open the transfer branch. During the process of closing the breaking units of the transfer branch group by group, determine whether there is a fault in the power transmission system after closing current breaking unit group. if there is no fault, proceed to close the next breaking unit group until all breaking unit groups are closed before proceeding to the next step; if there is a fault, all the breaking units that have been closed are opened and the closing operation is ended. The method can pre-charge the power transmission system during the closing process of the high-voltage DC circuit breaker, and lower the overvoltage and system oscillation caused by the closing operation.
The invention relates to an improved surge protection device comprising a fast acting, self-restoring circuit breaker, preferably, along with surge arrestor/absorber to improve the protection and availability of the equipment which is in use with power source affected with surges/spikes which otherwise would have operated the spike/surge arrestor in-built in the equipment that would have led to its non-availability, and protection for equipment that may or may not be having in-built overcurrent, surge protection devices.
Current hoist systems often use a manual crank system with a lever arm that ratchets a rotational drum to tension a conductor. This disclosure describes systems and techniques for creating and operating a hoist system when connected and applying tension to an energized or de-energized conductor. Additionally, the systems and techniques may be applied to lifting or tensioning electrical equipment or cables that may support the conductor infrastructure. A hoist system may use a locally driven motor to apply a desired tension to a conductor or cable and may be controlled by an operator located at or away from the hoist system itself.
A cable management assembly for guiding cable arranged in a tray includes a guide member and a cable manager member. The guide member has a mounting region shaped to receive a portion of a side of the tray to mount the guide member to the tray, and has a contoured guiding surface forming at least part of an outer surface thereof. The contoured guiding surface defines a guide path for cable extending from an interior, over the contoured guiding surface and to an exterior. The cable manager member has a mounting region shaped to fit around at least a portion of the contoured guide surface of the guide member and an extension that extends away from the body. The cable manager member is adjustably mountable along a length of the guide member to position the extension adjacent the guide path.
A laser projection module, that may include a laser projection module cover comprising a top portion, a bottom portion and a one or more of side portions to define a cavity within the cover, wherein the top portion is configured to couple an optical lens. A lead frame may be at least partially integrated into the bottom cover portion of the laser projection module, where the lead frame includes an outer lead frame portion and an inner lead frame portion relative to the cover, wherein the inner lead frame portion is configured to couple a laser diode assembly in one area of the inner lead frame portion within the cavity.
A light source comprises a GeSn active zone inserted between two contact zones. The active zone is formed directly on a silicon oxide layer by a first lateral epitaxial growth of a Ge germination layer followed by a second lateral epitaxial growth of a GeSn base layer. A cavity is formed between the contact zones by encapsulation and etching, so as to guide these lateral growths. A vertical growth of GeSn is then achieved from the base layer to form a structural layer. The active zone is formed in the stack of base and structural layers.
At least one example embodiment is directed to a device including a first section having a connector that enables communication according to a first protocol. The device may further include a second section engageable with the first section. The second section may include a cavity that houses the connector when the second section is engaged with the first section, and an antenna that enables wireless communication according to a second protocol when the second section is engaged with the first section.
An electrical power system including an electrical power connector, a contact configured to electrically connect a power supply to a load, a first sensor configured to sense a first characteristic of the electrical power connector, a second sensor configured to sense a second characteristic of the electrical power connector, and an electronic controller. The electronic controller configured to receive the first and the second characteristics, analyze the first and second characteristics, and determine an abnormal condition based on the analysis.
Electrical extension cord stand and anchor apparatuses provide a stand comprising a base having at least one set of prongs extending perpendicular from a surface of the base, wherein the base comprises means for holding the base onto a surface. The at least one set of prongs mates with a pair of slots in an electrical extension cord head having a plurality of pairs of slots therein for plugging electrical devices therein. Methods of making and using the same are further provided.
A waterproof electrical connector system enables quick and easy coupling of a first and second housing to electrically connect a first and second electrical cable connected thereto. The electrical cables extend into a fixed portion of the housings and are electrically coupled with a bridging connector that is configured in a rotating portion of the housing. The assembly of the first and second housings has a latch and latch extension that can be moved along a radial portion of a latch channel to a circumferential portion of the latch channel to enable the rotating portions of the housings to be rotated. Upon rotating the rotating portions, the electrical cables are electrically connected by the bridging connector. The two housings may be substantially the same, having the same components and the same geometry. Each housing may have an inner and outer latch channel and latch interface, making operation quick and easy.
It is aimed to provide a connector capable of ensuring good sealing. A connector (10) includes a female housing (20) having a female-side sealing surface (22), a male housing (30) having a receptacle (62) into which the female housing (20) is fit, a sealing ring (40) disposed in the receptacle (62) and to be held in close contact with the sealing surface (40) when the female housing (20) and the male housing (30) are connected, and a protecting member (50) mounted on the female housing (20) to cover the female-side sealing surface (22).
An electrical connector includes an insulative housing forming a mating cavity, a plurality of passageways located by two sides of the mating cavity, a bottom cover attached upon a bottom side of the housing to shield the mating cavity in a vertical direction. A plurality of contacts are disposed in the corresponding passageways, respectively. Each contact includes a retaining section retained in the corresponding passageway, a resilient contacting section extending from the retaining section and into the mating cavity, and a leg extending from the retaining section and downwardly through the bottom cover. A waterproofing glue plate is attached upon the bottom cover, and the legs of the contacts extend through the glue plate. The leg forms a transverse groove located in at least one surface and embedded within the glue plate so as to enhance securement between the glue plate and the leg.
A waterproof structure for a connector includes a housing retaining terminals and having an opening, a cover closing the opening, and a packing mounted on the cover and sealing between the housing and the cover at the opening. The cover has through holes and projections projecting from an outer surface of the cover. The packing has a body sandwiched between the housing and the cover and locked portions continuous to the body. The locked portion projects from the through hole to an exterior space of the cover toward a direction in which the projection projects, and the locked portion is locked by the projection at least in a direction perpendicular to the direction of projection of the projection.
A connector terminal may include a terminal body extending along a center line, a contact portion provided at a first end portion of the terminal body in an extension direction of the terminal body, and a lance portion provided at a second end portion of the terminal body in the extension direction of the terminal body. The lance portion includes at least three positioning lances, when viewed from the extension direction of the center line, an angle formed by a first imaginary straight line connecting the center line and the first positioning lance and a second imaginary straight line connecting the center line and the second positioning lance is larger than 0 degrees and smaller than 180 degrees around the center line, and an angle formed by the first imaginary straight line and a third imaginary straight line connecting the center line and the third positioning lance is larger than 0 degrees and smaller than 180 degrees around the center line.
Disclosed is a method of preparing an amino acid ester of maytansinol by reacting maytansinol with an N-carboxyanhydride of an amino acid (NCA) in the presence of a drying agent. Also disclosed is an improved method of preparing an amino acid ester of maytansinol in which a nucleophile is added to the reaction mixture after completion of the reaction between maytansinol and an N-carboxyanhydride of an amino acid.
An antenna system comprises a first antenna element adapted to a first frequency band and a second antenna element adapted to a second frequency band different from the first frequency band. The first antenna element includes a radiating structure having a planar radiating element and configured to radiate at a frequency in the first frequency band and a band-stop filter having a planar conductive element and configured to attenuate a current flow at a frequency in a second frequency band different from the first frequency band. The planar conductive element is arranged in a meander pattern, has an end electrically connected to the planar radiating element, extends in a direction substantially parallel to the planar radiating element, and has an electrical length substantially equal to ¼ of a wavelength of the frequency in the second frequency band.
A phased array antenna includes an array of antenna element modules. Each of the array of antenna element modules includes a dielectric substrate having a lower surface and a radiating element. Each of the antenna element modules also includes an integrated circuit (IC) chip adhered to the lower surface of the dielectric substrate. The IC chip includes a circuit to adjust a signal communicated with the radiating element. The phased array antenna also includes a multi-layer substrate underlying the array of antenna element modules, the multi-layer substrate including a beam forming network (BFN) circuit formed on a layer of the multi-layer substrate and the BFN circuit is in electrical communication with the IC chip of each of the array of antenna element modules.
An antenna and a base station including the antenna. The antenna includes a sub-array that includes first and second unit cells and a feed network. The first and second unit cells comprise first and second patches, respectively, having quadrilateral shapes. The feed network comprises a first transmission line terminating below first corners of the first and second patches, respectively; a second transmission line terminating below third corners of the first and second patches, respectively; a third transmission line terminating below a second corner of the first patch and a fourth corner of the second patch; and a fourth transmission line terminating below a fourth corner of the first patch and a second corner of the second patch. The first corners are opposite the third corners on the respective first and second patches and the second corners are opposite the fourth corners on the respective first and second patches.
According to examples of the disclosure, a wearable audio device is provided. The device includes a ground plane, an enclosure configured to enclose the ground plane, and configured to be coupled to an ear of a user, and an elliptically polarized spiral monopole antenna configured to be coupled to the ground plane. The antenna includes a ring and a plurality of arms, each arm of the plurality of arms being configured to be coupled between the ring and the ground plane.
Embodiments of wireless audio systems and methods for wirelessly communicating audio information are disclosed herein. In one example, wireless transceiver includes a first antenna, a second antenna, and a radio frequency (RF) module. The first antenna is configured to establish a first wireless communication link with an audio source. The second antenna is configured to establish a second wireless communication link with another wireless transceiver. The RF module is configured to receive audio information from the audio source using the first wireless communication link and transmit audio play information to the another wireless transceiver using the second wireless communication link. A first RF radiation field of the first antenna has a higher intensity in a first direction than a second direction orthogonal to the first direction, and a second RF radiation field of the second antenna has a higher intensity in the second direction than the first direction.
This tunable bandpass filter is provided with: a conductive member having a plurality of resonance rods protruding so as to be aligned in a single plane; a dielectric plate disposed parallel to the single plane; a drive part which is attached to the dielectric plate and drives the dielectric plate in directions parallel and perpendicular to the single plane; and a waveguide containing at least the resonance rods and the dielectric plate.
Disclosed is battery module, which includes a cell assembly having battery cells arranged side by side in one direction and air channels formed at the intervals of the battery cells, and an inlet duct mounted to a front surface of the cell assembly at which the air channels are located to distribute a cooling air to the air channels. The inlet duct includes an air inlet disposed to face air channels, which are located in a central region in the arrangement of the air channels, at a location spaced apart therefrom, a cooling fan being installed at the air inlet to introduce the cooling air; and a guide vane composed of a plurality of plate barriers respectively extending obliquely toward the air channels based on the air inlet at a predetermined acute angle to distribute the flow of air.
The present invention provides a battery module including: a battery cell laminate in which a plurality of battery cells having a structure in which an electrode assembly is inside a sealed battery case with an electrolyte solution are arranged with the sides being in contact with each other; and a cooling/buffering member, mounted beneath the battery cell laminate to support a load of the battery cell laminate, and formed of a porous structure to emit heat generated from the battery cell laminate during a charge and discharge process down the battery cell laminate.
Techniques for dynamically changing internal state of a battery are described herein. Generally, different battery configurations are described that enable transitions between different battery power states, such as to accommodate different battery charge and/or discharge scenarios.
A production method for a lithium-ion secondary battery includes configuring an electrode group provided with a positive electrode and a negative electrode, storing the electrode group, electrolytic solution, and a third electrode in a housing, charging the negative electrode by performing charging between the third electrode and the negative electrode inside the housing, and discharging the charged negative electrode by performing discharging between the third electrode and the negative electrode, thereby producing the lithium-ion secondary battery.
A polymer electrolyte including a copolymer having at least one first repeating unit represented by Formula 1 and at least one second repeating unit represented by Formula 2: wherein, R1 to R4, L1, and m in Formula 1 and R5 to R7, L2, G and n in Formula 2 are the same as defined in the specification.
The invention relates to a process for generating hydrogen, comprising decomposing in a reaction vessel aqueous alkali formate in the presence of a transition metal-containing catalyst system dissolved in one or more organic solvent(s), characterized in that said organic solvent(s) comprise at least one solvent which is water-immiscible, thereby releasing hydrogen and forming bicarbonate in the aqueous phase, and separating the catalyst-containing organic solvent(s) from said bicarbonate. Also disclosed are apparatuses for carrying out hydrogen generation.
A cathode layer and a membrane electrode assembly of a solid oxide fuel cell are provided. The cathode layer consists of a plurality of perovskite crystal films, and the average change rate of linear thermal expansion coefficients of these perovskite crystal films is about 5% to 40% along the thickness direction. The membrane electrode assembly includes the above-mentioned cathode layer, and the linear thermal expansion coefficients of these perovskite crystal films are reduced towards the solid electrolyte layer of the membrane electrode assembly.
The present application relates to a metal oxide and synthesis of a lithium ion battery. Specifically, the present application selects a cobalt oxide compound, which uses Co3O4 as a main body, as a precursor of lithium cobalt oxide, and anion doping is performed in particles of Co3O4 to obtain a doped precursor for lithium cobalt oxide. The general formula of the precursor can be expressed as Co3(O1-yMy)4, where about 0
The present invention provides a positive electrode active material includes a first lithium transition metal oxide represented by formula Lia(NibCocMnd)1-eMeO2 or Lia(NibCocAld)1-eM′eO2, wherein 0.9
A process for solution-based formation of a nanostructured, carbon-coated, inorganic composite includes selecting a supply of inorganic material in a solution, selecting a supply of a carbon-containing solution, and synthesizing the composite by causing the inorganic material to react in the carbon-containing solution. The synthesized composite may be conductive-carbon-coated, and may be for electrochemical applications such as battery cathodes and anodes. The selecting step may involve varying relative amounts of polar fluid, microblender and water components to synthesize a crystalline inorganic composite. There may be a step of retaining and reusing the supply of carbon-containing solution that remains after the synthesizing, and testing the supply of carbon-containing solution that remains to determine whether it can be used again. There may be steps of controlling the composite particle size and morphology and forming desired particle size as a function of the chemical composition of the carbon-containing solution.
A negative electrode for an electrochemical cell of a lithium metal battery may be manufactured by welding together a lithium metal layer and a metallic current collector layer. The lithium metal layer and the current collector layer may be arranged adjacent one another and in an at least partially lapped configuration such that faying surfaces of the layers confront one another and establish a faying interface therebetween at a weld site. A laser beam may be directed at an outer surface of the current collector layer at the weld site to melt a portion of the lithium metal layer adjacent the faying surface of the current collector layer and produce a lithium metal molten weld pool. The laser beam may be terminated to solidify the molten weld pool into a solid weld joint that physically bonds the lithium metal layer and the current collector layer together at the weld site.
A secondary battery includes an electrode assembly including a first electrode plate, a second electrode plate and a separator, the separator being between the first and second electrode plates, a case accommodating the electrode assembly therein, the case having an opening, and a cap assembly sealing the opening of the case, the cap assembly having a short-circuit hole provided in one area thereof, a first reverse plate and a second reverse plate positioned on a top of the first reverse plate being provided in the short-circuit hole of the cap assembly.
A vapor deposition apparatus for forming a deposition layer on a substrate, the vapor deposition apparatus includes a supply unit configured to receive a first source gas, a reaction space connected to the supply unit, a plasma generator in the reaction space, a first injection unit configured to inject a deposition source material to the substrate, the deposition source material including the first source gas, and a filament unit in the reaction space, the filament unit being connected to a power source.
The disclosure discloses a flexible display panel and a method for fabricating the same, the flexible display panel includes: a flexible substrate and a light-emitting element formed on the flexible substrate, wherein the light-emitting element includes a light-emitting layer, a polarization sheet is arranged on a light-emitting side of the light-emitting element, and the flexible display panel further includes a stress buffer layer.
The present disclosure relates to a display panel, a manufacturing method thereof, and a display terminal. The display panel includes an interlayer insulating layer, a planarization layer, and a pixel defining layer stacked in sequence. The display panel further includes a sub-pixel, a cathode, and a thin film encapsulation structure. The pixel defining layer is provided with an opening. The sub-pixel is disposed in the opening of the pixel defining layer, and the cathode is disposed on the pixel defining layer and covers the sub-pixel. The thin film encapsulation structure is disposed on the cathode, and the thin film encapsulation structure or the cathode is provided with a first embedded portion. The first embedded portion is embedded in the pixel defining layer and the planarization layer, and is in contact with the interlayer insulating layer.
The present application discloses a display panel having a display area and a peripheral area. The display panel includes a base substrate; a display unit on the base substrate; an encapsulating layer on a side of the display unit distal to the base substrate and encapsulating the display unit; and a first crack barrier layer on the base substrate and in the peripheral area and forming a first enclosure substantially surrounding a first area. The encapsulating layer includes a first inorganic sub-layer. The first inorganic sub-layer includes a first part enclosed inside the first area by the first crack barrier layer.
A light emitting capacitor can include a first and second electrode, an electroluminescent layer, and at least one elastomeric layer. The electroluminescent layer, which can include an elastomeric material doped with semiconducting nanoparticles, can be disposed between the first and second electrodes. The elastomeric layer can encapsulate the first electrode, second electrode, and electroluminescent layer. The first and second electrodes can be hydrogel or conductive electrodes. The light emitting capacitor can provide dynamic coloration or sensory feedback. The light emitting capacitor can be used in, for example, robotics, wearables (displays, sensors, textiles), and fashion.
An organic electroluminescence device includes a first electrode, a hole transport region on the first electrode, a light emitting layer on the hole transport region, an electron transport region on the light emitting layer, and a second electrode on the electron transport region. The electron transport region includes an electron transport layer directly on the light emitting layer. The electron transport layer includes a first ternary compound including a halogen element.
An organic electroluminescence device having high efficiency, low in driving voltage and excellent in durability and a compound useful for the organic electroluminescence device are provided.
An organic electroluminescence device comprising, a substrate having thereon: a pair of electrodes of an anode and a cathode; and at least one organic layer comprising a light-emitting layer between the pair of electrodes, and the light-emitting layer contains at least one kind of a phosphorescent material, and at least either one layer of the at least one organic layer contains a specific compound having a dibenzothiophene or dibenzofuran structure, and the compound.
The present invention relates to a compound represented by Chemical Formula 1 for an organic optoelectronic device, an organic optoelectronic device employing the same and a display device. The details for Chemical Formula 1 above are as defined in the specification.
A method for manufacturing an organic device 10 according to an embodiment includes: a film forming step of continuously forming first to N-th layers (N is an integer of 2 or more) on a first electrode layer 14 formed on a main surface 12a of a flexible substrate while continuously conveying the flexible substrate 12, wherein in the film forming step, the first to N-th layers are sequentially formed on the first electrode layer by supplying materials of the first to N-th layers from first to N-th film forming sources to the flexible substrate through first to N-th shielding parts arranged between the first to N-th film forming sources and the flexible substrate, the first to N-th shielding parts are fixed in a conveyance direction of the flexible substrate in a state of being spaced apart from the flexible substrate, and a shielding area due to at least one shielding part of the first to N-th shielding parts is different from a shielding area due to other shielding part.
A semiconductor device includes a substrate, an array of magnetic tunnel junctions (MTJs), an array of first dummy MTJs, and an array of second dummy MTJs. The substrate includes an array region defined thereon, and the array region includes at least an outermost corner. The array of MTJs is disposed in the array region. The array of the first dummy MTJs is disposed along the outermost corner of the array region. The array of the second dummy MTJs is disposed around the array region and the array of first dummy MTJs.
A memory structure is provided that avoids high resistance due to the galvanic effect. The high resistance is reduced and/or eliminated by providing a T-shaped bottom electrode structure of uniform construction (i.e., a single piece). The T-shaped bottom electrode structure includes a narrow base portion and a wider shelf portion. The shelf portion of the T-shaped bottom electrode structure has a planar topmost surface in which a MTJ pillar forms an interface with.
Semiconductor light-emitting device, includes: substrate having base and conductive part; first to third semiconductor light-emitting elements; first to third wires connected to the first to third semiconductor light-emitting elements respectively; and light-transmitting resin part covering the first to the third semiconductor light-emitting elements, wherein the base has main and rear surfaces facing opposite sides in thickness direction of the base, wherein the conductive part includes main surface part on the main surface, wherein the main surface part includes main surface first part where the first and second semiconductor light-emitting elements are mounted, wherein the main surface first part reaches both ends of the main surface in first direction perpendicular to the thickness direction, and wherein the main surface first part is separated from both the main surface part where the third semiconductor light-emitting element is mounted and the main surface part where the first, second, and third wires are connected.
A method for manufacturing a stacked photoelectric conversion device includes forming an intermediate transparent conductive layer on a light-receiving surface of a crystalline silicon-based photoelectric conversion unit including a crystalline silicon substrate, and forming a thin-film photoelectric conversion unit on the intermediate transparent conductive layer. The stacked photoelectric conversion device includes the crystalline silicon-based photoelectric conversion unit, the intermediate transparent conductive layer, and the thin-film photoelectric conversion unit. The light-receiving surface of the crystalline silicon-based photoelectric conversion unit has a textured surface including a plurality of projections and recesses. The textured surface has an average height of 0.5 μm or more. The intermediate transparent conductive layer fills the recesses of the textured surface and covers the tops of the projections of the textured surface. At least a part of the thin-film photoelectric conversion unit is deposited by a wet method.
In a first aspect of a present inventive subject matter, a semiconductor device includes an n-type semiconductor layer including a first semiconductor as a major component, an i-type semiconductor layer including a second semiconductor as a major component and a p-type semiconductor layer including a third semiconductor as a major component. The second semiconductor contains a corundum-structured oxide semiconductor.
A semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode electrically connected to the oxide semiconductor layer, a gate insulating layer covering the oxide semiconductor layer, the source electrode, and the drain electrode, and a gate electrode over the gate insulating layer. The source electrode and the drain electrode include an oxide region formed by oxidizing a side surface thereof. Note that the oxide region of the source electrode and the drain electrode is preferably formed by plasma treatment with a high frequency power of 300 MHz to 300 GHz and a mixed gas of oxygen and argon.
A semiconductor structure and a method for fabricating the semiconductor structure are provided. The method includes providing a base substrate, and forming a first stress layer in the base substrate. The method also includes forming a gate structure on the base substrate. The first stress layer in the base substrate is on both sides of the gate structure. In addition, the method includes after forming the gate structure, forming an opening in the first stress layer by back-etching the first stress layer. Further, the method includes forming a second stress layer in the opening of the first stress layer.
A semiconductor layer may be subjected to etching to form a trench therein. An epitaxial layer may be further formed in the trench. Here, the impurity concentration of the epitaxial layer is controlled to be lower than that of the semiconductor layer. In this manner, concentration of electrical fields in the trench is reduced. A first innovations herein provides a semiconductor device including a first semiconductor layer containing impurities of a first conductivity type, a trench provided in the first semiconductor layer on a front surface side thereof, and a second semiconductor layer provided on an inner wall of the trench, where the second semiconductor layer contains impurities of the first conductivity type at a lower concentration than the first semiconductor layer.
A manufacturing method for a shielded gate trench device comprises the following steps: Step 1, forming a gate trench in a first epitaxial layer; Step 2, forming a first dielectric layer and fully filling the gate trench with a first polysilicon layer; Step 3, forming a top trench: Step 31, carrying out primary polysilicon dry-etching; Step 32, carrying out primary dielectric layer wet-etching to decrease the thickness of the first dielectric layer in the top trench; Step 33, carrying out secondary polysilicon dry-etching; Step 34, carrying out secondary dielectric layer wet-etching to remove the rest of the first dielectric layer on a side face of the top trench and to form the top trench; and Step 4, forming a trench gate in the top trench. By adoption of the manufacturing method, the gate-source capacitance and the gate-drain capacitance can be decreased, and thus, the input capacitance is decreased.
A semiconductor device and a method for fabricating the semiconductor device are provided, in which the method includes the steps of forming a gate structure on a substrate, forming a spacer on a sidewall of the gate structure, forming two recesses adjacent to two sides of the spacer, performing a cleaning process to trim the spacer for forming a void between the spacer and the substrate, and forming two portions of an epitaxial layer in the two recesses. The semiconductor device preferably includes a cap layer on the two portions of the epitaxial layer as the cap layer includes a planar top surface and an inclined sidewall.
A method for fabricating a semiconductor device includes forming a first inner spacer layer along a substrate and a nanosheet stack disposed on the substrate, performing an ultraviolet (UV) condensation process to form a hardened inner spacer from the first inner spacer layer, forming a second inner spacer layer along the hardened inner spacer, and removing material to form inner spacers by performing an inner spacer etch.
A semiconductor device is disclosed. The semiconductor device includes a channel region, extending along a direction, that has a U-shaped cross-section; a gate dielectric layer wrapping around the channel region; and a gate electrode wrapping around respective central portions of the gate dielectric layer and the channel region.
A metal-oxide semiconductor (MOS) transistor structure is provided herein having one or more horizontal and/or one or more vertical MOS transistor structures formed around trench and liner isolation regions. The trench region serves as a gate electrode, while the liner is formed around the sidewalls of trench region and serves as a gate dielectric of a parasitic MOS within the transistor structure. The MOS transistor structure includes various doped regions formed around one or more portions of the trench and liner regions. The doped regions can have one or more different doping types such that in response to a voltage applied to the trench region, a channel region is formed in at least one of the doped regions and provides a current path within the MOS transistor between different doped regions.
A display device includes a first panel including a pad side area at one side of the first panel, a first optically transparent adhesive member on one surface of the first panel, a printed circuit board including a first attachment portion attached to the one surface of the first panel at the pad side area, a window on the first optically transparent adhesive member, a second optically transparent adhesive member on the other surface of the first panel, and a second panel on the second optically transparent adhesive member opposite the first panel, wherein the pad side area has a connection area at which the printed circuit board is attached to the first panel, and at which an edge of the first optically transparent adhesive member extends beyond an edge of the second optically transparent adhesive member, and a non-connection area at which the printed circuit board is not attached.
A multi-panel organic light emitting display device is disclosed that includes a plurality of display panels coupled to each other. Each of the plurality of display panels includes: a substrate including an active area and a non-active area; and a display unit including an organic light emitting element on the substrate. Each of the plurality of display panels also includes: a plurality of signal lines disposed on the substrate and electrically connected to the display unit; and a plurality of link lines disposed under the substrate. Each of the plurality of display panels further includes a plurality of side lines connecting the plurality of signal lines and the plurality of link lines. Each of the plurality of display panels also includes a driving circuit electrically connected to the plurality of link lines.
The present disclosure relates to a display substrate, a manufacturing method thereof, and a display device. The display substrate comprises: a plurality of sub-pixels arranged in an array; a base substrate; and an interlayer insulating layer, at least one heightened part and a plurality of signal wires, sequentially disposed on the base substrate, wherein an orthographic projection of the heightened part on the base substrate is located between orthographic projections of two adjacent sub-pixels on the base substrate, and two adjacent signal wires between the two adjacent sub-pixels are located on two sides of the heightened part and at least partially cover two lateral sides of the heightened part respectively.
The present application relates to an optical filter and an organic light-emitting display device. The optical filter of the present application has excellent omnidirectional antireflection performance on the side as well as the front. The optical filter can be applied to an organic light-emitting device to improve visibility.
An optical system may include equipment with a housing that is configured to receive external equipment such as a cellular telephone. The external equipment may include a display. To control the persistence of the display, the optical system may include a light modulating layer. The light modulating layer may switch between a transparent state in which display image light is passed through the light modulating layer to reach the viewer and an opaque state in which display image light is blocked by the light modulating layer from reaching the viewer. The light modulating layer may be placed in the transparent state for a portion of each display frame and the opaque state for the remaining portion of each display frame. The light modulating layer may be formed in the housing of the equipment that receives the external equipment or may be formed with the external equipment directly.
A pixel arrangement structure, a display substrate, a display device, and a mask plate set are provided. In the pixel arrangement structure, a first virtual rectangle includes one first color sub-pixel block, one second color sub-pixel block, and one third color sub-pixel block, the first virtual rectangle includes a first edge and a second edge; a distance between the second color sub-pixel block and the first edge and a distance between the third color sub-pixel block and the first edge are both smaller than a distance between the first color sub-pixel block and the first edge; and a center of the first color sub-pixel block is located on the perpendicular bisector of the first edge and a distance between the center of the first color sub-pixel block and the first edge is approximately ½ to ¾ of a length of the second edge.
In one example embodiment, a SOT-MRAM includes a storage unit having a CoαXβPtγ based free layer. The storage unit includes a bottom electrode and the CoαXβPtγ based free layer is disposed over the bottom electrode. Further, the storage unit includes a tunnel barrier layer over the CoαXβPtγ based free layer, and a fixed layer over the tunnel barrier layer. The CoαXβPtγ based free layer, tunnel barrier layer and fixed layer form a magnetic tunnel junction. The storage unit may also include a top electrode over the MTJ.
A memory device includes a first electrode, a conductive layer including iridium above the first electrode, a magnetic junction on the conductive layer and a second electrode above the magnetic junction. The magnetic junction includes a magnetic structure including a first magnetic layer including cobalt, a non-magnetic layer including platinum or tungsten on the first magnetic layer and a second magnetic layer including cobalt on the non-magnetic layer. The magnetic junction further includes an anti-ferromagnetic layer on the magnet structure, a fixed magnet above the anti-ferromagnetic layer, a free magnet above the fixed magnet and a tunnel barrier between the fixed magnet and the free magnet.
A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
A semiconductor gas imaging device system and method includes one chip dual band Type II Superlattice (T2SL) detectors comprising two back to back diodes wherein the bias is flipped. Embodiment voltages are +1V to −1V. For embodiments, only the detector with negative voltage detects incoming infrared radiation.
An image sensor including a substrate and an image sensing element is provided. The substrate has an arc surface. The image sensing element is disposed on the arc surface and curved to fit a contour of the arc surface. The image sensing element has a front surface and a rear surface opposite to each other and has at least one first conductive via. The rear surface of the image sensing element directly contacts the arc surface, and the first conductive via is extended from the front surface to the rear surface. In addition, a manufacturing method of the image sensor is also provided.
This light-receiving element includes: a substrate; a photoelectric conversion layer that is provided on the substrate and includes a first compound semiconductor, and absorbs a wavelength in an infrared region to generate electric charges; a semiconductor layer that is provided on the photoelectric conversion layer and includes a second compound semiconductor, and has an opening in a selective region; and an electrode that buries the opening of the semiconductor layer and is electrically coupled to the photoelectric conversion layer.
A display device including a substrate having a first region, a second region, and a bending region disposed between the first region and the second region; and a plurality of bending connection lines disposed on the substrate in the bending region and extended in a first direction. Each of the bending connection lines includes a protrusion in a second direction and a recess depressed from the protrusion, and the protrusion of each of the bending connection lines faces the recess of the bending connection lines next thereto.
The present disclosure relates to a thin-film transistor, an array substrate, a display panel and a display device and fabrication methods thereof. The thin-film transistor includes a gate insulation layer, an active layer having a source region, a drain region, and a channel region, a first doping layer on the source region, a second doping layer on the drain region, and at least one third doping layer arranged between the first doping layer and the second doping layer, wherein the first, the second, and the third doping layers have same conductivity type, and wherein the third doping layer is positioned in the channel region and contacts the gate insulation layer, and the third doping layer does not contact the first doping layer and the second doping layer simultaneously, or the third doping layer is positioned on the channel region and only contacts the first or the second doping layer.
Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
A semiconductor memory device includes a plurality of first conductor layers that are stacked in a first direction; a first pillar including a first semiconductor layer and extending through the first conductor layers in the first direction; a first charge storage layer that is provided between the first conductor layers and the first semiconductor layer; a plurality of second conductor layers that are stacked in the first direction above an uppermost conductor layer of the first conductor layers; a second pillar including a second semiconductor layer and extending through the second conductor layers in the first direction, the second semiconductor layer electrically connected to the first semiconductor layer; and a conductor pillar or film extending in the first direction through the second conductor layers other than a lowermost layer of the second conductor layers and being in contact with a respective upper surface of each of the second conductor layers.
Some embodiments include an assembly having a memory cell with an active region which includes a body region between a pair of source/drain regions. A charge-storage material is adjacent to the body region. A conductive gate is adjacent to the charge-storage material. A hole-recharge arrangement is configured to replenish holes within the body region during injection of holes from the body region to the charge-storage material. The hole-recharge arrangement includes a heterostructure active region having at least one source/drain region of a different composition than the body region, and/or includes an extension coupling the body region with a hole-reservoir. A wordline is coupled with the conductive gate. A first comparative digit line is coupled with one of the source/drain regions, and a second comparative digit line is coupled with the other of the source/drain regions.
A representative method for manufacturing fin field-effect transistors (FinFETs) includes steps of forming a plurality of fin structures over a substrate, and forming a plurality of isolation structures interposed between adjacent pairs of fin structures. Upper portions of the fin and isolation structures are etched. Epitaxial structures are formed over respective fin structures, with each of the epitaxial structures adjoining adjacent epitaxial structures. A dielectric layer is deposited over the plurality of epitaxial structures with void regions formed in the dielectric layer. The void regions are interposed between adjacent pairs of fin structures.
A semiconductor device is provided. The Semiconductor device includes a substrate, a first fin type pattern and a second fin type pattern which protrude from an upper surface of the substrate and are spaced apart from each other, a first semiconductor pattern on the first fin type pattern, a second semiconductor pattern on the second tin type pattern and a blocking pattern between the first semiconductor pattern and the second semiconductor pattern, a part of the first semiconductor pattern being inserted in the blocking pattern.
A method for fabricating a semiconductor device includes, for a substrate having a first region protected by a cap layer, forming a first device on a second region of the substrate. The substrate includes an insulator layer disposed between a first semiconductor layer and a second semiconductor layer each including a first semiconductor material. The method further includes forming a second device on the first region, including forming one or more transistors each having a channel formed from a second semiconductor material different from the first semiconductor material.
The optical device includes a photoelectric conversion block including a photoelectric conversion chip configured to include photoelectric conversion elements arranged in a matrix and a first sealing member configured to cover side faces of the photoelectric conversion chip to expose the photoelectric conversion chip and a lens block including a lens and a second sealing member configured to cover side faces of the lens to expose one surface and an other surface of the lens. In the lens block, the one surface of the lens and the second sealing member forms a recessed portion, at least a part of a bottom surface of the recessed portion being formed by the one surface of the lens, a sidewall of the recessed portion being formed by the second sealing member, and the recessed portion being arranged such that the photoelectric conversion chip exposed from the first sealing member is covered.
Provided are a display module, a display device, and method of assembling and disassembling the display module. The display module includes a cabinet, a light-emitting diode (LED) panel mounted on the cabinet, and a coupling device configured to detachably mount the LED panel on the cabinet, wherein the coupling device comprises a first coupling member and a second coupling member, and at least one of the first coupling member and the second coupling member is configured to be moved by mutual magnetic force.
Various aspects of this disclosure provide a method of manufacturing an electronic device and an electronic device manufactured thereby. As a non-limiting example, various aspects of this disclosure provide a method of manufacturing an electronic device, and an electronic device manufactured thereby, that utilizes ink to form an intermetallic bond between respective conductive interconnection structures of a semiconductor die and a substrate.
A semiconductor package includes a substrate, through-electrodes penetrating the substrate, first bumps spaced apart from each other in a first direction parallel to a top surface of the substrate and electrically connected to the through-electrodes, respectively, and at least one second bump disposed between the first bumps and electrically insulated from the through-electrodes. The first bumps and the at least one second bump constitute one row in the first direction. A level of a bottom surface of the at least one second bump from the top surface of the substrate is a substantially same as levels of bottom surfaces of the first bumps from the top surface of the substrate.
Various semiconductor chips and packages are disclosed. In one aspect, an apparatus is provided that includes a semiconductor chip that has a side, and plural conductive pillars on the side. Each of the conductive pillars includes a pillar portion that has an exposed shoulder facing away from the semiconductor chip. The shoulder provides a wetting surface to attract melted solder. The pillar portion has a first lateral dimension at the shoulder. A solder cap is positioned on the pillar portion. The solder cap has a second lateral dimension smaller than the first lateral dimension.
A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a conductive structure over the substrate. The semiconductor device structure includes first metal oxide fibers over the conductive structure. The semiconductor device structure includes a dielectric layer over the substrate and covering the conductive structure and the first metal oxide fibers. The dielectric layer fills gaps between the first metal oxide fibers.
The present disclosure describes a semiconductor device including: a semiconductor chip having an electrode; a conductive member including a metal base and having a mounting portion and a peripheral portion surrounding the mounting portion; a solder that is provided between the electrode and the mounting portion; and a sealing resin body that integrally seals the semiconductor chip, at least the face opposed to the electrode in the conductive member, and the solder.
A semiconductor device structure and a method for making a semiconductor device. As non-limiting examples, various aspects of this disclosure provide various semiconductor package structures, and methods for making thereof, that comprise a thin fine-pitch redistribution structure.
Described examples include a system in package (SIP) device, including: a first leadframe having a first surface and a second surface opposite the first surface; an integrated circuit die including solder bumps on a first surface and having a second opposite surface, the solder bumps mounted to the second surface of the first leadframe; a second leadframe having a first surface including a die pad portion, and a second opposite surface, the die pad portion attached to the second surface of the integrated circuit die; and an inductor mounted to the first surface of the first leadframe, the inductor having terminals with exterior portions electrically connected and mechanically connected to the first surface of the first leadframe, the inductor terminals spaced from one another by a portion of an inductor body, the portion of the inductor body between the inductor terminals spaced from the first surface of the first leadframe by a gap of at least 100 μms.
An active cooling system and method for using the active cooling system are described. The active cooling system includes a cooling element having a first side and a second side. The first side of the cooling element is distal to a heat-generating structure and in communication with a fluid. The second side of the cooling element is proximal to the heat-generating structure. The cooling element is configured to direct the fluid using a vibrational motion from the first side of the cooling element to the second side such that the fluid moves in a direction that is incident on a surface of the heat-generating structure at a substantially perpendicular angle and then is deflected to move along the surface of the heat-generating structure to extract heat from the heat-generating structure.
A three-dimensional packaging structure and a packaging method of power devices. The packaging structure includes power devices, direct copper bonded substrates (i.e., DBC substrates), flexible printed circuit boards (i.e., FPC boards), bonding wires, heat dissipation substrates, decoupling capacitors, a heatsink with integrating the fan, shells, and forms a half-bridge circuit structure composed by the power devices. The power circuit structure is optimized, parasitic inductance in the commutation loop is reduced by mutual inductance cancellation, thus overvoltage and oscillation during the power device switching process can be reduced. Additionally, by using the flexible characteristic of the flexible PCB, a three-dimensional packaging structure is formed and power density is improved.
A semiconductor device includes a substrate including a substrate top surface; interconnects connected to the substrate and extending above the substrate top surface; a die attached over the substrate, wherein the die includes a die bottom surface that connects to the interconnects for electrically coupling the die and the substrate; and a metal enclosure directly contacting and vertically extending between the substrate top surface and the die bottom surface, wherein the metal enclosure peripherally surrounds the interconnects.
A substrate comprises a pair of immediately-adjacent integrated-circuit dies having scribe-line area there-between. At least one of the dies comprises insulting material above integrated circuitry. The insulating material has an opening therein that extends elevationally inward to an upper conductive node of integrated circuitry within the one die. The one die comprises a conductive line of an RDL above the insulating material. The RDL-conductive line extends elevationally inward into the opening and is directly electrically coupled to the upper conductive node. The insulating material has a minimum elevational thickness from an uppermost surface of the upper conductive node to an uppermost surface of the insulating material that is immediately-adjacent the insulating-material opening. Insulator material is above a conductive test pad in the scribe-line area. The insulator material has an opening therein that extends elevationally inward to an uppermost surface of the conductive test pad. The insulator material has a minimum elevational thickness from the conductive-test-pad uppermost surface to an uppermost surface of the insulator material that is immediately-adjacent the insulator-material opening and that is less than said minimum elevational thickness of the insulating material. Methods are disclosed.
A method and system for measuring overlay in a semiconductor manufacturing process comprise capturing an image of a feature in an article at a predetermined manufacturing stage, deriving a quantity of an image parameter from the image and converting the quantity into an overlay measurement. The conversion is by reference to an image parameter quantity derived from a reference image of a feature at the same predetermined manufacturing stage with known overlay (“OVL”). There is also disclosed a method of determining a device inspection recipe for use by an inspection tool comprising identifying device patterns as candidate device care areas that may be sensitive to OVL, deriving an OVL response for each identified pattern, correlating the OVL response with measured OVL, and selecting some or all of the device patterns as device care areas based on the correlation.
A complementary metal oxide semiconductor (CMOS) device that includes a gallium nitride n-type MOS and a silicon P-type MOS is disclosed. The device includes silicon 111 substrate, a gallium nitride transistor formed in a trench in the silicon 111 substrate, the gallium nitride transistor comprising a source electrode, a gate electrode, and a drain electrode. The device further includes a silicon/polysilicon layer formed over the gallium nitride transistor.
Processing methods may be performed to expose a contact region on a semiconductor substrate. The methods may include selectively removing a first region of a silicon material between source/drain regions of a semiconductor substrate to expose a first region of oxide material. The methods may include forming a liner over the first region of oxide material and contacting second regions of the silicon material proximate the source/drain regions of the semiconductor substrate. The methods may also include selectively removing the second regions of the silicon material proximate the source/drain regions of the semiconductor substrate to expose a second region of the oxide material. The methods may further include selectively removing the second region of the oxide material from a surface of a contact in the semiconductor structure.
Among other things, one or semiconductor arrangements, and techniques for forming such semiconductor arrangements are provided. For example, one or more silicon and silicon germanium stacks are utilized to form PMOS transistors comprising germanium nanowire channels and NMOS transistors comprising silicon nanowire channels. In an example, a first silicon and silicon germanium stack is oxidized to transform silicon to silicon oxide regions, which are removed to form germanium nanowire channels for PMOS transistors. In another example, silicon and germanium layers within a second silicon and silicon germanium stack are removed to form silicon nanowire channels for NMOS transistors. PMOS transistors having germanium nanowire channels and NMOS transistors having silicon nanowire channels are formed as part of a single fabrication process.
The present invention provides a method for dicing a substrate on a composite film. A work piece having a support film, a frame and a substrate is provided. The substrate has a top surface and a bottom surface. The top surface of the substrate has at least one die region and at least one street region. The composite film is interposed between the substrate and the support film. Substrate material is etched from the at least one street region to expose a portion of the composite film using a substrate etch process. A first component of the composite film is etched using a first etch process. A second component of the exposed portion of the composite film is plasma etched using a second etch process.
A semiconductor device includes a substrate including an active pattern, a first interlayer dielectric layer on the substrate, the first interlayer dielectric layer including a recess on an upper portion thereof, and a lower connection line in the first interlayer dielectric layer, the lower connection line being electrically connected to the active pattern, and the lower connection line including a conductive pattern, the recess of the first interlayer dielectric layer selectively exposing a top surface of the conductive pattern, and a barrier pattern between the conductive pattern and the first interlayer dielectric layer, the first interlayer dielectric layer covering a top surface of the barrier pattern.
A method of manufacturing a semiconductor device includes: forming a metal film containing Al on a surface of a substrate product including a substrate and a nitride semiconductor layer on the substrate, the metal film covering a via hole forming predetermined region, and the surface of the substrate product being located on the nitride semiconductor layer side, forming an etching mask having an opening for exposing the via hole forming predetermined region on a back surface of the substrate product, the back surface of the substrate product being located on the substrate side, and forming a via hole in the substrate product by reactive ion etching, the via hole reaching the surface from the back surface and exposing the metal film. In the forming of the via hole, a reaction gas containing fluorine is used during a period at least including a termination of etching.
The present disclosure provides a semiconductor structure and a method of manufacturing the semiconductor structure. The semiconductor structure includes a base, a plurality of islands, and an isolation layer. At least one of the plurality of islands includes a pillar extending from an upper surface of the base, a protrusion connected to the pillar, a capping layer disposed on the protrusion, and a passivation liner disposed on sidewalls of the protrusion and the capping layer. The isolation layer surrounds the islands.
A method forms a trench isolation opening extending into an SOI substrate, and forms an etch stop member in a portion of the insulator layer abutting a side of the trench isolation opening. The etch stop member has a higher etch selectivity than the insulator layer of the SOI substrate. A trench isolation is formed in the trench isolation opening. A contact is formed to a portion of the semiconductor layer of the SOI substrate. The etch stop member is structured to prevent contact punch through to the base substrate of the SOI substrate.
A semiconductor device includes a first trench on the device region, a first device isolation layer in the first trench and defining an active pattern of the device region, a second trench on the interface region, and a second device isolation layer in the second trench. The second isolation layer includes a buried dielectric pattern, a dielectric liner pattern on the buried dielectric pattern, and a first gap-fill dielectric pattern on the dielectric liner pattern. The buried dielectric pattern includes a floor segment on a floor of the second trench, and a sidewall segment on a sidewall of the second trench. The sidewall segment has a thickness different from a thickness of the floor segment.
Implementations described herein provide a substrate support assembly that includes a seal band. The seal band protects an adhesive layer that is disposed between an electrostatic chuck (ESC) and a cooling plate of the substrate support assembly. In one example, a substrate support assembly includes an electrostatic chuck and a cooling plate. A bonding layer secures a bottom surface of the electrostatic chuck to a top surface of the cooling plate. The bonding layer has an adhesive layer and a seal band. The seal band circumscribes and protects the adhesive layer. The seal band has a ring shaped body. The ring shaped body has a top surface connected to a bottom surface by an inner surface and an outer surface. The top surface and the bottom surface angled less than 85 degrees from the inner surface. The outer surface has an indent formed therein.
A method for aligning and contacting a first substrate with a second substrate using a plurality of detection units and a corresponding device for alignment and contact.
The present disclosure describes a method for controlling a wet processing system includes dispensing one or more chemicals into a processing chamber according to one or more process parameters. The method also includes injecting one or more illumination markers into the processing chamber and obtaining images representing locations of the one or more illumination markers. The method further includes determining a trajectory of an illumination marker of the one or more illumination markers based on the images and determining whether the determined trajectory is outside a predetermined trajectory range. In response to the determined trajectory being outside the predetermined trajectory range, the method further includes adjusting the one or more process parameters.
A system in package device includes a landed first die disposed on a package substrate. The landed first die includes a notch that is contoured and that opens the backside surface of the die to a ledge. A stacked die is mounted at the ledge and the two dice are each contacted by a through-silicon via (TSV). The system in package device also includes a landed subsequent die on the package substrate and a contoured notch in the landed subsequent die and the notch in the first die form a composite contoured recess into which the stacked die is seated.
In a pattern formation method, a photo resist pattern is formed over a target layer to be patterned. An extension material layer is formed on the photo resist pattern. The target layer is patterned by using at least the extension material layer as an etching mask.
A substrate is disposed on a substrate holder within a process module. The substrate includes a mask material overlying a target material with at least one portion of the target material exposed through an opening in the mask material. A plasma is generated in exposure to the substrate. For a first duration, a bias voltage is applied at the substrate holder at a first bias voltage setting corresponding to a high bias voltage level. For a second duration, after completion of the first duration, a bias voltage is applied at the substrate holder at a second bias voltage setting corresponding to a low bias voltage level. The second bias voltage setting is greater than 0 V. The first and second durations are repeated in an alternating and successive manner for an overall period of time necessary to remove a required amount of the target material exposed on the substrate.
The present invention provides a method for optimizing a critical dimension for double patterning for NAND flash, forming a core oxide layer on amorphous silicon layer on substrate; densifying the core oxide layer and etching it to form a core pattern; measuring CD values of the bottom and top of the core pattern; providing etching rates of a non-densified core oxide layer and a densified core oxide layer under the same etching condition; calculating the thickness of the core oxide layer required to be densified according to the CD values of the bottom and top of the core pattern and the etching rates to determine the densifying time. The present invention precisely controls the morphology and CD, and obtains a double-patterned target pattern with consistent CD sizes of a top and a bottom and a consistent bottom height, so as to improve a product yield.
Disclosed are semiconductor devices and methods of manufacturing the same. The method comprises alternately stacking a plurality of dielectric layers and a plurality of first semiconductor layers to form a mold structure on a substrate, forming a hole penetrating the mold structure, forming on the substrate a second semiconductor layer filling the hole, and irradiating a laser onto the second semiconductor layer.
A method for manufacturing a substrate includes the following steps: (a) providing a support substrate with a first coefficient of thermal expansion, having on one of its faces a first plurality of trenches parallel to each other in a first direction, and a second plurality of trenches parallel to each other in a second direction; (b) transferring a useful layer from a donor substrate to the support substrate, the useful layer having a second coefficient of thermal expansion; wherein an intermediate layer is inserted between the front face of the support substrate and the useful layer, the intermediate layer having a coefficient of thermal expansion between the first and second coefficients of thermal expansion.
An X-ray tube includes a vacuum housing, an electron gun, and an anode that includes a target emitting X-rays and a target supporting portion supporting the target. The target supporting portion has an anode main body portion and a protrusion portion including a side surface portion. The anode main body portion includes an outer circumferential surface extending in a direction of a tube axis, and a connection portion formed between the side surface portion of the protrusion portion and the outer circumferential surface. An angle formed by the outer circumferential surface and the connection portion is an obtuse angle.
A control device for controlling at least one associated load and comprising a housing assembly defining a plurality of button zones each comprising at least one switch. The control device further comprises a plurality of interchangeable buttons adapted to be removably attached to the housing assembly over one or more of the button zones. Each button may comprise a front wall and at least one projection extending from a rear surface of the button and adapted to depress an aligned switch when the button is pressed. Each button may also comprise at least one abutment extending from the rear surface of the button and adapted to abut against the front housing portion such that at least a portion of the button pivots or deflect with respect to the at least one abutment when pressed.
Film capacitor is formed by winding first metal layer, first film, second metal layer, and second film that are in a stacked state in this order. In film surfaces of first and second films, an orientation angle α of first film and an orientation angle β of second film are different in sign from each other when a sign of the orientation angle which represents rotation from reference direction RD to one of both end surfaces is defined to be positive, and the sign of the orientation angle which represents rotation from reference direction RD to another of both end surfaces is defined to be negative. Here, the orientation angle is defined by an acute angle between an orientation main axis MA between reference direction RD parallel to first and second end surfaces when portions of first and second films facing each other through second metal layer are viewed in a direction perpendicular to the film surfaces.
A ceramic dielectric including: a bulk dielectric including barium (Ba) and titanium (Ti); a ceramic nanosheet; and a composite dielectric of the bulk dielectric and the ceramic nanosheet.
A single-ended inductor comprises a first partial coil wound in a first direction; and a second partial coil wound in a second direction and adjoined the first partial coil; wherein, the second direction is opposite to the first direction to reduce the coupling of single-ended inductors and peripheral lines and reduce signal interference.
A solenoid actuator includes a housing assembly, a bobbin assembly, a coil, an armature, and an anti-rotation structure. The bobbin assembly is disposed at least partially within the housing assembly and includes a return pole and a yoke. The yoke has an inner surface that defines an armature cavity. The coil is disposed within the housing assembly and is wound around at least a portion of the bobbin assembly. The armature is disposed within the armature cavity and is axially movable relative to the yoke. The anti-rotation structure is disposed within the housing assembly and engages at least a portion of the armature. The armature and the anti-rotation structure each have at least one feature formed thereon that mate with each other and thereby prevent rotation of the armature.
Provided is a soft magnetic alloy including Fe, as a main component, and including C. the soft magnetic alloy includes an Fe composite network phase having Fe-rich grids connected in a continuous measurement range including 80000 grids, each of which size is 1 nm×1 nm×1 nm. An average of C content ratio of the Fe-poor grids having cumulative frequency of 90% or more from lower C content is 5.0 times or more to an average of C content ratio of the whole soft magnetic alloy.
A process for manufacturing finished wire and cable having reduced coefficient of friction and pulling force during installation, includes providing a payoff reel containing at least one internal conductor wire; supplying the at least one internal conductor wire from the reel to at least one extruder; providing the least one extruder, wherein the at least one extruder applies an insulating material and a polymerized jacket composition over the at least one internal conductor wire, wherein the polymerized jacket composition comprises a predetermined amount by weight of nylon; and at least 3% by weight of a silica providing a cooling device for lowering the temperature of the extruded insulating material and the polymerized jacket composition and cooling the insulating material and the polymerized jacket composition in the cooling device; and, reeling onto a storage reel the finished, cooled, wire and cable for storage and distribution.
A method including providing an internal control rod drive mechanism (CRDM) including an electric motor and a support surface including sealed electrical connectors electrically connected with the electric motor to deliver electrical power to the electrical motor, installing the internal CRDM inside a nuclear reactor, the installing including placing the support surface of the internal CRDM onto a support element inside the nuclear reactor, the placing causing sealed electrical connectors disposed on the support element to mate with the sealed electrical connectors on the support surface of the internal CRDM, wherein the nuclear reactor contains coolant water and the installing is performed with the internal CRDM submerged in the coolant water and the seals of the sealed electrical connectors of the internal CRDM and the support element are effective to prevent coolant water ingress into the sealed electrical connectors.
The invention relates to a sensor apparatus, comprising: a sensor unit, a wireless communication unit configured to directly or indirectly transmit and receive data to and from an external source, and means for receiving identification information from a sports item while being attached to the sports item, wherein the apparatus is initiate identification of the sports item in response to a trigger from an identification activation element in the sports item.
Implementations directed to identifying variables affecting a cost of healthcare include actions of receiving data from a plurality of data sources, the data relating to cost of providing healthcare, providing a data model based on the data, processing the data model using non-parametric analysis to provide a non-parametric result, the non-parametric result including a first and second variable, automatically processing the data model to correlate at least the first variable of the non-parametric result to the second variable of the non-parametric result to provide a correlation result, processing the correlation result using parametric analysis to provide a parametric result including at least one variable that affects the cost more than one or more other variables of a plurality of variables of the data model, and providing at least one data visualization for display, the at least one data visualization providing at least one graphical representation of the parametric result.
The present disclosure relates to a device for handling medicament delivery devices and is to be used with a safety container, where the medicament delivery devices have information retaining elements having information that is unique to specific medicament delivery devices, and which medicament delivery devices are to be put in a safety container after use. The disclosed device has an information obtaining mechanism operably arranged to obtain information from the medicament delivery devices placed into the safety container.
Systems and methods for automatically populating a post-operative report of a surgical procedure are disclosed. A system may include at least one processor configured to implement a method including receiving an identifier of a patient, an identifier of a healthcare provider, and surgical footage of a surgical procedure performed on the patient. The method may include analyzing frames of the surgical footage to identify phases of the surgical procedure based on interactions between medical instruments and biological structures and, based on the interactions, associate a name with each phase. The method may include determining a beginning of each phase and associating a time marker with the beginning of each phase. The method may include populating a post-operative report with the patient identifier, the names of the phases, and time markers associated with the phases in a manner that enables the health care provider to alter the post-operative report.
Generally discussed herein are systems, apparatuses, and methods that relate to altering patient care and increasing the efficacy of medical diagnostics. A standard deviation of deltas (SDD) plot of analyte measurements can provide insights into the medical diagnostics. One or more SDD plots can be used to help diagnose a patient and alter a patient's care depending on the relation of the patient's own SDD plot characteristics relative to the one or more SDD plots. Any or all of the analysis can be automated, such as to reduce human interaction with process.
A method of medical data auto collection segmentation and analysis, includes collecting, from a plurality of sources, unstructured medical data in a plurality of formats, recognizing a medical name entity of each piece of the unstructured medical data, using a medical dictionary, and performing semantic text segmentation on each piece of the unstructured medical data so that each piece of the unstructured medical data is partitioned into groups sharing a same topic. The method further includes generating, as structured medical data, each piece of the unstructured medical data of which the medical name entity is recognized, each piece of the unstructured medical data being partitioned into the groups, and indexing the structured medical data into elastic search clusters.
A memory device is provided. The memory device includes a shift register array having a plurality of shift registers arranged in a matrix of a plurality of rows and a plurality of columns. Each of the plurality of rows comprises a first plurality of shift registers and each of the plurality of columns comprises a second plurality of shift registers. Each of the plurality of rows are associated with a read word line and a write word lines. Each of the plurality of rows are associated with a data input line and a data output line. Each of the plurality of shift arrays comprises a static random access memory.
Numerous embodiments are disclosed for a high voltage generation algorithm and system for generating high voltages necessary for a particular programming operation in analog neural memory used in a deep learning artificial neural network. Different calibration algorithms and systems are also disclosed. Optionally, compensation measures can be utilized that compensate for changes in voltage or current as the number of cells being programmed changes.
A resistive memory includes an array area where memory cells are arranged in rows and columns, word lines connected to the memory cells in a row direction, a local bit line extending in a column direction, local source lines, a shared bit line, and a writing device. Each memory cell includes a variable resistance element and an accessing transistor. The local source lines extend in the column direction and are connected to first electrodes of the memory cells in the column direction. The shared bit line is connected to the local bit line and second electrodes of the memory cells in the row direction. The writing device pre-charges the bit line and the source lines to a first voltage and applies a write pulse to the selected memory cell by discharging the corresponding selected source line after applying a write voltage to the selected word line, the writing device.
The present disclosure includes apparatuses, and methods for data state synchronization. An example apparatus includes performing a write operation to store a data pattern in a group of resistance variable memory cells corresponding to a selected managed unit having a first status, updating a status of the selected managed unit from the first status to a second status responsive to performing the write operation, and providing data state synchronization for a subsequent write operation performed on the group by placing all of the variable resistance memory cells of the group in a same state prior to performing the subsequent write operation to store another data pattern in the group of resistance variable memory cells.
Methods, systems, and devices for dirty write on power off are described. In an example, the described techniques may include writing memory cells of a device according to one or more parameters (e.g., reset current amplitude), where each memory cell is associated with a storage element storing a value based on a material property associated with the storage element. Additionally, the described techniques may include identifying, after writing the memory cells, an indication of power down for the device and refreshing, before the power down of the device, a portion of the memory cells based on identifying the indication of the power down for the device. In some cases, refreshing includes modifying at least one of the one or more parameters for a write operation for the portion of the memory cells.
Methods, systems, devices, and techniques for read operations are described. In some examples, a memory device may include a first transistor (e.g., memory node transistor) configured to receive a precharge voltage at a first gate and output first voltage based on a threshold of the first transistor to a reference node via a first switch. The device may include a second transistor (e.g., a reference node transistor) configured to receive a precharge voltage and output a second voltage based on a threshold of the second transistor to a memory node via a second switch. The first voltage may be modified by a reference voltage and input to the second transistor. The second voltage may be modified by a voltage stored on a memory cell and input to the first transistor. The first and second transistor may output third and fourth voltages to be sampled to a latch.
A memory system comprising a plurality of memory cells each including a storage element having a first terminal and a control terminal. The method for operating the memory system includes applying a first program voltage to control terminals of storage elements and applying a basic reference voltage to first terminals of the storage elements during a first program operation, performing a group verification by comparing threshold voltages of the storage elements with a middle voltage, performing a first program test to check if the threshold voltages of the storage elements are greater than a first programming threshold voltage, and performing a second program operation according to a result of the group verification and a result of the first program test. The middle voltage is smaller than the first programming threshold voltage.
A memory apparatus includes a memory array including a plurality of memory cells capable of selectively storing logic states and a plurality of bit lines and word lines connected to the plurality of memory cells; a controller for controlling a writing step and a reading step; a writing unit; and a reading unit, wherein the controller selects one or more memory cells through the writing unit, sequentially applies a writing voltage thereto to allow the logic states to be written therein, and applies a reading voltage to the one or more memory cells, which are selected to have the logic states written therein, through the reading unit so as to determine synaptic weights through a sum of currents flowing through the one or more memory cells so that the selected one or more memory cells are allowed to be recognized to operate as one synaptic element.
Embodiments of the disclosure are drawn to apparatuses and methods for analog row access tracking. A plurality of unit cells are provided, each of which contains one or more analog circuits used to track accesses to a portion of the wordlines of a memory device. When a wordline in the portion is accessed, the unit cell may update an accumulator voltage, for example by adding charge to a capacitor. A comparator circuit may determine when one or more accumulator voltages cross a threshold (e.g., a reference voltage). Responsive to the accumulator voltage crossing the threshold, an aggressor address may be loaded in a targeted refresh queue, or if the aggressor address is already in the queue, a priority flag associated with that address may be set. Aggressor addresses may be provided to have their victims refreshed in an order based on the number of set priority flags.
A common memory device shared by a first processor and a second processor is provided. The common memory device includes a memory cell array including a first memory region allocated for the first processor and a second memory region allocated for the second processor, a refresh masking information storage circuit configured to store refresh masking information indicating whether a refresh is performed on at least one of the first and second memory regions, and a refresh circuit configured to selectively perform the refresh on the first memory region and the second memory region according to the refresh masking information.
A semiconductor apparatus includes a command decoding circuit and an enable signal generation circuit. The command decoding circuit generates a plurality of operation codes and a strobe pulse based on a command signal and a clock signal. The enable signal generation circuit generates a seed signal based on at least a part of an operation code, among the plurality of operation codes, and the strobe pulse, and generates an enable signal by shifting the seed signal. The enable signal generation circuit generates a plurality of guard keys, after the seed signal is generated, based on the plurality of operation codes and the strobe pulse, and prevents the generation of the enable signal when any one of the plurality of guard keys is disabled.
Apparatuses and methods for providing internal clock signals of different clock frequencies in a semiconductor device are described in the present application. An example apparatus includes a read command buffer and a read data output circuit. The read command. buffer buffers a read command responsive to a first clock signal and provides the read command responsive to a second clock signal. The read data output circuit receives a plurality of bits of data in parallel when activated by the read command from the read command buffer, and provides the plurality of bits of data serially responsive to input/output (IO) clock signals. A data clock timing circuit provides the IO clock signals having a first clock frequency in a first mode and having a second clock frequency in a second mode, and further provides the second clock signal having the first clock frequency in the first and second modes.
Apparatuses and methods for transmitting data between a plurality of chips are described. An example apparatus includes: a first chip, wherein the first chip includes a receiver that receives a data strobe signal and further generates an internal strobe signal responsive, at least in part, to the data strobe signal, the internal strobe signal including a first edge and a second edge following the first edge; a buffer circuit coupled to a set of input terminals and captures first data at the set of input terminals responsive, at least in part, to the first edge of the internal strobe signal and further captures second data at the set of input terminals responsive, at least in part, to the second edge of the internal strobe signal; a driver coupled between the buffer circuit and a set of data terminals and configured to be activated to provide the first and second data from the buffer circuit to the set of data terminals responsive, at least in part, to a control signal; and a width expanding circuit that provides the control signal responsive, at least in part, to the internal strobe signal.
A data storage device is disclosed comprising a head actuated over a disk comprising a plurality of data tracks, including a first data track and a second data track. In connection with writing to at least part of the first data track, a quality metric is measured for at least part of the first data track. In connection with writing to at least part of the second data track, a refresh metric is updated based on the write to at least part of second data track and the quality metric measured for the first data track, and at least the first data track is refreshed based on the refresh metric.
In general, the subject matter described in this disclosure can be embodied in methods, systems, and program products for identifying that a first audio stream includes first, second, and third sources of audio. A computing system identifies that a second audio stream includes the first, second, and third sources of audio. The computing system determines that the first and second sources of audio are part of a first conversation. The computing system generates a third audio stream that combines the first source of audio from the first audio stream, the first source of audio from the second audio stream, the second source of audio from the first audio stream, and the second source of audio from the second audio stream, and diminishes the third source of audio from the first audio stream, and the third source of audio from the second audio stream.
A thermally assisted magnetic head including a slider and a light source-unit. The slider includes a slider substrate and a magnetic head part. The light source-unit includes a laser diode and a sub-mount. The magnetic head part includes a medium-opposing surface, a light source-opposing surface and a waveguide which guides laser light from the light source-opposing surface to the medium-opposing surface. The slider substrate includes a light source-cavity formed in a light source-placing surface on which the light source-unit is placed. The light source-cavity includes an opening concave part being formed larger than a mount bottom surface of the sub-mount. The mount bottom surface of the sub-mount is inserted into the opening concave part to be joined to the light source-cavity.
In one embodiment, a write head includes a spin polarization layer (SPL) over a seed layer. A spacer layer is over the SPL. A trailing shield is over the spacer layer. The spacer layer forms a first interface between the spacer layer and the trailing shield and forms a second interface between the spacer layer and the SPL. The first interface has an area larger than an area of the second interface. In another embodiment, a write head includes a SPL over a spacer layer. A capping layer is over the SPL. A trailing shield is over the capping layer. The spacer layer forms a first interface between the spacer layer and the main pole and forms a second interface between the spacer layer and the SPL. The first interface has an area larger than an area of the second interface.
According to one embodiment, a magnetic recording device includes a magnetic head, a first circuit, and a second circuit. The magnetic head includes a magnetic pole, a first shield, a stacked body provided between the magnetic pole and the first shield, a first terminal electrically connected to the magnetic pole, a second terminal electrically connected to the first shield, and a coil. The first circuit is electrically connected to the first terminal and the second terminal. The second circuit is electrically connected to the coil. The first circuit performs at least a first operation. In the first operation, the first circuit supplies a first current to a current path between the first and second terminals when the second circuit supplies a recording current to the coil. The first current is smaller than a second current. The second current causes an electrical resistance of the current path to oscillate.
Described herein is a system for emotion detection in audio data using a speaker's baseline. The baseline may represent a user's speaking style in a neutral emotional state. The system is configured to compare the user's baseline with input audio representing speech from the user to determine a emotion of the user. The system may store multiple baselines for the user, each associated with a different context (e.g., environment, activity, etc.), and select one of the baselines to compare with the input audio based on the contextual situation.
A method and device are provided for determining an optimized scale factor to be applied to an excitation signal or a filter during a process for frequency band extension of an audio frequency signal. The band extension process includes decoding or extracting, in a first frequency band, an excitation signal and parameters of the first frequency band including coefficients of a linear prediction filter, generating an excitation signal extending over at least one second frequency band, filtering using a linear prediction filter for the second frequency band. The determination method includes determining an additional linear prediction filter, of a lower order than that of the linear prediction filter of the first frequency band, the coefficients of the additional filter being obtained from the parameters decoded or extracted from the first frequency and calculating the optimized scale factor as a function of at least the coefficients of the additional filter.
Among other things, requests are received from voice assistant devices expressed in accordance with different corresponding protocols of one or more voice assistant frameworks. Each of the requests represents a voiced input by a user to the corresponding voice assistant device. The received requests are re-expressed in accordance with a common request protocol. Based on the received requests, responses to the requests are expressed in accordance with a common response protocol. Each of the responses is re-expressed according to a protocol of the framework with respect to which the corresponding request was expressed. The responses are sent to the voice assistant devices for presentation to the users.
Systems and methods are disclosed herein for continuing playback of a digital tutorial until a user interrupts the playback by signaling to the system that there is an issue or that the user needs help. The system detects a person's utterance (e.g., through passive voice monitoring) and determines that the user's utterance is related to the digital tutorial. The system determines, based on the utterance, which step of the digital tutorial is problematic for the user, and replays the problematic step.
The disclosed technology provides computer-to-wireless-voice integration methods and systems. In some implementations, the methods and systems deliver real-time voice instructions to users of required time-sensitive actions and ensure that such directives are received and a recipient effectively acts on the directives. The systems and methods include receiving a notification of an event from a terminal in a wireless active voice engine (WAVE) system, determining an active voice directive corresponding to the event with a WAVE module, converting the active voice directive into a voice event via a directive converter, and notifying a targeted recipient of the active voice directive corresponding to the event with a communications module. In some implementations, the systems and methods include sending a confirmation event via the receiver to the communications module that the active voice directive was received by the targeted recipient and communicating the active voice directive has been completed.
Systems, methods, and devices for training and testing utterance based frameworks are disclosed. The training and testing can be conducting using synthetic utterance samples in addition to natural utterance samples. The synthetic utterance samples can be generated based on a vector space representation of natural utterances. In one method, a synthetic weight vector associated with a vector space is generated. An average representation of the vector space is added to the synthetic weight vector to form a synthetic feature vector. The synthetic feature vector is used to generate a synthetic voice sample. The synthetic voice sample is provided to the utterance-based framework as at least one of a testing or training sample.
Methods and systems for phonological clustering are disclosed. A method includes: segmenting, by a computing device, a sentence into a plurality of tokens; determining, by the computing device, a plurality of phoneme variants corresponding to the plurality of tokens; clustering, by the computing device, the plurality of phoneme variants; creating, by the computing device, an initial vectorization of the plurality of phoneme variants based on the clustering; embedding, by the computing device, the initial vectorization of the plurality of phoneme variants into a deep learning model; and determining, by the computing device, a radial set of phoneme variants using the deep learning model.
A sound absorbing device includes: a plurality of sound absorbing units. A frequency of sound absorbed by at least one of the sound absorbing units overlaps, at least partially, with a frequency of sound with a volume increased by installation of another sound absorbing unit.
The image data display system according to the present invention makes it possible to comprehend a global distribution of measurement values and a change in details of the measurement values simultaneously. In the present invention, a color information conversion unit converts the measurement values to color information for representing the global distribution of the measurement values. A detail extraction unit extracts detail information of the measurement values from the measurement values. A detail adjustment unit adjusts the strength of detail information and generates adjusted detail information. A color information adding unit adds color information on the basis of the adjusted detail information.
Systems, methods, and apparatus to transition a display device between operating modes using a single dedicated pin of a circuit connected to the display device. The dedicated pin can receive a packet signal corresponding to an operating mode for the display device, and the circuit can thereafter cause the display device to transition into the desired operating mode in response to receiving the packet signal. The operating mode can be a low power on mode where an interface connected to the circuit is deactivated and at least some circuitry of the display device is throttled or powered off. The display device can be driven in an all black state while in the low power on mode, thereby allowing the display device to more quickly transition out of the low power on mode compared to when the display device is completely off.
A shift register unit, a method of driving a shift register unit, a gate driving circuit and a touch display device are disclosed. The shift register unit includes a first signal input terminal, a first voltage control terminal, a second signal input terminal, a second voltage control terminal, a signal output terminal, a first voltage terminal, and a second voltage terminal. The shift register unit further comprises a first input circuit, a second input circuit, an output circuit, an anti-leakage circuit, a first control circuit, and a second control circuit. The anti-leakage circuit is configured to bring a first node into conduction with a second node in response to an active potential of the second voltage terminal.
A shift register unit cascaded in a gate drive circuit, wherein the shift register unit comprises: a control circuit configured to output a control signal, at least two buffer circuits coupled to the control circuit, each of the at least two buffer circuits configured to output scan signal to a gate line. As such, the scan signals output from the at least two buffer circuits would be synchronized so that the gate lines respectively coupled to the two buffer circuits can be scanned simultaneously.
A display substrate, a display device and a method for driving the same are provided. The display substrate includes a plurality of sub-regions. At least one subpixel unit, a common electrode voltage input line, a common electrode voltage control line and at least one control TFT are arranged at each sub-region. At each sub-region, a gate electrode of the control TFT is coupled to the common electrode voltage control line, a source electrode of the control TFT is coupled to the common electrode voltage input line, and a drain electrode of the control TFT is coupled to a common electrode of the subpixel unit.
A image adjustment method applicable to a display includes: defining multiple areas on a display region of the display; obtaining statistics of grayscale of a preliminary image; determining an image type of the preliminary image according to the statistics of grayscale of the preliminary image; generating a Cumulative Distribution Function (CDF) of luminance according to the statistics of grayscale of the preliminary image; individually adjusting a backlight level for each of the areas according to the CDF and the image type of the preliminary image; and generating an output image with each of the areas being individually adjusted.
A pixel circuit and a display apparatus. The pixel circuit comprises three sub-pixel circuits (P1, P2, P3) and one power supply circuit (VL), wherein the three sub-pixel circuits (P1, P2, P3) share a data line (Data); the power supply circuit (VL) is connected to a first voltage level terminal (VA), a first signal control line (EM1) and the sub-pixel circuits (P1, P2, P3), and the power supply circuit (VL) is configured to supply a first voltage level to the sub-pixel circuits (P1, P2, P3) through the first voltage level terminal (VA) under the control of a signal of the first signal control line (EM1); and the sub-pixel circuits (P1, P2, P3) are connected to the power supply circuit (VL) and the data line (Data), and are configured to display a gray scale under the control of the first voltage level supplied by the power supply circuit (VL) and a data signal of the data line (Data). The pixel circuit can decrease the number of the signal lines used in the pixel circuit in the display apparatus, reduce the cost of the integrated circuit, and improve the pixel density of the display apparatus.
An array substrate includes a display area, a non-display area other than the display area, a plurality of signal lines located in the display area, and a plurality of signal line leads located in the non-display area and connected to respective ones of the plurality of signal lines. Each of the signal line leads includes a lead body and a first block connected to the lead body, and the first block has an area greater than or equal to an area of a square with a side length that is 5 times a width of the signal line.
A semiconductor device comprises circuitry and a timing generator. The circuitry is configured to generate an emission control signal that controls light emission of pixels of a display panel such that a first vertical sync period comprises a plurality of control cycles for the light emission of the pixels. The timing generator is configured to, when a length of the first vertical sync period is changed, start a next vertical sync period following the first vertical sync period at timing based on a length of the control cycles.
Provided is a scan driving circuit including a plurality of unit scan driving circuits, at least one of the plurality of unit scan driving circuits including: a first transistor configured to receive a prior scan signal in synchronization with a first clock signal and to respond to an enable level of the prior scan signal to output a second clock signal as a corresponding scan signal during one cycle of the first clock signal; a second transistor coupled between the first transistor and a first voltage; and a third transistor coupled to a gate of the second transistor and configured to be turned on by a first signal. A width of a first wire configured to transfer the first clock signal and a width of a second wire configured to transfer the second clock signal are larger than that of a third wire configured to transfer the first signal.
A pixel circuit configured to drive a light-emitting element and a driving method therefor, and a display substrate, the pixel circuit comprising: a first switch sub-circuit configured to input, under the control of a first control signal line, a data signal of a data signal line to a first node; a second switch sub-circuit configured to input, under the control of a second control signal line, a first signal of a first signal line to a second node; a driving sub-circuit configured to drive, under the control of the potential of the first node, the light-emitting element to emit light; and a memory sub-circuit configured to store a threshold voltage of the driving sub-circuit before the second switch sub-circuit is turned on in each work cycle of the pixel circuit.
An OLED display is disclosed. In one aspect, the display includes a scan line transmitting a scan signal, a data line crossing the scan line and transmitting a data voltage, and a driving voltage line crossing the scan line and configured to transmit a driving voltage. The display also includes a switching transistor electrically connected to the scan line and the data line. The display further includes a driving transistor and a compensation transistor. A driving gate electrode and a driving drain electrode are respectively connected to a compensation source electrode and a compensation drain electrode. The display also includes a light blocking layer at least partially covering the compensation transistor and an OLED electrically connected to the driving transistor.
A method for driving a display panel, a driving chip and a display device are provided to ameliorate image retention and improve the display performance. The method includes: monitoring a static pattern in a first display image and defining an area where the static pattern is located as a first area when a display brightness value of the area and a display brightness value of an area where a background pattern thereof is located satisfy a first preset condition; and controlling the static pattern to move during displaying of the first display image, or adjusting grayscale values of sub-pixels in a second area during displaying of a second display image, to which the first display image jumps, the second area being an area, corresponding to the first area in the second display image and having a display brightness value lower than a display brightness value of the first area.
The present invention provides a decay factor accumulation method for an organic light-emitting diode (OLED) display panel with a variable refresh rate (VRR). The decay factor accumulation method includes detecting an operating frame rate of an input image; generating a decay factor compensation coefficient according to the operating frame rate and a measurement frame rate; and generating a plurality of accumulated decay factors of the input image according to a decay factor lookup table corresponding to the measurement frame rate and the decay factor compensation coefficient.
A mura compensation apparatus for an organic light emitting diode (OLED) display includes a calculator and a mura compensator. The calculator is configured to calculate a non-maximum-luminance demura offset value of a pixel of the OLED display for a determined gray level on the basis of a gamma value, a maximum-luminance demura offset value of the pixel of the OLED display for a relocated gray level and a non-maximum luminance value of the OLED display. The mura compensator is configured to perform mura compensation on the pixel of the OLED display by the non-maximum-luminance demura offset value for the determined gray level.
An electronic device may have a hinge that allows the device to be flexed about a bend axis. A display may span the bend axis. To facilitate bending about the bend axis without damage when the display is cold, a portion of the display that overlaps the bend axis may be selectively heated. The portion of the display that overlaps the bend axis may be self-heated by illuminating pixels in the portion of the display that overlap the bend axis or may be heated using a heating element or other heating structure that provides heat to the portion of the display overlapping the bend axis. Control circuitry may engage a latching mechanism that prevents opening and closing of the electronic device when the temperature of the portion of the display that overlaps the bend axis is below a predetermined temperature.
A driving method of display panel includes: dividing pixels with same one color on the display panel into sets of pixel pairs, each set including a first subpixel and a second subpixel; displaying each frame using two frame images in order; obtaining a first voltage signal and a second voltage signal, a positive-viewing-angle mixed brightness of the subpixel being equivalent to a positive-viewing-angle brightness of the subpixel; driving the first subpixel of the first frame image by the first voltage signal of the first or second subpixel, and driving the second subpixel by the second voltage signal of the first or second subpixel; and driving the first subpixel of the second frame image by the second voltage signal of the first or second subpixel, and driving the second subpixel of the second frame image by the first voltage signal of the first or second subpixel.
The present invention provides a display method of a display panel, a drive circuit, a display device and a computer-readable storage medium. The method comprises: acquiring remaining ratios of subpixels of respective colors in each irregular pixel, the remaining ratio being a ratio of the opening area of the subpixel in the irregular pixel and the opening area of the subpixel of the same color in the regular pixel; determining actual light intensities of respective subpixels in each irregular pixel according to remaining ratios and corresponding original light intensities of the respective subpixels; causing respective subpixels in each irregular pixel to display corresponding actual light intensities.
A timing control circuit and an operating method thereof are provided. The timing control circuit includes a first clock generating circuit, a second clock generating circuit and a control timing generating circuit. The control timing generating circuit is coupled to the first clock generating circuit to receive a first clock signal. The control timing generating circuit is coupled to the second clock generating circuit to receive a second clock signal. The control timing generating circuit starts timing from a first reference time point according to the first clock signal for determining a second reference time point. The control timing generating circuit starts timing from the second reference time point according to the second clock signal for determining a time point of a trailing edge of a current line pulse of a scan reference signal, wherein the current line pulse corresponds to a current scan line of a display panel.
A display device includes: a first pixel including a first light emitting diode (LED) and a first capacitor including a first electrode connected to a first power source voltage providing a driving voltage to an anode of the first light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the first light emitting diode (LED); and a second pixel including a second light emitting diode (LED) and a second capacitor including a first electrode connected to the first power source voltage providing the driving voltage to an anode of the second light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the second light emitting diode (LED), wherein capacitance of the second capacitor is less than capacitance of the first capacitor.
A method of associating a tamper evident tag with an article is provided. The method includes the steps of providing the tamper evident tag with first and second layers laminated to each other and inserting a fastener through the article at a user selected location thereof. A terminal end of the fastener is positioned on a second layer of the tamper evident tag and a first portion of the second layer is removed to expose an adhesive on a first portion of the first layer. The first portion of the first layer of the tamper evident tag is folded over a second portion of the first layer so as to capture a second portion of the inner layer between the first and second portions of the first layer and to capture the terminal end of the fastener between the first portion of the first layer and the second portion of the second layer of the tamper evident tag thereby retaining the article on the fastener.
Disclosed embodiments may relate to a time-dependent color-changing label for a product. The label may include a first layer comprising a plurality of particles, the particles comprising a time dependent color-changing material that changes color after a predetermined time period, the predetermined time period being greater than one month. The label may also include an attachment structure attaching the first layer to the product. In certain embodiments, the first layer may include a polymer, and the particles may include glass microspheres containing the time-dependent color changing material. The particles may be embedded in the polymer.
A system and method for converting static/still medical images of a particular patient into dynamic and interactive images interacting with medical tools including medical devices by coupling a model of tissue dynamics and tool characteristics to the patient specific imagery for simulating a medical procedure in an accurate and dynamic manner by coupling a model of tissue dynamics to patient specific imagery for simulating surgery on the particular patient. The method includes a tool to add and/or to adjust the dynamic image of tissues and ability to draw any geometric shape on the dynamic image of tissues and to add the shape into the modeling system.
A haptic communication device includes a speech signal generator configured to receive speech sounds or a textual message and generate speech signals corresponding to the speech sounds or the textual message. An envelope encoder is operably coupled to the speech signal generator to extract a temporal envelope from the speech signals. The temporal envelope represents changes in amplitude of the speech signals. Carrier signals having a periodic waveform are generated. Actuator signals are generated by encoding the changes in the amplitude of the speech signals from the temporal envelope into the carrier signals. One or more cutaneous actuators are operably coupled to the envelope encoder to generate haptic vibrations representing the speech sounds or the textual message using the actuator signals.
A method for controlling an aerial vehicle includes obtaining flight indication data containing a position region associated with the flight indication data, determining whether a current position of the aerial vehicle is within the position region associated with the flight indication data, and, in response to the current position being within the position region, generating a flight control instruction according to the flight indication data, and controlling a flight of the aerial vehicle according to the flight control instruction.
The present disclosure provides a flight instructing method and device as well as an aerial vehicle. The flight instructing method may comprise: obtaining meteorological information of a target flight region; determining a flight-limiting parameter candidate of an aerial vehicle in the target flight region according to the obtained meteorological information; and issuing a flight-limiting indication based on the determined flight-limiting parameter candidate.
A method for driving safety when vehicles are driving in convoy, in which a driver classification is performed during travel based on instantaneous sensor variables, and in which a recommendation for the vehicle order in the convoy is output.
A vehicular exterior rearview mirror assembly includes a mirror reflector sub-assembly having a mirror reflective element, a mirror back plate, a heater pad, and a blind zone indication module that includes a plastic housing. When at least one light emitting diode of the blind zone indication module is electrically powered, light emitted by the light emitting diode exits the blind zone indication module via a light-transmitting portion of the front end of the plastic housing. With the blind zone indication module disposed at the mirror reflective element, and with the light-transmitting portion of the front end of the plastic housing juxtaposed with a light-transmitting aperture of the mirror back plate, light emitted by the light emitting diode passes through the mirror reflective element and illuminates an icon of the mirror reflective element that is viewable by a driver of a vehicle equipped with the mirror assembly.
Control apparatus that controls headlamp of a vehicle and HUD of the vehicle includes acquirer that obtains information about an object situated ahead of the vehicle from monitoring apparatus monitoring an area ahead of the vehicle, light emission controller that controls the light emission form of headlamp based on a position at which the object is present, and display controller that causes HUD to display an alert image indicating the position of the object such that the alert image is superimposed on or situated adjacent to the actual position of the object in a view that is observed in a forward direction with respect to the vehicle.
In one embodiment, a system of an ADV perceives a driving environment surrounding the ADV using a plurality of sensors mounted on the ADV. The system identifies a blind spot based on the perceived driving environment surrounding the ADV. The system in response to identifying the blind spot, receives an image having the blind spot from an image capturing device disposed within a predetermined proximity of the blind spot. In some embodiments, the system receives the image having the blind spot from a remote server communicatively coupled to the image capturing device. The system identifies an obstacle of interest at the blind spot of the ADV based on the image. The system generates a trajectory based on the obstacle of interest at the blind spot to control the ADV to avoid the obstacle of interest.
The invention discloses a positioning device configured to acquire its own GNSS position, the GNSS positions of rovers in an area around the positioning device and the relative positions of the positioning device to the rovers. The positioning device is configured to calculate a best-fit position based on this data and their confidence indexes. The positioning devices may communicate directly or through a navigation assistance centre. The best-fit position may be provided with indexes of confidence, availability and integrity. In some embodiments, the positioning device of the invention may be robust enough to generate commands to the driving controls of an autonomous vehicle.
An information management apparatus and a non-transitory computer-readable recording medium recording a program which is executable by an information management apparatus is disclosed. The information management apparatus includes: a memory which is configured to store vehicle information; processing circuitry configured to receive the vehicle information and to store the vehicle information in the memory, the vehicle information including vehicle identification information uploaded from each of a plurality of vehicles managed by the information management apparatus, analyze the vehicle information stored in the memory according to a set analysis viewpoint, and change an upload condition of the vehicle information based on an analysis result of the vehicle information; and a transmitter configured to transmit the changed upload condition to a vehicle among the plurality of vehicles.
A notification device provided in a vehicle and configured to notify pedestrians of information includes a recognition unit configured to recognize, based on a result of detection performed by an external sensor, a plurality of pedestrians, a notification unit configured to perform notification about the information with respect to an outside of the vehicle, and a notification controller configured to generate the information, about which the notification unit performs notification, for each pedestrian in response to recognizing the plurality of pedestrians by the recognition unit and to cause the notification unit to perform notification about the generated information for each pedestrian.
Methods, systems, and apparatus, including computer programs encoded on a storage device, for enabling drone activity in a property monitored by a property monitoring system without triggering a false alarm. In one aspect, the method includes actions of obtaining a location of the drone, identifying a first sensor installed at the property that is within a predetermined distance of the drone, detecting first sensor data generated by the first sensor that is within a predetermined distance of the drone, wherein the first sensor data includes data that is indicative of an event, determining whether a second sensor that is mounted to the drone is generating second sensor data that corroborates the event indicated by the first sensor data, and disregarding, by the property monitoring system, the first sensor data in determining whether to trigger an alarm.
A light shielding section for inhibiting ambient light from entering a detection space 34 for detecting smoke contained in a gas is included, the light shielding section includes an inner labyrinth 36 that covers an outer edge of the detection space 34 and has a first inner inflow opening 36f, a detector body 4 disposed at a position facing the first inner inflow opening 36f, the position being separated from the first inner inflow opening 36f by a first gap 38, and an outer labyrinth 37 disposed at a position separated from the first gap 38 by a second gap 39 on an imaginary line orthogonal to a direction in which the first inner inflow opening 36f and the detector body 4 face each other, the imaginary line passing through the first gap 38, and the gas outside the light shielding section is allowed to flow into the detection space 34 through the second gap 39, the first gap 38, and the first inner inflow opening 36f in order.
Security and/or automation systems, collectively referred to as automation systems, may allow a parent to leave their child at home and feel comfortable. The automation system may receive a notification that the parents are leaving. The parents may set a child alone state or a babysitter state. The system may use settings determined by the parents to track child parameters. Restricted areas may include a parents liquor cabinet, a parents bedroom, an office, and the like. The automation system may additionally track the comings and goings of a child to determine if the child is out past a curfew, when the child left, when the child arrived at home, and the like. Additionally, the parent away state may implement a lock down on any firearms or other potential hazards in a home.
To bring the excitement to the people (majority, who are not experts in games), we present the examples, described here, for one person to be able to bet on and be part of the deal and excitement for a third party, as his agent, proxy, or shadow. Some other examples are: one-link connectivity for easy registration and betting, connection and integration of social networks, Game of skills and/or chance, TV show integration, Player vs player situations, One-click betting/linking/functioning/triggering or OCB, Tipster scheme, a website belonging to our platform, Charity scheme, Pari-mutuel betting in our environment (all bets of a type in a pool, where any winning can be shared, after the house or casino deduction for fees), Proposition betting in our environment, and Multiple leg/parameter situation (where only a subset of decisions is relied upon on a 3rd party, and the rest are decided by the 1st party, herself).
A method of creating lottery tickets of which the possible prize will be discovered by the holder of same via a Smartphone application which, depending on the image on the ticket, will make it possible to reach, on a remote computer site, the equivalent of a draw, that is preferably pre-recorded or pre-defined and will be displayed on the Smartphone in a form equivalent to a video, thus making it possible for the holder to be able to follow and experience the draw and thus find out if he has won and, in this case, what the prize is. The distribution of the prizes, the guarantee that the draw is unique and the “new” nature of the tickets are guaranteed and managed by the remote computer system. The method makes it possible, in particular, to bring a novel appeal to lotteries based on scratchcard tickets, which are the main key to the success of this kind of lottery.
Methods, systems, and articles of manufacture for providing user participatory design as a process to generate unique patterns on transaction cards are disclosed. For example, a system for providing an interactive design environment for designing a transaction card is disclosed. Accordingly, the system may provide for deeper customization of transaction cards through generative patterns curated by designers and informed by end-users. As a result, the patterns on transaction cards may be unique to every user, and these unique patterns may provide additional security functions to cardholders.
A sheet processing system A includes a sheet processing apparatus 1 that transports and stores a sheet in one of short-edge leading orientation and long-edge leading orientation; a sheet housing section 3 that stores the sheet in the other of the short-edge leading orientation and the long-edge leading orientation; and an orientation changing section 4 that transports the sheet between the sheet processing apparatus 1 and the sheet housing section 3, changes transport orientation of the sheets which is being transported between the short-edge leading orientation and the long-edge leading orientation.
A system that allows an end-user to locate and gain access to a private facility, such as a restroom or other resource, without requiring that the end-user interact with any facility personnel. A mobile application allows a user to identify and proceed to a location where a private facility is available. When a user arrives at the location, the mobile application communicates with access control devices at the location to notify facility personnel of the user's presence and unlock doors or otherwise remove safeguards preventing general public access to the private facility.
Disclosed is a method for remotely loading digital data to an electronics unit for measuring operating parameters of a wheel of a motor vehicle, the remote loading being carried out by a remote loading tool external to the wheel. The method includes the positioning of the external remote loading tool in the proximity of the wheel at least, emission of at least one frame of mechanical waves by the external remote loading tool toward the electronics unit, the waves being representative of the data to be remotely loaded, reception of at least the frame of mechanical waves by the electronics unit via the mechanical parameter measurement sensor, and the conversion of the mechanical waves into electrical signals and then into digital signals containing the remotely loaded data in digital form, and the storage of the remotely loaded data in the electronics unit.
A modular computer-implemented XR health platform is adapted for diagnostic, therapeutic, and care delivery to patient. The platform incorporates one or more modules including a clinical platform module, XR platform module, configuration module, web portal and companion application module, integration module, light module, anatomy module, movement module, neurological module, mental health module, pain module, procedural and digital anesthetic module, hardware module, and billing module. A combined extended reality display and computing device are adapted for implementing one or more of the plurality of modules.
Users can view images or renderings of items placed (virtually) within a physical space. For example, a rendering of an item can be placed within a live camera view of the physical space. A snapshot of the physical space can be captured and the snapshot can be customized, shared, etc. The renderings can be represented as two-dimensional images, e.g., virtual stickers or three-dimensional models of the items. Users can have the ability to view different renderings, move those items around, and develop views of the physical space that may be desirable. The renderings can link to products offered through an electronic marketplace and those products can be consumed. Further, collaborative design is enabled through modeling the physical space and enabling users to view and move around the renderings in a virtual view of the physical space.
Methods and systems for providing a mixed reality (MR) interaction are provided. In one example, a method comprises: capturing, at a first time and using a camera of a head-mounted display (HMD) of a user, a first image of a physical interaction of the user with a physical object; measuring a movement of the HMD with respect to the physical object between the first time and a second time; processing the first image based on the measurement of the movement of the HMD to generate a second image; generating, based on the second image, a composite image of a virtual interaction involving the user; and displaying, via the HMD and based on the composite image, the virtual interaction in place of the physical interaction to the user at the second time.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for optimizing three-dimensional models. One of the methods includes determining, for a three-dimensional model of an object to be optimized, a plurality of points on the object that each have at least a threshold likelihood of being a focal point, the object having two or more regions each of which include one or more textures, one or more meshes, or both; identifying, from the two or more regions, one or more non-focal regions that i) each do not include any of the plurality of points, and ii) are a proper subset of the two or more regions; generating, using the one or more non-focal regions, an optimized three-dimensional model for the object with a smaller size less than a larger size of the three-dimensional model; and storing the optimized three-dimensional model in a non-volatile memory.
Techniques for removing or identifying overlapping fragments in a fragment stream after z-culling are disclosed. The techniques include maintaining a first-in-first-out buffer that stores post-z-cull fragments. Each time a new fragment is received at the buffer, the screen position of the fragment is checked against all other fragments in the buffer. If the screen position of the fragment matches the screen position of a fragment in the buffer, then the fragment in the buffer is removed or marked as overlapping. If the screen position of the fragment does not match the screen position of any fragment in the buffer, then no modification is performed to fragments already in the buffer. In either case, he fragment is added to the buffer. The contents of the buffer are transmitted to the pixel shader for pixel shading at a later time.
Systems and methods of geometry processing, for rasterization and ray tracing processes provide for pre-processing of source geometry, such as by tessellating or other procedural modification of source geometry, to produce final geometry on which a rendering will be based. An acceleration structure (or portion thereof) for use during ray tracing is defined based on the final geometry. Only coarse-grained elements of the acceleration structure may be produced or retained, and a fine-grained structure within a particular coarse-grained element may be Produced in response to a collection of rays being ready for traversal within the coarse grained element. Final geometry can be recreated in response to demand from a rasterization engine, and from ray intersection units that require such geometry for intersection testing with primitives. Geometry at different resolutions can be generated to respond to demands from different rendering components.
Methods and systems for inserting a push content item into a user display are described herein. The system identifies an object on a current output of an application on a device. The system also selects a push content item comprising an animatable graphic element from a database of push content. The system inserts the push content item at an insertion point in the current output and animates the animatable graphic element on the current output of the application. The system also causes at least one interaction of the animatable graphic element with the object on the current output of the application.
A method including receiving a user selection of multiple image anchors for images within a canvas, and a query for each image anchor, is provided. The method includes finding a vector for the canvas in a merged space associated with the user selection of multiple image anchors, generating a synthetic image for the canvas based on the vector for the canvas in the merged space and an image from an image database, and evaluating a synthetic detectability based on a resemblance of the synthetic image with a real image. The method also includes providing the synthetic image for the canvas to a user when the synthetic detectability is lower than a pre-selected threshold. A system and a non-transitory, computer readable medium storing instructions to perform the above method are also provided.
There is provided a technique for dividing a plurality of images into a plurality of image groups using a method which differs according to a predetermined condition. An image processing apparatus divides the plurality of images into the plurality of image groups according to time information corresponding to the plurality of images which are candidates to be laid out on a template. Then, at least one image included in each of the plurality of image groups is laid out on the template corresponding to each of the plurality of image groups. In the dividing, the plurality of images is divided into the plurality of image groups by a method which differs according to the predetermined condition.
The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
While a viewer is viewing a first stereoscopic image comprising a first left image and a first right image, a left vergence angle of a left eye of a viewer and a right vergence angle of a right eye of the viewer are determined. A virtual object depth is determined based at least in part on (i) the left vergence angle of the left eye of the viewer and (ii) the right vergence angle of the right eye of the viewer. A second stereoscopic image comprising a second left image and a second right image for the viewer is rendered on one or more image displays. The second stereoscopic image is subsequent to the first stereoscopic image. The second stereoscopic image is projected from the one or more image displays to a virtual object plane at the virtual object depth.
An object tracking method includes following steps: transmitting search information for searching for an object by a first processor during a search stage; receiving the search information and using a second processor to determine whether any of at least one accessory camera has captured an object image in the search stage. When the second processor determines that at least one of the at least one accessory camera has captured the object image, the second processor transmits notification information to the first processor and the first processor enters a tracking stage and transmits request information to the second processor. When the second processor receives the request information, the second processor performs one of the following: transmitting the object image to the first processor, wherein the first processor calculates an object pose according to the object image.
Apparatus and corresponding method are invented for detecting indoor liquid leak in equipment, such as a pump in a pump station. The apparatus includes an image analyzer configured to receive video from one or more cameras and analyze the video to determine if a leak on the equipment is present by comparing the video with a reference and a target color and the image analyzer having an output port for delivering a notification upon the image analyzer determining that a leak is present on the equipment. If a leak alarm happens, the operator can check the remote live video and/or stored clips to confirm the leak and activate a response to stop it.
A method for fill level determination, which can include receiving a set training set, training a neural network, selecting reference images, and/or determining a container fill level. A system for fill level determination, which can include a computing system, one or more containers, and/or one or more content sensors.
Systems and methods generate a segmentation network for image segmentation using global optimization. A method for automatic generation of at least one segmentation network includes providing an initial set of hyperparameters to construct a segmentation network. The hyperparameters define operations for a set of block structures and connections between the block structures. The segmentation network is trained using a first set of images with ground truth. An objective function value for the trained segmentation network is generated using a second set of images having ground truth. Generating the objective function includes setting the objective function to a predetermined value responsive to identifying an untrainable condition of the trained initial segmentation network. The set of hyperparameters is updated by performing an optimization algorithm on the objective function value to construct an updated segmentation network. The training of the segmentation network, the generating of the objective function, and the updating of the set of hyperparameters for the updated segmentation network are iterated to generate a network architecture for the segmentation network.
Embodiments facilitate prediction of anti-vascular endothelial growth (anti-VEGF) therapy response in DME patients. A first set of embodiments discussed herein relates to training of a machine learning classifier to determine a prediction for response to anti-VEGF therapy based on a set of graph-network features and a set of morphological features generated based on FA images of tissue demonstrating DME. A second set of embodiments discussed herein relates to determination of a prediction of response to anti-VEGF therapy for a DME patient (e.g., non-rebounder vs. rebounder, response vs. non-response) based on a set of graph-network features and a set of morphological features generated based on FA imagery of the patient.
Provided are automated (computerized) methods and systems for analyzing digitized pathology images in a variety of tissues potentially containing diseased or neoplastic cells. The method utilizes a coarse-to-fine analysis, in which an entire image is tiled and shape, color, and texture features are extracted in each tile, as primary features. A representative subset of tiles is determined within a cluster of similar tiles. A statistical analysis (e.g. principal component analysis) reduces the substantial number of “coarse” features, decreasing computational complexity of the classification algorithm. Afterwards, a fine stage provides a detailed analysis of a single representative tile from each group. A second statistical step uses a regression algorithm (e.g. elastic net classifier) to produce a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the decision values from these tiles to obtain a diagnosis at the whole slide level.
An apparatus for combining multiple images to form a blended image, configured to identify regions of overlap: (i) in a first image and in a second image, corresponding to where those first and second images will overlap each other in the blended image; and (ii) in the first image and in a third image, corresponding to where those first and third images will overlap each other in the blended image, identify an image quality associated with each region of overlap, determine a gain for each image that, when applied to the image as a whole, will minimise a sum of: (i) a difference between the image qualities associated with the regions of overlap in the first and second images; and (ii) a difference between the image qualities associated with the regions of overlap in the first and third images and apply the respective gains to the first, second and third images.
A tone-mapping technique based on bidirectional logarithm stretch enhances the luminance contrast of not only the dark areas but also the bright areas. In other words, the algorithm not only maps the dark pixels brighter but also map the bright pixels darker.
A method for sharpening gastrointestinal (GI) images and an apparatus thereof are disclosed. A first target distance between a first target region in a regular image and an imaging apparatus is determined, and a second target distance between a second target region in the regular image and the imaging apparatus is determined. One or more first filter parameters for a first de-blurring filter and one or more second filter parameters for a second de-blurring filter are selected from stored filter parameters according to the first and second target distances respectively. A first processed target region is generated by applying the first de-blurring filter to the first target region to improve sharpness of the first target region. A second processed target region is generated by applying the second de-blurring filter to the second target region to improve sharpness of the second target region.
An image capturing apparatus includes an image capturing device, a photometry unit; and an exposure control unit, wherein, when a wide-angle image is acquired, the photometry unit divides the wide-angle image into a plurality of regions, and acquires a first photometric result of a first photometric region and a second photometric result of a second photometric region, the first photometric region and the second photometric region being obtained by bringing adjacent predetermined regions together, when a wide-angle image is acquired, the exposure control unit controls an exposure based on at least the first photometric result and the second photometric result, and the first photometric region is constituted by a region included in the second photometric region and a region that is not included in the second photometric region.
An electro-optical device includes a pixel circuit 41G, a pixel circuit 41B, a high potential line 47G configured to supply a high potential VDDG to the pixel circuit 41G, a high potential line 47B configured to supply a high potential VDDB to the pixel circuit 41B, and a low potential line 46 configured to supply a first low potential VSS1 to the pixel circuit 41G and the pixel circuit 41B. The pixel circuit 41G includes a light-emitting element 20G configured to display G, the pixel circuit 41B includes a light-emitting element 20B configured to display B, and the high potential VDDG and the high potential VDDB are mutually independent.
Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
Provided are a method and system for processing image data, the method comprising: capturing raw image data of multiple images of one or more scenes under one or more lighting conditions; machine vision processing the raw image data to generate machine vision data; classifying the machine vision data according to a type of the machine vision data; and storing the classified machine vision data in a multi-tiered data structure according to the machine vision data type, configured to enable each of the tiers of data to be processed independently of each other.
A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
A vacancy identification (VI) computing device is provided. The VI computing device includes a processor in communication with a memory. The processor generates a storefront profile including a status indicator for a candidate storefront located at a commercial property, stores the storefront profile within the memory, and registers a user to receive notifications for the candidate storefront. The processor also receives transaction data associated with the candidate storefront for a predetermined period of time, determines that the candidate storefront is vacant based on the transaction data, updates the status indicator to indicate that the candidate storefront is vacant, and transmits a notification to the registered user advising the registered user that the candidate storefront is vacant.
Systems and methods for distributed, automated management of brownfield real estate asset remediation and/or redevelopment, including at least one server computer for analyzing and providing recommendations for a potential brownfield investment, wherein the at least one server computer is paired with a web-based graphical interface for accessing and editing stored documents, pictures, tasks, and budget information related to at least one brownfield asset.
Systems and methods may analyze property telematics data, with homeowner permission or affirmative consent, to update risk-based coverage of a property, such as a house, during a short-term rental. The systems include a renter analytics computing device, a plurality of property telematics devices at the property, including at least one sensor, and a property telematics controller. The renter analytics computing device is configured to retrieve a pre-rental record including parameters of a short-term rental of the property, and retrieve property telematics data, from the property telematics devices, associated with the short-term rental. The renter analytics computing device may develop a risk level profile associated with the short-term rental and determine an adjusted coverage rate to cover the property during the short-term rental. As a result, a homeowner of the property may be protected against damages incurred to the property during the short-term rental.
Systems and methods are provided for generating a virtual reality (VR) simulation of a retail store, which simulation is configured and displayed on an immersive VR display device that enables a user to experience the simulated retail store as if it were a physical retail store. The systems enable the user to arrange display cases and other interior store components, and to populate shelves, racks, and the like, with products to be sold in the retail store. A VR platform enables multiple users to synchronously view the VR simulation and make coordinated changes to develop an optimized configuration of the retail store. Marketing, sales, merchant, and other data may be collected, aggregated, and analyzed to identify purchase trends of certain products; the analyzed data may identify user shopping preferences, and the VR platform may generate a customized retail store including only products relevant to a user.
Embodiments are directed towards recommending a shoe and insole combination for a consumer. A variety of shoe information, insole information, and consumer foot information may be determined, which may include heel width, a width or shape, a length, a height, and arch characteristics. The foot information, the shoe information for a plurality of shoes, and the insole information for a plurality of insoles may be compared to determine at least one combination of shoe and insole that is compatible with the consumer's foot. Based on this comparison of foot information, shoe information, and insole information, a recommendation of at least one shoe and insole combination may be determined and provided to a user and/or the consumer.
A method and a system are described herein for preparing a custom cosmetic formulation. The system includes a controller in electronic communication with an order management system, wherein the order management system stores user-specific data including data related to a custom cosmetic formulation and components thereof, a plurality of valves for receiving pressurized fluid, the plurality of valves in electronic communication with the controller; a plurality of dispensers, each having a valve for metering fluid in predetermined quantities, and each having a dispensing head having a nozzle, each nozzle comprising a nozzle tip on a distal end thereof, wherein the nozzle tips are arranged so as to dispense a fluid into an inlet of a product receptacle, the dispensers in electronic communication with a data port; a measuring device in electronic communication with the controller, the measuring device capable of capturing data related to dispensed fluids from each of the plurality of dispensers and transmitting the data to the controller; a barcode scanner for reading order-specific instructions; a user interface for operator communication with the order management system and with the controller; a plurality of fluid conduits for introducing fluid to the dispensers; a fluid delivery apparatus for delivery of components of a custom cosmetic component to the dispensers; and a pressure source for pressurizing fluid in the fluid delivery apparatus for delivery of fluid from the fluid delivery apparatus to the plurality of dispensers.
Disclosed is an electronic commerce method. An electronic commerce method according to an embodiment of the present invention comprises the steps of: receiving a purchase request signal from a buyer; transmitting the purchase request signal to a seller; receiving a video captured of the seller who has checked the purchase request signal; and transmitting the received video to the buyer.
A system and method providing for communication and resolution of utility functions between participants, wherein the utility function is evaluated based on local information at the recipient to determine a cost value thereof. A user interface having express representation of both information elements, and associated reliability of the information. An automated system for optimally conveying information based on relevance and reliability.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for broadcasting audio. In one aspect, the method includes receiving, from a server by a smart broadcasting device associated with a service client, an audio broadcast instruction; in response to receiving the audio broadcast instruction, downloading an audio file corresponding to the audio broadcast instruction, wherein the audio file comprises a marketing content related to services provided by the server to the service client associated with the smart broadcasting device; and broadcasting, by the smart broadcasting device, the audio file by using a speaker of the smart broadcasting device.
A display device “app” maintains the processor and graphics chip of the device energized but deenergizes the display responsive to an “off” command. The energized components are used in the background for cooperative computer tasks such as bitcoin mining that can lead to remuneration, with any remuneration so received being credited to an account. When a viewer wished to view content that requires payment, the account is debited accordingly, and no further payment is demanded, and advertisements are omitted from the content. Should the account be short of necessary funds to pay for the demanded content, the “app” can present advertisements in the content and/or require input of payment.
Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium for delivering content. A method includes: identifying an application that is installed on a user device; accepting a bid from a sponsor associated with the application for presenting customized content on the user device after installation of the application on the user device; identifying an opportunity to present content on the user device including receiving a request for content that identifies the user device; conducting an auction including evaluating the accepted bid along with other bids; determining that the accepted bid is the winning bid in the auction and providing, in response to the determining, a shell for the customized content; enabling the shell to be populated with data stored on the user device to produce the customized content; and providing the customized content for presentation on the user device in response to the identified opportunity.
A method and device which provide a recommendation to a user based on the type of device are provided. The device includes: a user input which is configured to receive a user touch input, a communicator which is configured to transmit a recommendation item request including identification information of the device to a server in response to the user touch input and receive at least one recommendation item selected based on the identification information of the device from the server; a display which is configured to display a recommendation panel including the received at least one recommendation item; and a controller which is configured to control the communicator to receive the at least one recommendation item and control the display to display the recommendation panel.
A system and method for generating advertisement automatically are provided. The system may comprise at least one computer-readable storage medium including a set of instructions; at least one processor in communication with the at least one computer-readable storage medium, wherein when executing the set of instructions, the at least one processor is configured to cause the system to generate a first plurality of ads, the first plurality of ads including a first plurality of advertisement elements and a first plurality of information components; transmit, via a network, the first plurality of ads to a first group of user terminals; determine at least one of a click-through rate, a number of impressions, or a conversion rate for the first plurality of ads; and analyze the at least one of the click-through rate, the number of impressions, or the conversion rate of the first plurality of ads.
Systems and methods for providing rewards to a user are provided. Providing rewards to the user may include receiving transaction data associated with a user's purchase, determining a merchant and a category associated with the transaction data, and assigning the transaction data to a merchant icon or a badge icon in a graphical user interface. The merchant icon or the badge icon may comprise a progress bar that indicates the user's progress in reaching a milestone associated with the icon. Based on the transaction data, a number of loyalty points of a number of transaction points may be assigned to the merchant icon or the badge icon, respectively. Further, based on whether a total number of loyalty points exceeds a first threshold or a total number of transaction points exceeds a second threshold, a reward may be generated to the user when the first or second threshold is exceeded.
A method of generating a fixed-price variable-offer multi-tier thread generator may include receiving, a by a computer processor(s), at least a fixed price, a thread expiration criteria and specification for at least two offerings for the fixed price. Each of the at least two offerings correspond to one of at least two tiers of offerings, where the fixed price entitles a first member and any subsequent members on a thread to redeem a qualified offer associated with a qualified tier, in exchange for paying the fixed price, upon the occurrence of at least one thread expiration criteria. The at least one product or service offerings the thread qualifies for, upon the occurrence of the at least one thread expiration criteria, may be dependent upon a total number of members, including the first member who starts a thread from the thread generator and any subsequent members who join the thread and who have agreed to pay the fixed price.
Disclosed is a novel system and method for managing payment card fraud. More particularly, accessing information associated with at least one card holder after the card holder has physically passed through at least one security checkpoint in which the card holder's identity has been authenticated. Next at least one payment card identifier associated with the card holder is received. A payment card profile associated with the payment card is updated. In one example, information from a ticket is also used with the payment card identifier to manage the probability of rejection. Numerous embodiments are disclosed.
An integrated communications network may be integrated with existing payment systems to provide for more efficient and secure payment related communications. The integrated communications network may use mobile network protocol encapsulation to provide more efficient, faster, and more robust payment related communications to a payment processor across a mobile network. The integrated communications network may implement a location-aware network communications system that may allow a payment processor to obtain additional information about a consumer using a location-aware header of a network communication.
There are provided systems and methods for transportation check-in and payment using beacons. A service provider, such as a transportation, payment, or other service provider, may utilize short range wireless beacons at or near a transportation service that provide automated check-in with a user device. When the user device is in proximity to the beacon, the user may be checked-in and provide payments for use of the transportation service, such as payment for a transportation fare. The user may receive scheduling and/or updates for the transportation service. Additionally, while the user is travelling with the transportation service, the user may purchase extra fare if the user realizes that current travel coverage of the purchased transportation fare does not cover an expected cost of the trip. The extra fare may be automatically purchased if the user device loses power or the user is unaware of the trip cost.
A method, system, and data structure for creating electronic calendar entries are disclosed. One aspect of the invention involves a computer data structure that includes an email message with an embedded link. The embedded link contains event information corresponding to multiple parameters for an event described in the email message. The embedded link is configured, upon activation, to initiate generation of an electronic calendar entry form with multiple fields. A plurality of the multiple fields contain event information from the embedded link.
Shipment receiving systems and methods are disclosed. Invoice and store inventory management data is provided to an invoice processor for assigning expected destinations to lanes of a material transporter having and a plurality of outlet lanes that each have an indicator. A scanner determines a case identifier for each case which is routed accordingly. One or more notifications is provided to the indicator of one or more of the plurality of outlet lanes. Received shipment data enables reconciliation of upstream supply change management systems and downstream store inventory systems.
The disclosed techniques generally relate to the use of action paths comprising sequences of steps performed by a user to efficiently perform tasks or resolve incidents. Action paths as discussed herein may be used to achieve more efficient outcomes, to train new employees, or to anticipate the future needs of a user.
A method and system for providing inventory recommendations that includes receiving, from a business management application (BMA) used by a business entity, an inventory recommendation tool use request to use an inventory recommendation tool; receiving inventory item information related to an inventory item from the BMA; performing an inventory categorization operation based on the inventory item information to obtain inventory categorization information; storing the inventory categorization information in an inventory recommendation tool data repository; performing an inventory management operation based on the inventory item information to obtain inventory management information; and storing the inventory management information in the inventory recommendation tool data repository. The method also includes receiving, from the BMA, an inventory recommendation request; generating, in response to the inventory recommendation request, an inventory recommendation; and providing the inventory recommendation to the BMA used by the business entity.
A method of providing reservation status relating to a group of objects includes providing a database for containing (i) availability data describing availability of at least one of the group of objects, and (ii) reservation data describing allocation of at least one of the group of objects. The availability data and the reservation data are stored in sparse form. The method further includes extracting, from the database, availability data and reservation data corresponding to a predetermined period of time, and combining the extracted availability data and reservation data to form windowed data in a dense format. The method also includes receiving the windowed data and providing the windowed data in a bit-vector view, and sampling the windowed data in the bit-vector view to produce sampled data. The sampled data provides the reservation status as a static view of the windowed data in the bit-vector view.
A machine learning model training method includes: classifying samples having risk labels in a training sample set as positive samples and classifying samples without risk labels in the training sample set as negative samples; training a risk model with a machine learning method based on the positive samples and the negative samples; obtaining a risk score for each of the negative samples based on the trained risk model; identifying one or more negative samples in the training sample set that have a risk score greater than a preset threshold value; re-classifying the one or more negative samples in the training sample set that have a risk score greater than the preset threshold value as re-classified positive samples to generate an updated training sample set from the training sample set; and re-training the risk model with the machine learning method based on the updated training sample set.
Various embodiments use a neural network to analyze images for aspects that characterize the images, to present locations of those aspects on the images, and, additionally, to permit a user to interact with those locations on the images. For example, a user may interact with a visual cue over one of those locations to modify, refine, or filter the results of a visual search, performed on a publication corpus, that uses an input image (e.g., one captured using a mobile device) as a search query.
A pooling operation method for a convolutional neural network includes the following steps of: reading multiple new data in at least one current column of a pooling window; performing a first pooling operation with the new data to generate at least a current column pooling result; storing the current column pooling result in a buffer; and performing a second pooling operation with the current column pooling result and at least a preceding column pooling result stored in the buffer to generate a pooling result of the pooling window. The first pooling operation and the second pooling operation are forward max pooling operations.
An antenna device incorporated in an electronic apparatus and communicating with an external device via an electromagnetic field signal, including: an antenna coil inductively coupled to the external device and provided by winding around a conducting wire in planar shape; a magnetic sheet arranged to overlap with the antenna coil mutually along the antenna coil by inserting the magnetic sheet into a coil opening provided at center side of the antenna coil; and a metallic cover formed with an opening near an end of the metallic cover and arranged at surface side of the antenna coil opposing to the external device, wherein the antenna coil is arranged to overlap with the metallic cover in a region between the opening and the end of the metallic cover at a backside surface of the metallic cover opposite to a surface of the metallic cover opposing to the external device.
A pattern recognition method of the immunofluorescence images of autoantibody identification is disclosed. The method includes the following steps: inputting a plurality of original cell immunofluorescence images; conducting an operation of a plurality of convolutional neural networks by a processor, the plurality of convolutional neural networks include a convolution layer, a pooling layer and an inception layer for capturing the plurality of convolution features; conducting a judgment process to obtain the proportions of the antinuclear antibodies morphological patterns; and outputting the recognition results.
Systems and methods for automatically extracting a plurality of contact information from a resource, calculating prominence scores of each contact information, and associating a selected contact information with a content item are provided. A content item and a uniform resource locator are received from a content provider. A resource identified by the uniform resource locator is loaded. A plurality of contact information is detected from the loaded resource. For each of the detected contact information, a prominence score is calculated. One of the plurality of contact information is selected based on the calculated prominence scores. The selected contact information is associated with the content item.
In some implementations, a device may detect edges in an image, and may identify, based on the edges, a rectangle that bounds a document in the image. The device may detect lines in the image, and may identify edge candidate lines by discarding one or more of the lines. The device may identify intersection points where lines, included in the edge candidate lines, intersect with one another. The device may identify corner candidate points by discarding one or more points included in the intersection points, and may identify a corner point included in the corner candidate points. The corner point may be a point, included in the corner candidate points, that is closest to one corner of the bounding rectangle. The device may perform perspective correction on the image of the document based on identifying the corner point.
A health condition of a person may be assessed from a thermal sensor signal. By increasing performance indices of a thermal camera (for example, resolution, frame rate, sensitivity), operation may be extended to identification verification, biometric data extraction and health condition analysis, and so forth. Prediction may be carried out by monitoring a time sequence of thermal images, and consequently early warning of the health condition may be provided. The apparatus may be used for, but not limited to, personalization of smart home devices through supervised and reinforcement learnings. The application of the apparatus may be, but not limited to, smart homes, smart buildings and smart vehicles, and so forth.
An information processing apparatus includes at least one processor configured to determine, on the basis of information concerning traveling of a vehicle obtained when an image is taken by an image pickup unit of the vehicle, a scene present when the image is taken; and transmit information indicating the determined scene and the image to a terminal connected to the information processing apparatus via a network.
In various embodiments, an image monitoring device (100) may acquire (200) video data that captures a medical room. Image processing may be performed on the acquired image data to perform the following tasks: identifying (202) at least one medical apparatus (402) in the medical room; identifying (204) a medical personnel in the medical room; detecting (206) that the medical personnel has occluded a line of sight between the image monitoring device and the at least one medical apparatus; and determining (206) an amount of time that the medical personnel occludes the line of sight. In various embodiments, the amount of time may be compared to one or more thresholds set forth by the first medical protocol. An alert may be triggered (208) in response to a determination that the amount of time fails to satisfy a first threshold of the one or more thresholds.
To determine the head pose of a user, a head-mounted display system having an imaging device can obtain a current image of a real-world environment, with points corresponding to salient points which will be used to determine the head pose. The salient points are patch-based and include: a first salient point being projected onto the current image from a previous image, and with a second salient point included in the current image being extracted from the current image. Each salient point is subsequently matched with real-world points based on descriptor-based map information indicating locations of salient points in the real-world environment. The orientation of the imaging devices is determined based on the matching and based on the relative positions of the salient points in the view captured in the current image. The orientation may be used to extrapolate the head pose of the wearer of the head-mounted display system.
A structured description is generated for a digital image of a scene. The structured description may include a first feature and a second feature of the scene. The structured description may also include a first detail of the first feature and a second detail of the second feature. A portable braille sequence printer may generate braille text of the first and second features using the structured description. The portable braille sequence printer may further generate additional braille text regarding the first detail in response to a prompt from the user regarding the first feature.
The present disclosure describes systems and methods for iris liveness determination. A sensor can acquire a first image of an iris with pupillary constriction, and a second image of the iris without the pupillary constriction. A processor can extract an iris portion of the first image into a first iris image, and an iris portion of the second image into a second iris image. The processor can normalize the first iris image and the second iris image. The normalized first iris image can have same dimensions as that of the normalized second iris image, in pixels. The processor can compute a minimum average difference between values of specific pixels of the normalized first iris image and values of corresponding pixels of the normalized second iris image. The specific pixels can correspond to an innermost annular portion of the iris.
The present disclosure relates to simulating the capture of images. In some embodiments, a document and a camera are simulated using a three-dimensional modeling engine. In certain embodiments, a plurality of images are captured of the simulated document from a perspective of the simulated camera, each of the plurality of images being captured under a different set of simulated circumstances within the three-dimensional modeling engine. In some embodiments, a model is trained based at least on the plurality of images which determines at least a first technique for adjusting a set of parameters in a separate image to prepare the separate image for optical character recognition (OCR).
A device may receive image data representing a document, the document including: text, and edges. Based on the edges, the device may identify, a segment of interest within the image data and crop the segment of interest to obtain a portion of the image data. In addition, the device may perform optical character recognition on the portion of the image data, the optical character recognition producing recognized text. The device may obtain, based on the recognized text, validation data that includes verification text, and determine whether the recognized text is verified based on the verification text. Based on a result of the determination, the device may perform an action.
A computer vision system includes a camera that captures a plurality of image frames in a target field. A user interface is coupled to the camera. The user interface is configured to perform accelerated parallel computations in real-time on the plurality of image frames acquired by the camera. The system detects and tracks animal wellness and habitat/intervention design.
A device receives image data that depicts a target that is subject to a security check, and receives transactional data identifying a characteristic of a transaction associated with the target. The device identifies the target within the image data and identifies a first set of target attributes of the target. The device determines a risk level that represents a likelihood of the characteristic of the transaction having a correct value by analyzing the set of target attributes using one or more attribute recognition techniques and/or using a data model that has been trained using machine learning. The device determines whether the risk level satisfies one or more threshold risk levels. The device provides an alert to another device cause the other device to perform actions based on whether at least one of the one or more threshold risk levels are satisfied.
The present invention discloses methods and systems face recognition. Face recognition involves receiving an image/frame, detecting one or more faces in the image, detecting feature points for each of the detected faces in the image, aligning and normalizing the detected feature points, extracting feature descriptors based on the detected feature points and matching the extracted feature descriptors with a set of pre-stored images for face recognition.
Techniques described herein address these and other issues by providing an under-display sensor capable of providing fingerprint scanning over an entire display using optical and/or ultrasonic means. To do so, the sensor comprises an array of pixels, where each can pixel comprises a piezoelectric sensor element and a diode capable of being used as a photodetector during a light-sensing mode, and as a peak detector during a pressure-sensing mode. The sensor may further comprise a piezoelectric layer and one or more electrodes, which can generate a pressure wave during the pressure sensing mode.
Provided are an apparatus and a method of fingerprint identification and a terminal device, the fingerprint identification apparatus including: an optical sensor including a pixel array, the pixel array includes a plurality of first type of pixel points and at least one second type of pixel point, the plurality of first type of pixel points and the at least one second type of pixel point are configured to receive optical signals from an object; a color filter layer or a polarizer plate disposed above the at least one second type of pixel point; an intensity of an optical signal received by the at least one second type of pixel point and an intensity of an optical signal received by at least one first type of pixel point adjacent to the at least one second type of pixel point are used to determine whether the object is a real finger.
A device for touch and fingerprint recognition includes a touch screen and a cover plate disposed on the touch screen. The cover plate is a plastic film. The touch screen includes at least one first touch electrode disposed outside a fingerprint recognition region and at least one second touch electrode disposed in the fingerprint recognition region, and a distance between at least two adjacent second touch electrodes ranges from 5 μm to 50 μm.
A tag identification device automatically identifies a correspondence relationship between a tag name arbitrarily set by a user and a process value. The tag identification device includes a processor, in a first process, that obtains first definition information in which the tag name, a type of tag data which is handled using the tag name, an upper limit value, an lower limit value, and an engineering unit are defined for each tag. The processor extracts, from the first definition information, a tag coinciding with at least one of the type of tag, the upper limit value, the lower limit value, and the engineering unit of a predetermined first process value. The processor selects the tag data handled using the tag name defined for the extracted tag, using an actual measurement value of the tag data. The processor identifies the selected tag data as the first process value.
Methods include receiving a request from a user device to download an application and providing access to the application in response to the request. The application is configured to transmit a first electromagnetic radiation and receive, from an electromagnetic state sensing device (EMSSD) that is affixed to product packaging, a first electromagnetic radiation return signal. The first electromagnetic radiation return signal is transduced by the EMSSD to produce an electromagnetic radiation signal that encodes first information comprising a product identification code. The application is also configured to apply a rule that is selected based on the product identification code; transmit a second electromagnetic radiation ping that is tuned based on the rule; receive, from the EMSSD, a second electromagnetic radiation return signal that encodes second information pertaining to contents within the product packaging; and send, from the user device, a portion of the second information to an upstream computing device.
A method includes interpreting sets of first language identigens to produce an entigen group which represents a most likely meaning of a string of first language words. The method further includes identifying, for each entigen of the entigen group, a corresponding set of second language identigens to identify sets of second language identigens. The method further includes selecting, for each entigen of the entigen group, a selected second language identigen from the corresponding set of second language identigens based on meaning of the entigen to produce an initial string of second language words.
Artificial intelligence (AI) technology can be used in combination with composable communication goal statements to facilitate a user's ability to quickly structure story outlines in a manner usable by an NLG narrative generation system without any need for the user to directly author computer code. Narrative analytics that are linked to communication goal statements can employ a conditional outcome framework that allows the content and structure of resulting narratives to intelligently adapt as a function of the nature of the data under consideration. This AI technology permits NLG systems to determine the appropriate content for inclusion in a narrative story about a data set in a manner that will satisfy a desired communication goal.
A computing system is provided. The computing system includes a processor configured to execute one or more programs and associated memory. The processor is configured to execute neural network system that includes a first neural network and a second neural network. The processor is configured to receive input text, and for each of a plurality of text spans within the input text: identify a vector of semantic entities and a vector of entity mentions; define an n-ary relation between entity mentions including subrelations; and determine mention-level representation vectors in the text spans that satisfy the n-ary relation or subrelations. The processor is configured to: aggregate the mention-level representation vectors over all of the text spans to produce entity-level representation vectors; input to the second neural network the entity-level representation vectors; and output a prediction of a presence of the n-ary relation for the semantic entities in the input text.
Disclosed are various embodiments for detecting homograph attacks using text recognition. A first string of untrusted text is received. A second string is determined corresponding to what the first string of untrusted text appears to be in a particular language. The second string is determined to differ from the first string of untrusted text. One or more actions are implemented in response to determining that the second string differs from the first string of untrusted text.
A computer-implemented method includes compiling a Register Transfer Level (RTL) code to form a data flow graph (DFG). The computer-implemented method includes identifying a chain of multiplexers in the DFG, wherein the chain of multiplexers includes exit multiplexers associated with a loop exit path and non-exit multiplexers. The computer-implemented method also includes traversing a topological order of the DFG in reverse. The computer-implemented method also includes computing fanin-cones for each two consecutive exit multiplexers. The computer-implemented method includes generating a truth table responsive to valid fanin-cones and back propagating select conditions for the each two consecutive exit multiplexers. The computer-implemented method includes eliminating an exit multiplexer from the each two consecutive exit multiplexers based on the truth table. The computer-implemented method further includes transforming the DFG to a new DFG based on the truth table.