US11581906B1

Hierarchical coding architectures and schemes based on multistage concatenated codes are described. For instance, multiple encoder and decoder hierarchies may be implemented along with use of corresponding stages of concatenated codes. The coding scheme generally includes an inner coding scheme (e.g., a polar coding scheme, such as a hybrid polar code or Bose Chaudhuri and Hocquenghem (BCH) code), an outer coding scheme (e.g., a Reed-Solomon (RS) coding scheme), and one or more middle coding schemes. The inner coding scheme is based on a polarization transformation (e.g., polar codes with cyclic redundancy check (CRC) codes, polar codes with dynamic freezing codes, polarization-adjusted convolutional (PAC) codes, etc.) which allows for embedding parity data from an outer code inside a codeword along with the user data. The outer coding scheme has a similar concatenated structure (e.g., of an inner RS code with an outer RS code).
US11581896B2

An analog-to-digital converter includes: a voltage-current converter receiving an analog input voltage, generating a first digital signal from the analog input voltage, and outputting a residual current remaining after the first digital signal; a current-time converter converting the residual current into a current time in a time domain; and a time-digital converter receiving the residual time, and generating a second digital signal from the residual time, wherein the first digital signal and the second digital signal are sequences of digital codes representing respective signal levels of the analog input voltage.
US11581893B2

A high-frequency high-linear input buffer includes a first MOS transistor, a second MOS transistor, a third MOS transistor, and a signal panning unit. A gate terminal of the first MOS transistor is used as an input terminal of the buffer. A current input terminal of the first MOS transistor is connected to a current output terminal of the second MOS transistor. A current output terminal of the first MOS transistor is connected to a current input terminal of the third MOS transistor. A current input terminal of the second MOS transistor is connected to a gate terminal of the third MOS transistor. An input terminal of the signal panning unit is connected to an input terminal of the buffer. An output terminal of the signal panning unit is connected to a gate terminal of the second MOS transistor. An output terminal of the third MOS transistor is connected to ground.
US11581887B2

Disclosed herein is an overcurrent protection circuit configured to, upon detection of an output current that flows through a switch element reaching a first overcurrent limit value, reduce an overcurrent limit value for the output current from the first overcurrent limit value to a second overcurrent limit value smaller than the first overcurrent limit value.
US11581883B2

A method of manufacturing an electrical system for reducing differential-to-differential far end crosstalk (DDFEXT) includes converting a first S parameter representative of a design of a first electrical system into a differential-only S parameter, generating a second differential-only S parameter configured to add even-mode propagation delay and odd-mode propagation delay of the differential-only S parameter of the electrical system such that a total even-mode propagation delay and odd-mode propagation delay of the differential-only S parameter are substantially equivalent, and reconfiguring a second electrical system from the differential-only S parameter and the second differential-only S parameter.
US11581880B2

Series of first ramps and second ramps are generated. A circuit delivers a first signal representative of the comparison of each first ramp with a set point and delivers a second signal representative of the comparison of each second ramp with the set point. Based on the first and second signals: a first ramp is stopped and a second ramp is started when the first ramp reaches the set point, and a second ramp is stopped and a first ramp is started when the second ramp reaches the set point. The value of the set point is modulated in response a maximum value of the first/second last ramp compared with the set point.
US11581877B1

A four-phase (or multi-phase) generation circuit, related method of operation, and transceivers or other systems utilizing such a circuit, are disclosed herein. In one example embodiment, the circuit includes two input ports respectively configured to receive positive and negative differential input signals, and four output ports respectively configured to output first, second, third and fourth output signals, respectively, the second, third, and fourth output signals being respectively phase-shifted relative to the first output signal by or substantially by 90, 180, and 270 degrees. Also, the circuit includes four SR latches respectively including output terminals that are respectively coupled to the respective output ports. Further, the circuit includes two tunable delay circuits respectively coupled at least indirectly between the input ports and latches, and two comparison circuits configured to output respective feedback signals. The latches receive two delayed input signals provided by the delay circuits based upon the feedback signals.
US11581876B1

A signal generator includes a first voltage generator, a second voltage generator, an operational amplifier, and an oscillator. The first voltage generator generates a first voltage, and the second voltage generator generates a second voltage. The operational amplifier generates an amplified error signal based on the first voltage and the second voltage, and the oscillator generates a periodic signal based on the amplified error signal. The first voltage generator and the second voltage generator are configured to generate their respective voltages based on the periodic signal. As a result, frequency deviation in the periodic signal may be corrected, for example, without increasing the source current of the oscillator or the gain of the operational amplifier. Also, improved phase noise performance may also be achieved through an increase in loop gain.
US11581875B1

In an integrated circuit, a first current source is coupled between a first supply voltage and a first node. An output stage includes a first current steering PMOS transistor coupled to the first node, a first current steering NMOS transistor including a first current electrode coupled to the first current steering PMOS transistor at a second node, a second current steering PMOS coupled to the first node, and a second current steering NMOS transistor including a first current electrode coupled to the second current steering PMOS transistor at a third node. Voltage at the second node is used to drive a gate of the second current steering PMOS transistor, and voltage at the third node is used to drive a gate of the first current steering PMOS transistor. First and second programmable slew rate pre-drivers provide outputs to the gates of the first and second current steering NMOS transistors, respectively.
US11581873B2

Dual mode filters having two reconfigurable multi-stage filters. In a dual band mode, each reconfigurable filter filters an input signal in a different band using every filter stage. In a single band mode, both reconfigurable filters are effectively divided into two sub-chains that include either the odd-numbered filter stages or the even-numbered filter stages. Together, the four sub-chains in the single band mode filter an input signal in a single band with a higher parallelization than each reconfigurable filter in the dual band mode. In some embodiments, the dual mode filter is a decimation filter. In other embodiments, the dual mode filter is a resampling filter. In still other embodiments, the dual mode filter is an interpolation filter.
US11581872B2

A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.
US11581843B2

One embodiment can provide a photovoltaic roof tile. The photovoltaic roof tile can include a front glass cover, a back glass cover, a plurality of photovoltaic structures positioned between the front and back glass covers, and a single encapsulant layer positioned between the front glass cover and the photovoltaic structures. A surface of the photovoltaic structures is in direct contact with the back glass cover.
US11581841B2

An electrical system can include a rechargeable energy storage system (RESS) and a power inverter connected to the RESS. The power inverter can be configured to provide electrical power to a traction motor. The electrical system includes a plurality of machine windings connected between a plurality of first switches and the traction motor. Each switch of the plurality of first switches is configured to transition between a closed state to allow current flow between the power inverter and the traction motor. The electrical system includes a plurality of inductor windings connected between a plurality of second switches and an off-board power source. Each switch of the plurality of second switches is configured to transition between a closed state to allow current flow between the off-board power source and the power inverter to charge the RESS.
US11581840B2

A system for controlling a high-power drive device includes a fault detection integrated circuit product configured to provide an indication of a fault condition associated with the high-power drive device to a first terminal in a first voltage domain in response to detecting the fault condition in a second voltage domain. The system includes a gate driver controller integrated circuit product configured to drive a second terminal coupled to a control node in a second voltage domain based on a control signal and an enable signal received from a third terminal in the first voltage domain. The second voltage domain is higher than the first voltage domain. The system may include a redundant fault reporting integrated circuit product or an additional fault detection integrated circuit product configured to detect a second fault condition in the second voltage domain that is different from the fault condition.
US11581832B2

An apparatus includes a controller. To control current through a motor winding, the controller monitors a magnitude of current supplied through the motor winding. The controller compares the magnitude of current to a threshold value. In response to detecting that the magnitude of current crosses the threshold value, the controller terminates a flow of the current through the motor winding. In one application, termination of the current through the motor winding supports more efficient use of energy to drive the motor winding. For example, via the controller, terminating the current through the motor winding to prevent the current from flowing in a reverse direction through the motor winding.
US11581831B2

The present disclosure discloses a method for braking a permanent magnet synchronous motor and a related device. The method is applied to an electronic speed controller and includes: receiving a signal for braking the permanent magnet synchronous motor sent by a flight controller; sending a first control signal to the permanent magnet synchronous motor, the first control signal being used to control the permanent magnet synchronous motor to decrease its rotational speed to a preset rotational speed range within a first preset time period; and after the first preset time period ends, sending a second control signal to the permanent magnet synchronous motor, the second control signal being used to control the permanent magnet synchronous motor to stop rotating within a second preset time period. According to the method, consistency of shutdown of multiple motors is ensured, and use experience of a drone is improved.
US11581829B2

The pinch detector is suitable to detect a pinch at a closing member actuated by a motor equipped with a measuring circuit to measure a motor current. It includes a first portion that, when the motor starts closing the member, obtains a reference value of the motor current measured at the end of a blind time period having a predetermined duration from the moment the motor starts to close the member; a second portion that compares current values of the measured motor current to a threshold value depending on said reference value, during a detection time period, following the blind time period and preceding a steady state time period of the motor, in order to detect a pinch at the closing member based on a comparison result.
US11581825B2

An acoustic device includes a piezoelectric element, an attachment member to which the piezoelectric element is attached, and a spacer. The piezoelectric element includes first and second principal surfaces opposing each other. The attachment opposes the first principal surface. The spacer is disposed between the piezoelectric element and the attachment member in such a manner as to form an acoustic space between the piezoelectric element and the attachment member. The spacer includes an adhesive layer including a principal surface in contact with the first principal surface and a principal surface in contact with the attachment member.
US11581814B2

Methods and apparatuses for controlling an apparatus comprising a controller integrated in a first slave device. In an example, the controller can detect a sensed current of the first slave device. The controller can receive a voltage signal associated with a second slave device connected to the first slave device. The controller can generate a correction current based on the sensed current of the first slave device and the voltage signal. The controller can modulate a pulse width modulation (PWM) signal received by the first slave device using the correction current. The controller can control a power converter using the modulated PWM signal.
US11581806B2

A circuit comprising: a first switch having: first side (FS) connected to first capacitor's second side (1C2S); and second side (SS) connected to reference node (RN); a second switch having: FS connected to second voltage node (2VN); and SS connected to 1C2S; a third switch having: FS connected to the first capacitor's first side (1C1S); and SS connected to 2VN; a fourth switch having: FS connected to a third voltage node (3VN); and SS connected to 1C1S; a fifth switch having: FS connected to second capacitor's second side (2C2S); and SS connected to RN; a sixth switch having: FS connected to 3VN; and SS connected to 2C2S; a seventh switch having: FS connected to the second capacitor's first side (2C1S); and SS connected to 3VN; and an eighth switch having: FS connected to first voltage node; and SS connected to 2C1S.
US11581797B2

A multiple output universal serial bus travel adaptor includes: at least one AC-DC converter for converting an AC power to a first DC power; at least one DC-DC converter for providing a second DC power according to the first DC power; plural switches which are coupled to the AC-DC converter and/or the DC-DC converter to provide the first DC power or the second DC power to corresponding connectors according to operation signals; and a protocol controller configured to generate the operation signals according to at least one of the following parameters: a) the types of the connectors; b) whether there is a mobile device connected with the connectors; c) a first command from the mobile device; d) the power consumed by the mobile devices; e) the currents flowing through the connectors; and f) the voltages at the connectors.
US11581795B2

A current sensing circuit includes an inductor current sensing circuit and a processing circuit. The inductor current sensing circuit senses an inductor current of a direct current to direct current (DC-to-DC) converter to generate a first sensed current signal, wherein an average value of the first sensed current signal is not a constant under different input voltages of the DC-to-DC converter. The processing circuit generates a second sensed current signal, wherein the first sensed current signal is involved in generation of the second sensed current signal, the second sensed current signal is involved in current-mode control of the DC-to-DC converter, and an average value of the second sensed current signal is a constant under said different input voltages of the DC-to-DC converter.
US11581791B2

A method of manufacturing a motor case for an electric motor of an e-boosting device in which the motor case is received within an outer housing to cooperatively define a coolant jacket. The method includes forming a shell member. The method also includes overmolding a dam member to the shell member. The dam member projects from an outer surface of the shell member. The overmolding of the dam member includes forming a molded through-hole through the dam member. The dam member and the outer surface are configured to define a fluid boundary for a coolant of the coolant jacket when the motor case is received in the outer housing. The through-hole defines a passage for the coolant in the coolant jacket.
US11581786B2

The rotary electric machine includes a motor unit, and an inverter unit having a power module, a field module, and a cooler. The cooler includes a heat transfer member having, on the one-side surface, a channel groove recessed toward the other side, a lid member, a sealing agent, and a coolant supply/discharge unit; and the lid member is fixed to the heat transfer member with a screw hole, a through hole, and a screw; and, at a position between the screw hole and the through hole, and the channel groove, a recess is provided on one or both of the one-side surface of the heat transfer member and the other-side surface of the lid member, and the sealing agent is applied on the side closer to the channel groove than the recess while no sealing agent is applied on the side closer to the screw hole than the recess.
US11581785B2

This application provides a motor cooling system of an electric vehicle. In the cooling system, a coil cooling oil passage includes a first oil outlet that is at an end portion of a stator core. A core cooling oil passage and the coil cooling oil passage are sequentially connected. In this case, cooling oil first enters the core cooling oil passage, and then enters the coil cooling oil passage. The core cooling oil passage extends in a circumferential direction of the stator core. The coil cooling oil passage extends in an axial direction of the stator core. A power apparatus drives the cooling oil to enter the core cooling oil passage from an oil inlet, flow through the core cooling oil passage, and enters the coil cooling oil passage from an oil through port. The cooling oil flows back to an oil return groove from the first oil outlet.
US11581783B2

A reciprocating tool includes a motor, a reciprocating member, and a crank mechanism. The motor is disposed in a housing. The reciprocating member projects from the housing. The crank mechanism converts rotation of a rotation shaft of the motor into reciprocation of the reciprocating member. The crank mechanism rotates around an axis in a lateral direction by rotation transmission from the rotation shaft, and the crank mechanism includes a crank member having an eccentric pin, a connecting rod coupling the eccentric pin to the reciprocating member, and a balancer coupled to the eccentric pin, and the balancer is supported by the eccentric pin alone in the housing.
US11581780B2

A two-speed motor is mounted in a housing with an end cap. The end cap has a tubular structure defining an interior space, including an open first end connectable to the motor casing. The second end includes at least one planar surface and at least one air grate configured to permit airflow into and/or out of the interior space. A dual speed pump controller includes a motor controller for operating the dual speed motor. The controller includes an operating speed circuit for operating the motor in one of a first speed or a second speed, the first speed being greater than the second speed; an event circuit for operating the motor at the first speed before a predetermined event and operating the pump at the second speed after the predetermined event.
US11581777B2

A motor assembly has an outer stator (40), a rotor assembly (30), a separating can (50), and a first bearing (36) and a second bearing (37). The rotor assembly (30) has an inner rotor (32) and a shaft (31) and defines an axial direction (77) and a radial direction (78) of the motor assembly (20). The motor assembly (20) has a magnetic air gap (53) between the outer stator (40) and the inner rotor (32). The separating can (50) has a split tube component (51) and a separating can base part (52). The split tube component (51) has a split tube section (54). The split tube section (54) extends through the magnetic air gap (53). The outer stator (40) is arranged around the split tube section (54). The split tube section (51) and the separating can base part (52) overlap in a first predefined axial region (55). A seal (60) is provided between the split tube section (51) and the separating can base part (52) in the first predefined axial region (55).
US11581769B2

In one possible implementation, a motor is provided including a rotor and a stator. Front cooling fins are thermally coupled to a front of the stator, and rear cooling fins are thermally coupled to a rear portion of the stator. The winding is between the front and rear cooling fins.
US11581767B2

A permanent magnet motor is provided, including: a stator and a rotor. The stator has a plurality of windings. The rotor has a plurality of magnet placement slots and a plurality of air gaps. The plurality of magnet placement slots include a plurality of circumferential magnet placement slots circumferentially arranged and a plurality of radial magnet placement slots radially extending. The circumferential magnet placement slots and the radial magnet placement slots are circumferentially alternately arranged. The plurality of air gaps are adjacent to part of the plurality of magnet placement slots and distributed to be on a d-axis flux path of the rotor.
US11581763B2

A core piece that is circularly arranged to construct a stator core of an axial gap type rotary electric machine includes: a first member in a column form extending in an axial direction of the stator core; a second member in a plate form disposed on a first end side of the axial direction in the first member; and a third member in a plate form disposed on a second end side of the axial direction in the first member, the first member has a peripheral surface connecting with the second member and the third member, the second member has a protruding portion projecting outwardly from the peripheral surface of the first member, the third member has a protruding portion projecting outwardly from the peripheral surface of the first member, and the first member, the second member, and the third member are configured by an integrally molded green compact.
US11581760B2

A wireless power transfer system comprises at least one power receiver (105) for receiving a power transfer from the power transmitter (101) via a wireless inductive power transfer signal. Configurers (207, 306) of the power transmitter and receiver may perform a configuration process to determine a set of power transfer parameter values which are used in a first power transfer. The power transfer parameter values and a first identity for the first power receiver (105) are stored. After a detection of an absence of the power receiver by a first controller (211), a detector (213) may detect a presence of a candidate power receiver. If the candidate power receiver is detected within a given duration and has an identity matching the first identity, an initialization processor (215) initializes a second power transfer using the set of stored parameter values. Otherwise it discards the set of stored parameter values.
US11581757B2

In accordance with an embodiment, a wireless power transmitter includes a charging surface, a transmitting antenna configured to generate an electromagnetic field extending above the charging surface, a sensing array disposed between the transmitting antenna and the charging surface, and a controller coupled to the sensing array. The sensing array includes a plurality of sensors. Each sensor of the plurality of sensors is configured to generate a respective signal indicative of a strength of the electromagnetic field. The controller is configured to detect a presence of a metallic object, other than a receiving antenna of a power receiver, in the electromagnetic field based on the respective signal generated by one or more sensors of the plurality of sensors.
US11581751B2

A power control method for a charging system includes: detecting a power signal and an input voltage of the power signal; determining a charging protocol supported by the power signal; and determining whether to conduct a power switching circuit or not according to the input voltage of the power signal and the charging protocol supported by the power signal to provide power for an amplifier chip of the charging system.
US11581745B2

A terminal and a fast charging method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
US11581740B2

The present invention provides a method, system and storage medium for load dispatch optimization for residential microgrid. The method includes collecting environmental data and time data of residential microgrid in preset future time period; obtaining power load data of residential microgrid in future time period by inputting environmental data and time data into pre-trained load forecasting model; obtaining photovoltaic output power data of residential microgrid in future time period by inputting environmental data and time data into pre-trained photovoltaic output power forecasting model; determining objective function and corresponding constraint condition of residential microgrid in future time period, where optimization objective of objective function is to minimize total cost of residential microgrid; obtaining load dispatch scheme of residential microgrid in future time period by solving objective function with particle swarm algorithm. The invention can provide load dispatch scheme suitable for current microgrid and reduce operating cost of residential microgrid.
US11581738B2

The present disclosure provides systems and methods for flexible renewable energy power generation. The present disclosure also provides systems and methods for firming power generation from multiple renewable energy sources.
US11581735B2

Provided are a method and apparatus for dynamically controlling electrical loads, a storage medium and an electronic apparatus. The method includes that: a current capacity balance of a user sub-region is acquired from an intelligent electricity monitoring and metering terminal through a mobile terminal; when the current capacity balance is smaller than a load power of an electric consumption device to be started in the user sub-region, a regional coordination control apparatus or a server is requested through the mobile terminal to adjust and increase a capacity allocated for the user sub-region, such that a capacity balance will be greater than or equal to the load power; and whether to allow to start the electric consumption device is determined according to a decision replied by the regional coordination control apparatus or the server.
US11581732B2

Disclosed herein is a method and system for sharing power or energy across various power supply and control modules. More specifically, disclosed herein are systems and methods for distributing energy. As explained herein, the method discloses receiving, at a microgrid, data from a plurality of data sources. The data is then analyzed to forecast power needs associated with the microgrid. Using the data, the microgrid may determine whether and when to share power with the requesting module.
US11581724B2

A method for controlled switching of a circuit breaker is described. The method includes initiating operation of the circuit breaker at an initiation time derivable from an initiation time function by calculating a value of the initiation time function with respect to a command instant. The initiation time function is a sum of the command instant and a command delay time. The initiation time function depends on a first parameter and a second parameter. At least one of: the partial derivative of the initiation time function with respect to the first parameter is dependent on the second parameter or the partial derivative of the initiation time function with respect to the second parameter is dependent on the first parameter. Further, a system for controlled switching according to the method and a circuit breaker including the system are described.
US11581717B1

A junction box mountable on a roof surface, comprising a housing unit and an enclosing unit, the housing unit and enclosing unit combining to form a waterproof assembly. The housing unit is mountable to a roof surface via a flashing having a continuous, raised waterproofing track that mates with a waterproofing recess in a bottom surface of the housing unit to create a waterproofing zone inside the housing unit. At least one bottom pass through is located within the waterproofing zone and provides a channel from the internal housing area through the roof surface.
US11581713B2

Methods of operating a robotic breaker-racking apparatus are provided. A method of operating a robotic breaker-racking apparatus includes controlling a motor to drive the robotic breaker-racking apparatus to a first circuit breaker. The method includes accessing the first circuit breaker via remote or autonomous control of the robotic breaker-racking apparatus. Moreover, the method includes visually inspecting, via a camera of the robotic breaker-racking apparatus, a first relay of the first circuit breaker and/or a second relay of a second circuit breaker. Related robotic breaker-racking apparatuses are also provided.
US11581705B2

An emitter may include a substrate, a conductive layer on at least a bottom surface of a trench, and a first metal layer to provide a first electrical contact of the emitter on an epitaxial side of the substrate. The first metal layer may be within the trench such that the first metal layer contacts the conductive layer within the trench. The emitter may further include a second metal layer to provide a second electrical contact of the emitter on the epitaxial side of the substrate, and an isolation implant to block lateral current flow between the first electrical contact and the second electrical contact.
US11581698B2

An optical device includes: a substrate having a first surface, and a second surface opposite of the first surface; a plurality of surface emitting laser elements provided on the first surface of the substrate and configured to emit light in a direction intersecting the first surface; a plurality of optical elements disposed on the second surface so as to respectively correspond to the plurality of surface emitting laser elements; and an anti-reflection structure between the substrate and the plurality of optical elements.
US11581686B2

In a connector assembly in which a first connector that includes a first insulator, first terminals, and a first shell and is mounted on a first board and a second connector that includes a second insulator, second terminals, and a second shell and is mounted on a second board are connected with each other, a first ground pattern that has a frame-like shape and is formed on the first board is soldered to the first shell with first solder, and a second ground pattern that has a frame-like shape and is formed on the second board is soldered to the second shell with second solder. An inner space in which the first terminals and the second terminals are positioned is completely shielded from the outside without any gap.
US11581684B2

An electrical connector includes an elongate insulative housing defining a central slot extending along a longitudinal direction, and two rows of contacts disposed by two sides of the central slot. The housing forms a front receiving cavity to receive the corresponding mating tongue of the complementary connector, and a rear receiving cavity to receive the corresponding insulators wherein each insulator is integrally formed with each row of contacts via insert-molding for completing the whole contact module. Each grounding contact is equipped with the corresponding EMI absorber before being insert-molded within the insulator so as to have the corresponding EMI absorber also integrally formed with the insulator.
US11581681B2

Example implementations relate to an electronic plug having a locking assembly for securing within an electronic port having a receptacle. The locking assembly includes a cantilever beam, a deformable arm, and an axle rotatably coupled to a connector of the electronic plug. The cantilever beam extends from the axle, where a free end of the cantilever beam includes a locking tab aligned to a recess of the connector. The deformable arm extends from the axle, where an open end of the deformable arm is rested on the connector. In a biased state of the deformable arm, the locking tab is positioned below the recess to allow movement of the connector in and out of the receptacle. In a relaxed state of the deformable arm, the locking tab protrudes above the recess to allow movement of the connector into the receptacle and prevent movement of the connector out of the receptacle.
US11581678B2

A connector comprises a locator configured to position a cable. The locator has a front-end surface, a first surface and a second surface and is formed with a positioning groove. The first surface and the second surface are located at opposite sides of the locator, respectively, in the upper-lower direction (Z-direction). The positioning groove has a front groove, a rear groove and a coupling groove. The front groove is recessed rearward from the front-end surface and extends from the first surface to the coupling groove along the upper-lower direction. The rear groove is recessed from the second surface along the upper-lower direction and extends rearward from the coupling groove. When the locator positions the cable, the front groove receives a front regulated portion of the cable, and the rear groove receives a rear regulated portion of the cable.
US11581677B2

Provided is a connector protection member for protecting a connector. The connector includes a housing having a center raised portion including a raised portion end wall, a raised portion end side wall, and a raised portion end upper surface connecting the raised portion end wall, and the raised portion end side wall. A raised portion side surface protection portion of the connector protection member includes: a side portion covers part of the raised portion end wall and part of the raised portion end side wall, and a transition portion formed continuously to the side portion covers a three-surface connection portion formed by an end wall connection portion between the raised portion end wall and the raised portion end upper surface and a side wall connection portion between the raised portion end side wall and the raised portion end upper surface.
US11581672B2

A shunt device is used to be mated with an adapter socket of a connector configured on a circuit board to shunt electric current of the connector. The shunt device includes an insulating housing and a first electric terminal. The insulating housing has a bottom surface. The first electric terminal is fixed on the insulating housing. The first electric terminal has a first contact portion and a first leg that extends out of the insulating housing from the first contact portion, so as to provide a first cable connection surface for being connected to at least one wire cable. The first contact portion is exposed from the bottom surface and has a contact surface that is parallel to the bottom surface, so as to abut against a shunt contact surface of the adapter socket.
US11581661B2

A dual-polarized antenna and a dual-polarized antenna assembly including the same are provided. A dual-polarized antenna includes a base board, feeding unit supported on the base board, and radiation plate supported on the feeding unit. The feeding unit includes a first and a second feeding boards arranged to cross each other on the base board. The first feeding board includes a first feed line configured to supply a first reference-phase signal to a first point on the radiation plate and supply a first antiphase signal having an antiphase relative to the first reference-phase signal to a second point on the radiation plate. The second feeding board includes a second feed line configured to supply a second reference-phase signal to a third point on the radiation plate and supply a second antiphase signal having an antiphase relative to the second reference-phase signal to a fourth point on the radiation plate.
US11581653B2

The present disclosure relates to a curved conformal frequency selective surface (FSS) radome. The radome includes a dielectric radome and a curved conformal FSS array arranged on an outer wall of the dielectric radome, where the dielectric radome includes a dome, a circular truncated cone and a hollow cylinder which are integrally formed from top to bottom, and the curved conformal FSS array is formed by periodically arraying foldable FSS units on an outer surface of the dielectric radome, the foldable FSS unit being of an axially symmetrical and centrally symmetrical gap structure, and having an overall shape consisting of foldable gaps on a left side, an upper side, a right side and a lower side, the four foldable gaps being sequentially connected in a square shape, and remaining parts of the foldable FSS unit except for the four foldable gaps being all metal patches.
US11581652B2

The concepts, systems, circuits and techniques described herein are directed toward a spiral antenna which may be provided using additive manufacturing technology so as to provide an antenna capable of operation at frequencies which are higher than spiral antennas manufactured using standard photo-etch or printed circuit board (PCB) manufacturing processes.
US11581649B2

Provided is an antenna for receiving radio waves including frequencies in the L6 band unique to QZSS to realize accurate positioning by QZSS. A substrate-type antenna 1 comprises an arcuate antenna element 20 including a long arcuate antenna element 22 and a short arcuate antenna element 24, each of which includes an integral antenna element compatible with three frequency bands and a single antenna element compatible with one frequency band and arranged with a space from the integral antenna element. Each of the integral antenna element and the single antenna element extends from an outer peripheral part of the arcuate antenna element toward an inner peripheral part thereof. The substrate-type antenna 1 further comprises a plurality of connection units 34 connected to the long arcuate antenna element 22 and the short arcuate antenna element 24, respectively, and a coupler 30 to which the plurality of connection units 34 is coupled.
US11581632B1

A projectile circuitry assembly for use in projectiles comprising a chassis defining a generally cylindrical a main body portion and further defining an interior cavity for containing one or more projectile components and further defining an antenna aperture through the body portion to expose the interior cavity. In various embodiments the projectile circuitry assembly comprises a plurality of circuit boards and a wrap antenna, the plurality of circuit boards and wrap antenna interconnected via an integrated flex-line to define a single unitary device without the use of a connector, the wrap antenna comprising one or more antenna elements defined on a flexible antenna substrate layer, wherein the plurality of circuit boards are positioned in the interior cavity and the wrap antenna is threaded through the antenna aperture and wrapped circumferentially about an exterior of the cylindrical wall of the body portion.
US11581629B2

A housing for an electronic device is disclosed. The housing comprises a first component and a second component separated from the first component by a gap. The housing also includes a first molded element disposed at least partially within the gap and defining at least a portion of an interlock feature, and a second molded element disposed at least partially within the gap and mechanically engaging the interlock feature. The first component, the second component, and the second molded element form a portion of an exterior surface of the housing. A method of forming the housing is also disclosed.
US11581626B2

Access points can be mounted in a variety of locations or orientations and can support multiple communications protocols. In some embodiments, an access point includes a main housing and a front housing. The main and front housing are connected by a hinge. A Wi-Fi antenna is included in the front housing in some embodiments. The access point is configured for use in either an open or closed position. When mounted in a vertical position, the front housing can be lowered into a horizontal position, which facilitates a preferred orientation of an antenna with respect to the ground. A first set of cooling fins serves to maintain components of the access point offset from a wall to which the access point is mounted. This facilitates airflow. Additional fins act as a spacer between the main housing and the front housing when the access point is used in a closed position. This facilitates air flow around both sides of the main housing.
US11581618B2

Presented are thermomechanical fuses for mitigating heat propagation across electrochemical devices, methods for making and methods for using such fuses, and traction battery packs with load-bearing, sacrificial thermomechanical fuses to help prevent thermal runaway conditions. A battery assembly includes an electrically insulating battery housing with multiple battery cells disposed inside the battery housing. These battery cells are electrically interconnected, in series or parallel, and stacked in side-by-side facing relation to form adjacent, mutually parallel stacks of battery cells. Thermomechanical fuses thermally connect neighboring stacks of the battery cells. Each thermomechanical fuse is formed, in whole or in part, from a dielectric material that undergoes deterioration or deformation at a predefined critical temperature; in so doing, the thermomechanical fuse thermally disconnects a first stack of cells from a neighboring second stack of cells.
US11581617B2

A method comprises determining a first pressure increase in an electrochemical energy storage unit based on a first repetition rate, detecting that the first pressure increase has exceeded a first threshold value, determining a second pressure increase in the energy storage unit based on a second repetition rate, the second repetition rate being greater than the first repetition rate, detecting that the second pressure increase exceeds a second threshold value, and outputting a signal to a control unit based on detecting that the second pressure increase has exceeded the second threshold value.
US11581603B2

Provided is electric power equipment that allows a battery to be installed and removed with ease. The electric power equipment (1) includes a main body (2) defining a battery receiving recess (40) having an open upper end, and a battery (20) configured to be received in the battery receiving recess, wherein an upper part of a front end part of the battery is provided with a projection (108) projecting in a forward direction, and a rear end part of the battery is provided with a grip, and wherein an upper edge of the front end part of the battery receiving recess is provided with a supporting surface (36) configured to support a lower surface of the projection at least when the battery is being removed from the battery receiving recess.
US11581602B2

The present invention provide a pouch type secondary battery and a method for manufacturing the same. More particularly, the present invention provides a pouch type secondary battery and a method for manufacturing the same, in which a pouch case is formed in a folding manner without being subjected to a forming process (press process), such that there is no limit in a length, and a thickness of an inner space of the pouch case is not limited.
US11581588B2

The energy storage system includes battery cells, a subrack, a backplane, and a battery management system BMS. The subrack reserves a plurality of battery cell slots, the battery cells are connected to the backplane through the battery cell slots. The backplane is installed in the subrack, a first power terminal is reserved at a position corresponding to the battery cell slot on the backplane, and a plug-in power terminal is formed by a second power terminal of the battery cell together with the first power terminal. A power circuit, a sampling circuit, and an equalizer circuit are integrated into the backplane, and the power circuit, the sampling circuit, and the equalizer circuit are connected after the second power terminal is plugged and docked with the first power terminal. The BMS is connected to the backplane for managing the energy storage system.
US11581586B2

A lithium ion battery is provided that includes: a positive electrode; a negative electrode; a separator comprising a material having a melt temperature of greater than 150° C.; and an electrolyte including an organic solvent and a lithium salt. A method for sterilizing a lithium ion battery is also provided that includes: providing a lithium ion battery (particularly one as described herein); either charging or discharging the battery to a state of charge (SOC) of 20% to 100%; and steam sterilizing the battery to form a sterilized lithium ion battery.
US11581580B2

The disclosure provides an electrolyte solution that enables a lithium ion secondary battery to have reduced initial resistance, a small increase in resistance at high-temperature cycles, and reduced gas generation at high temperature. The electrolyte solution for a lithium ion secondary battery contains lithium difluorophosphate, an oxalic acid ion, and a compound (1) represented by the following formula (1): wherein R1 and R2 are each independently a methyl group, an ethyl group, a propyl group, or a butyl group.
US11581574B2

An all solid battery includes a solid electrolyte layer of which a main component is a Li—Al-M-PO4-based phosphoric acid salt, a first electrode layer that is provided on a first main face of the solid electrolyte layer and includes an active material, and a second electrode layer that is provided on a second main face of the solid electrolyte layer and includes an active material. “M” is at least one of Ge, Ti, and Zr. A region in which a ratio of MO2 with respect to Li—Al-M-PO4 is 5% or more is unevenly distributed from a center in a thickness of the solid electrolyte layer to 0.4 A downward and to 0.4 A upward, when the thickness of the solid electrolyte layer is expressed by “A”.
US11581569B2

An embodiment is directed to a solid state electrolyte-comprising Li or Li-ion battery cell, comprising an anode electrode, a cathode electrode with an areal capacity loading that exceeds around 3.5 mAh/cm2, an ionically conductive separator layer that electrically separates the anode and cathode electrodes, and one or more solid electrolytes ionically coupling the anode and the cathode, wherein at least one of the one or more solid electrolytes or at least one solid electrolyte precursor of the one or more solid electrolytes is infiltrated into the solid state Li or Li-ion battery cell as a liquid.
US11581564B2

An electrochemical system having two metallic separator plates, an electrochemical cell arranged between the separator plates and sealed by at least one sealing element, and fixing elements for fixing the separator plates. The fixing elements comprise at least two fixing elements which are designed as integral with the first or with the second separator plate, which differ from the at least one sealing element, are spaced apart from the at least one sealing element parallel to the plate planes of the separator plates, and project at least in sections beyond the plate planes of the separator plates in a stacking direction. The first fixing element is thereby supported on the second fixing element in such a way that the second fixing element prevents a displacement of the first separator plate relative to the second separator plate.
US11581561B2

A cell includes an element portion including a first electrode layer, a solid electrolyte layer that contains Zr and that is located above the first electrode layer, an intermediate layer that contains CeO2 containing a rare earth element other than Ce and that is located above the solid electrolyte layer, and a second electrode layer located above the intermediate layer. The intermediate layer includes a first intermediate layer and a second intermediate layer that contains Zr and Ce and that is located at at least a portion between the first intermediate layer and the solid electrolyte layer. In a plan view from the second electrode layer, the second intermediate layer located at an outer peripheral portion of the intermediate layer includes a portion with a thickness greater than the second intermediate layer overlapping a center of the second electrode layer. A cell stack device, a module, and a module housing device include a plurality of the cells.
US11581555B2

A fuel supply control system and method for a fuel cell are disclosed. The system includes: a fuel cell configured to receive a fuel gas and an oxidation gas and generate electric power; a recirculation line configured to circulate gas containing the fuel gas and connected to a fuel electrode of the fuel cell; a discharge valve provided in the recirculation line and configured to allow the gas to be discharged to the outside when open; a discharge amount estimator configured to estimate a discharge amount of the discharged gas based on a supply amount of the fuel gas supplied to the recirculation line, a consumption amount of the fuel gas consumed in the fuel cell, and a change in the amount of the gas in the recirculation line; an offset calculator configured to calculate the discharge amount of the gas estimated by the discharge amount estimator with the discharge valve closed, as a discharge offset; and a controller configured to control opening/closing of the discharge valve.
US11581554B2

A cooling control method of a fuel cell is provided. The method includes estimating a temperature of a separator based on heat exchange between the separator formed between unit cells of a fuel cell stack and coolant flowing through a cooling line between the separators. A ratio of coolant passing through a heat exchange device to coolant bypassing the heat exchange device is adjusted based on the estimated temperature of the separator. Additionally, a rotation speed of a pump for circulating coolant for cooling the fuel cell stack is adjusted based on the estimated temperature of the separator.
US11581553B2

An individual solid oxide cell (SOC) constructed of a sandwich configuration including in the following order: an oxygen electrode, a solid oxide electrolyte, a fuel electrode, a fuel manifold, and at least one layer of mesh. In one embodiment, the mesh supports a reforming catalyst resulting in a solid oxide fuel cell (SOFC) having a reformer embedded therein. The reformer-modified SOFC functions internally to steam reform or partially oxidize a gaseous hydrocarbon, e.g. methane, to a gaseous reformate of hydrogen and carbon monoxide, which is converted in the SOC to water, carbon dioxide, or a mixture thereof, and an electrical current. In another embodiment, an electrical insulator is disposed between the fuel manifold and the mesh resulting in a solid oxide electrolysis cell (SOEC), which functions to electrolyze water and/or carbon dioxide.
US11581547B2

Systems for creating electrodes for polymer electrolyte membrane fuel cells include an XY stage having a heated vacuum table physically coupled to the XY stage. The vacuum table has a working face with a plurality of channels formed therein to communicate vacuum pressure from a port coupled to a vacuum source to the channels. A sheet of perforated heat-conductive material has staggered holes configured to evenly distribute the vacuum pressure from the channels through the perforated sheet. A heat-conductive wire mesh is placed over the perforated sheet, and has openings smaller than the staggered holes such that a membrane material placed on the wire mesh is not deformed by the vacuum pressure. A nanopipette or micropipette coupled to a pump is configured to deposit electrode ink onto an exposed surface of the membrane material as the controller device causes the XY stage to move the vacuum table to control deposition of the electrode ink onto the surface of the membrane material.
US11581539B2

A natural graphite-based modified composite material, a preparation method therefor, and a lithium ion battery comprising the modified composite material. The natural graphite-based modified composite material comprises natural graphite and non-graphitized carbon coated on the inner and outer surfaces of the natural graphite. The preparation method comprises: (1) subjecting spherical natural graphite to isotropic treatment; (2) performing granularity control and shaping treatment; (3) subjecting the inner surface and the outer surface of the material obtained in step (2) to simultaneous modification; and (4) performing carbonization, so as to obtain a natural graphite-based modified composite material.
US11581538B2

In one embodiment, a positive electrode active material for a secondary battery, the positive electrode active material being a primary particle having a monolithic structure that includes a lithium composite metal oxide of Formula 1 below, wherein the primary particle has an average particle size (D50) of 2 μm to 20 μm and a Brunauer-Emmett-Teller (BET) specific surface area of 0.15 m2/g to 0.5 m2/g, and wherein the positive electrode active material has a rolling density of 3.0 g/cc or higher under a pressure of 2 ton·f: LiaNi1-x-yCoxM1yM3zM2wO2  [Formula 1] in Formula 1, M1 is at least one selected from the group consisting of Al and Mn, M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta, and Nb, M3 is any one or two or more elements selected from the group consisting of W, Mo, and Cr, and 1.0≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0.005≤z≤0.01, 0≤w≤0.04, 0
US11581530B2

Articles and methods including layers for protection of electrodes in electrochemical cells are provided. As described herein, a layer, such as a protective layer for an electrode, may comprise a plurality of particles (e.g., crystalline inorganic particles, amorphous inorganic particles). In some aspects, at least a portion of the plurality of particles (e.g., inorganic particles) are fused to one another. For instance, in some aspects, the layer may be formed by aerosol deposition or another suitable process that involves subjecting the particles to a relatively high velocity such that fusion of particles occurs during deposition. In some cases, the protective layer may be porous.
US11581523B2

In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
US11581518B2

Disclosed are a probe integrated with an organic light source and a manufacturing method thereof. An organic light source integration method includes forming a first thin film encapsulation layer on a probe shank, depositing a first electrode in a first region on the first thin film encapsulation layer, depositing an insulating layer in a second region on the first thin film encapsulation layer, depositing a light emitting layer on the first electrode and the insulating layer, depositing a second electrode on the light emitting layer, and forming a second thin film encapsulation layer on the second electrode.
US11581514B2

A display device includes: a substrate; an insulating layer on a top surface of the substrate; a plurality of light-emitting diodes on the insulating layer and including two light-emitting diodes spaced apart from each other and having a transmission area therebetween; an encapsulation member covering the plurality of light-emitting diodes; and a rear cover layer located on a rear surface of the substrate and including a first portion located in the transmission area, wherein the first portion includes a transparent material.
US11581510B2

A display device includes a display module having a folding area and a non-folding area adjacent to the folding area. A glass substrate is disposed on the display module and comprises a first layer and a second layer disposed on the first layer. The second layer has a compressive strength that is higher than a compressive strength of the first layer. The first layer and the second layer of the glass substrate each include a folding portion overlapping the folding area and having a first thickness and a non-folding portion overlapping the non-folding area and having a second thickness greater than the first thickness. The second layer of the non-folding portion has a thickness that is greater than a thickness of the second layer of the folding portion.
US11581505B2

A display device includes a display panel from which light is transmitted; and a window through which the light from the display panel is transmitted to outside the display device. The window includes a transmission area through which the light is transmitted, a light shielding area which is adjacent to the transmission area and blocks the light, and a resin layer at which the window is attachable to the display panel, the resin layer defining a light shielding pattern which corresponds to the light shielding area and blocks the light.
US11581501B2

An electronic device and a production method thereof, wherein the electronic device includes: a semiconductor layer comprising a plurality of quantum dots; and a first electrode and a second electrode spaced apart from each other; wherein the plurality of quantum dots do not comprise cadmium, lead, or mercury; wherein the plurality of quantum dots comprise indium and optionally gallium; a Group VA element, wherein the Group VA element comprises antimony, arsenic, or a combination thereof, and a molar ratio of the Group VA element with respect to the Group IIIA metal (e.g., indium) is less than or equal to about 1.2:1, and wherein the semiconductor layer may be disposed between the first electrode and the second electrode.
US11581498B2

An organic light-emitting material contains a 6-silyl-substituted isoquinoline ligand. The organic light-emitting material is a metal complex containing a 6-silyl-substituted isoquinoline ligand and may be used as a light-emitting material in a light-emitting layer of an organic electroluminescent device. These new complexes can provide redder and saturated emission and meanwhile demonstrate a significantly improved lifetime and efficient and excellent device performance. Further disclosed are an electroluminescent device and a compound formulation including the metal complex.
US11581494B2

Provided is an organic light emitting device, comprising: an anode; a cathode disposed opposite to the anode; and one or more organic material layers disposed between the anode and cathode, the organic material layer including a light emitting layer that includes a compound of Chemical Formula 1 and a compound Chemical Formula 2: wherein: one of R21, R22, R23, and R24 is -L21-Ar1, and the remaining are hydrogen; and one of R31, R32, R33, and R34 is -L22-Ar2, and the remaining are hydrogen; excluding compounds where: R21 is -L21-Ar1 and R31 is -L22-Ar2, R22 is -L21-Ar1 and R32 is -L22-Ar2, R23 is -L21-Ar1 and R33 is -L22-Ar2, or R24 is -L21-Ar1 and R34 is -L22Ar2; L21 and L22 each is a single bond, or a substituted or unsubstituted C6-60 arylene; X2 is O or S; and Ar1 is Chemical Formula 3:
US11581492B2

An organic electroluminescence device of an embodiment includes a first electrode, a second electrode, and an emission layer disposed between the first electrode and the second electrode, and the emission layer includes a polycyclic compound represented by Formula 1. The organic electroluminescence device may exhibit high luminous efficiency and/or service life characteristics:
US11581489B2

A white light emitting material having a chemical structural formula represented by formula (I), a preparation method thereof and application thereof. The preparation method comprises subjecting tris(4-iodophenyl)amine and 4-methoxyphenylacetylene or tris(4-iodophenyl)amine and methyl 4-ethynylbenzoate to a coupling reaction under protection of a protective gas and catalysis of a Pd/Cu mixed catalyst, to obtain the white light emitting material. A novel temperature-sensitive light emitting material is synthesized through a one-step method. The material is applied to the field of diode luminescence based on the temperature-sensitive characteristic. White light luminescence can be finally realized only by reasonably controlling the temperature and duration time during heating a substrate. Compared with the existing art, the method greatly saves raw material costs and manufacturing process costs, and provides a novel idea and strategy for use of a white organic light emitting diode.
US11581487B2

An opto-electronic device includes: (1) a substrate including a first region and a second region; and (2) a conductive coating covering the second region of the substrate. The first region of the substrate is exposed from the conductive coating, and an edge the conductive coating adjacent to the first region of the substrate has a contact angle that is greater than about 20 degrees.
US11581484B2

A semiconductor structure includes an Nth metal layer, a diffusion barrier layer over the Nth metal layer, a first deposition of bottom electrode material over the diffusion barrier layer, a second deposition of bottom electrode material over the first deposition of bottom electrode material, a magnetic tunneling junction (MTJ) layer over the second deposition of bottom electrode material, a top electrode over the MTJ layer; and an (N+1)th metal layer over the top electrode; wherein the diffusion barrier layer and the first deposition of bottom electrode material are laterally in contact with a dielectric layer, the first deposition of bottom electrode material spacing the diffusion barrier layer and the second deposition of bottom electrode material apart, and N is an integer greater than or equal to 1. An associated electrode structure and method are also disclosed.
US11581480B2

A pressure sensor element and a receiving circuit are formed on an IC chip. A transmitting circuit and a piezoelectric element of an actuator are respectively formed on a transmitting chip and a piezoelectric chip. The piezoelectric chip and the pressure sensor face each other separated by a distance in an airtight first space surrounded by a package main body and a base substrate. Dielectric breakdown voltage of signal transmission from the primary side to the secondary side is set by the distance. The first space is a pressure propagation region including an insulating medium capable of transmitting vibrations of the piezoelectric element as pressure. The signal transmission is performed with high insulation by the pressure generated in the pressure propagation region between components integrated in a single module by insulating the primary side and the secondary side from each other by the insulating medium of the pressure propagation region.
US11581471B2

A chip of thermoelectric conversion material may have a concave portion and may be capable of realizing high joining properties to an electrode. Such a chip of thermoelectric conversion material may have a concave on at least one surface of the chip of thermoelectric conversion material. The shape of such chips of may be rectangular parallelepiped, cubic, and/or columnar shape.
US11581460B2

A method for manufacturing a light emitting module includes: providing a light source including a first surface having a pair of electrodes, and a second surface; providing a light guide plate including a first main surface and a second main surface, the light guide plate defining a through-hole extending through the light guide plate from the first main surface to the second main surface, the through-hole having a first penetration portion disposed on a first main surface side, a second penetration portion disposed on a second main surface side, and an intermediate penetration portion connecting the first penetration portion and the second penetration portion, the intermediate penetration portion being narrower in width than the second surface of the light source; and disposing the light source in the second penetration portion of the light guide plate with a joining member being interposed between the light source and the light guide plate.
US11581457B1

Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter that is less than twice an electron diffusion length of the semiconductor layer. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
US11581455B2

First, first cell wiring members from the first solar cell and second cell wiring members from the second solar cell are sandwiched between a wiring member film and a second bridge wiring member. Subsequently, the first cell wiring members and the second cell wiring members are connected to the second bridge wiring member by applying heat to at least the first cell wiring members, the second cell wiring members, and the second bridge wiring member by induction heating.
US11581449B2

The present disclosure relates to a photodiode comprising a first part made of silicon and a second part made of doped germanium lying on and in contact with the first part, the first part comprising a stack of a first area and of a second area forming a p-n junction and the doping level of the germanium increasing as the distance from the p-n junction increases.
US11581443B2

Methods of fabricating solar cell emitter regions with differentiated P-type and N-type architectures and incorporating dotted diffusion, and resulting solar cells, are described. In an example, a solar cell includes a substrate having a light-receiving surface and a back surface. A first polycrystalline silicon emitter region of a first conductivity type is disposed on a first thin dielectric layer disposed on the back surface of the substrate. A second polycrystalline silicon emitter region of a second, different, conductivity type is disposed on a second thin dielectric layer disposed in a plurality of non-continuous trenches in the back surface of the substrate.
US11581442B2

Discussed is a solar cell including a first conductive region positioned at a front surface of a semiconductor substrate and containing impurities of a first conductivity type or a second conductivity type, a second conductive region positioned at a back surface of the semiconductor substrate and containing impurities of a conductivity type opposite a conductivity type of impurities of the first conductive region, a first electrode positioned on the front surface of the semiconductor substrate and connected to the first conductive region, and a second electrode positioned on the back surface of the semiconductor substrate and connected to the second conductive region. Each of the first and second electrodes includes metal particles and a glass frit.
US11581441B2

A semiconductor device includes a substrate, a tunneling oxide layer, a floating gate, an isolation layer and a control gate. The tunneling oxide layer is over the substrate. The floating gate is over the tunneling oxide layer. The isolation layer covers a top of the floating gate and peripherally encloses the tunneling oxide layer and the floating gate. The control gate is over a top of the isolation layer.
US11581438B2

The invention provides a fin structure for a fin field effect transistor, including a substrate. The substrate includes a plurality of silicon fins, wherein a top of each one of the silicon fins is a round-like shape in a cross-section view. An isolation layer is disposed on the substrate between the silicon fins at a lower portion of the silicon fins while an upper portion of the silicon fins is exposed. A stress buffer layer is disposed on a sidewall of the silicon fins between the isolation layer and the lower portion of the silicon fins. The stress buffer layer includes a nitride portion.
US11581435B2

A semiconductor device includes a substrate including a first active region, a second active region and a field region between the first and second active regions, and a gate structure formed on the substrate to cross the first active region, the second active region and the field region. The gate structure includes a p type metal gate electrode and an n-type metal gate electrode directly contacting each other, the p-type metal gate electrode extends from the first active region less than half way toward the second active region.
US11581430B2

A planar transistor device is disclosed including a gate structure positioned above a semiconductor substrate, the semiconductor substrate comprising a substantially planar upper surface, a channel region, a source region, a drain region, and at least one layer of a two-dimensional (2D) material that is positioned in at least one of the source region, the drain region or the channel region, wherein the layer of 2D material has a substantially planar upper surface, a substantially planar bottom surface and a substantially uniform vertical thickness across an entire length of the layer of 2D material in the gate length direction and across an entire width of the layer of 2D material in the gate width direction, wherein the substantially planar upper surface and the substantially planar bottom surface of the layer of 2D material are positioned approximately parallel to a substantially planar surface of the semiconductor substrate.
US11581426B2

In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A sacrificial gate structure having sidewall spacers is formed over the fin structure. A source/drain region of the fin structure, which is not covered by the sacrificial gate structure, is removed. The second semiconductor layers are laterally recessed. Dielectric inner spacers are formed on lateral ends of the recessed second semiconductor layers. The first semiconductor layers are laterally recessed. A source/drain epitaxial layer is formed to contact lateral ends of the recessed first semiconductor layer. The second semiconductor layers are removed thereby releasing the first semiconductor layers in a channel region. A gate structure is formed around the first semiconductor layers.
US11581411B2

A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first source/drain epitaxial feature disposed in an NMOS region, a second source/drain epitaxial feature disposed in the NMOS region, a first dielectric feature disposed between the first source/drain epitaxial feature and the second source/drain epitaxial feature, a third source/drain epitaxial feature disposed in a PMOS region, a second dielectric feature disposed between the second source/drain epitaxial feature and the third source/drain epitaxial feature, and a conductive feature disposed over the first, second, and third source/drain epitaxial features and the first and second dielectric features.
US11581396B2

A display panel includes a base layer, a signal line which is disposed on the base layer and includes a first layer including aluminum and a second layer disposed directly on the first layer and consisting of niobium, a first thin film transistor connected to the signal line, a second thin film transistor disposed on the base layer, a capacitor electrically connected to the second thin film transistor, and a light emitting element electrically connected to the second thin film transistor.
US11581387B2

A display device includes a substrate provided with a plurality of pixels, a circuit element layer provided on the substrate and provided with an auxiliary electrode, an insulating layer provided on the circuit element layer and provided with a plurality of connection electrodes spaced apart from one another and a first trench, a fence structure provided on the plurality of connection electrodes, an organic light emitting layer provided on the fence structure, and a second electrode arranged on the organic light emitting layer, wherein the plurality of connection electrodes are electrically connected with the auxiliary electrode, at least one of the plurality of connection electrodes is exposed from the first trench, and the second electrode is in contact with a connection electrode exposed from the first trench. Therefore, a luminance difference between an outer portion of a panel and a center portion of the panel may be reduced.
US11581384B2

A display device includes pixels, scan lines, and data lines. A first driving gate electrode is disposed at a first pixel of the display device. A second driving gate electrode is disposed at a second pixel of the display device. A first driving voltage line includes a first extending part that overlaps a first driving gate electrode. A second driving voltage line includes a second extending part that overlaps a second driving gate electrode. A first pixel electrode of the first pixel overlaps the second driving gate electrode. The second extending part includes a first recess portion. A center line of the first recess portion is offset in a direction away from the first pixel electrode with respect to a center line of the second driving gate electrode.
US11581375B2

The present disclosure relates to a display device including an optical device, more specifically, it relates to a display device in which the optical device is positioned under the display panel so that the optical device is not exposed in the front direction. Even if the optical device is located under the display panel, the display device can normally perform the function of the optical device related to the front direction of the display panel and have a structure for this.
US11581372B2

A display substrate and a display device are provided. The display substrate includes a base substrate and sub-pixels on the base substrate. At least one sub-pixel includes a storage capacitor. The storage capacitor includes a second capacitor electrode, a first capacitor electrode and a third capacitor electrode which are sequentially on the base substrate. The first capacitor electrode has a first capacitor electrode side and a second capacitor electrode side opposite to each other in the second direction, and the second capacitor electrode has a third capacitor electrode side and a fourth capacitor electrode side opposite to each other in the second direction; orthographic projections of the first capacitor electrode side and the second capacitor electrode side on the base substrate are between an orthographic projection of the third capacitor electrode side and an orthographic projection of the fourth capacitor electrode side on the base substrate.
US11581370B2

A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode including a plurality of electrodes independent from each other; a second electrode disposed to be opposed to the first electrode; an n-type photoelectric conversion layer including a semiconductor nanoparticle, the n-type photoelectric conversion layer being provided between the first electrode and the second electrode; and a semiconductor layer including an oxide semiconductor material, the semiconductor layer being provided between the first electrode and the n-type photoelectric conversion layer.
US11581369B2

The application relates to a semiconductor switch element, including: a first vertical transistor device formed in a substrate and having a source region formed on a first side of the substrate and a drain region formed on a second side of the substrate vertically opposite to the first side; a second vertical transistor device formed laterally aside the first vertical transistor device in the same substrate and having a source region formed on the first side of the substrate and a drain region formed on the second side of the substrate; a conductive element arranged on the second side of the substrate and electrically connecting the drain regions of the vertical transistor devices; and a trench extending vertically into the substrate at the second side of the substrate, wherein at least a part of the conductive element is arranged in the trench.
US11581367B2

A semiconductor device includes a semiconductor substrate, a peripheral device on the semiconductor substrate, a lower insulating structure on the semiconductor substrate and covering the peripheral device, a first conductive line on the lower insulating structure, a memory cell structure on the first conductive line, and a second conductive line on the memory cell structure. The memory cell structure may include an information storage material pattern and a selector material pattern on the lower insulating structure in a vertical direction. The selector material pattern may include a first selector material layer including a first material and a second selector material layer including a second material. The second selector material layer may have a threshold voltage drift higher than that of the first material. The second selector material layer may have a second width narrower than a first width of the first selector material layer.
US11581361B2

Disclosed herein is a method comprising: forming a first electrically conductive layer on a first surface of a substrate of semiconductor, wherein the first electrically conductive layer is in electrical contact with the semiconductor; bonding, at the first electrically conductive layer, a support wafer to the substrate of semiconductor; thinning the substrate of semiconductor.
US11581359B2

A detector for electromagnetic radiation is disclosed. The detector includes: a first electrode layer including at least one first electrode pixel and a second electrode pixel. A second electrode and a first layer including at least one first perovskite are situated between the at least one first electrode pixel of the first electrode layer and the second electrode. Further, a second layer including at least one second different perovskite, is situated between the second electrode pixel of the first electrode layer and the second electrode. In another embodiment, a detector for electromagnetic radiation is disclosed where a first layer including at least one first perovskite, is situated between the at least one first electrode pixel of the first electrode layer and the second electrode, and between the second electrode pixel of the first electrode layer and the second electrode. A method for the production is also disclosed.
US11581356B2

A solid-state imaging device having a backside illuminated structure, includes: a pixel region in which pixels each having a photoelectric conversion portion and a plurality of pixel transistors are arranged in a two-dimensional matrix; an element isolation region isolating the pixels which is provided in the pixel region and which includes a semiconductor layer provided in a trench by an epitaxial growth; and a light receiving surface at a rear surface side of a semiconductor substrate which is opposite to a multilayer wiring layer.
US11581355B2

A curved FPA comprises an array of detectors, with mesas etched between the detectors such that they are electrically and physically isolated from each other. Metallization deposited at the bottom of the mesas reconnects the detectors electrically and thereby provides a common ground between them. Strain induced by bending the FPA into a curved shape is across the metallization and any backfill epoxy, rather than across the detectors. Indium bumps are evaporated onto respective detectors for connection to a readout integrated circuit (ROIC). An ROIC coupled to the detectors is preferably thinned, and the backside of the ROIC may also include mesas such that the ROIC is reticulated.
US11581351B2

A hybrid sensor shift platform for an optical image stabilization (OIS) actuator mechanism in compact camera modules includes two or more substrates. A top substrate is composed of an organic material (e.g., a resin) to reduce mass, reduce magnetic interaction with permanent magnets, and improve reliability. One or more lower substrates of the hybrid sensor shift platform are ceramic substrates that provide the benefits of ceramics for connection to the image sensor. The organic substrate is connected via a solder bond process to the lower ceramic substrate(s). The connection between the substrates is reinforced with an under-fill of epoxy that surrounds the solder bonds, thus creating a full interface between the substrates within the overlap.
US11581344B2

Image sensors are provided. The image sensors may include a substrate including first, second, third and fourth regions, a first photoelectric conversion element in the first region, a second photoelectric conversion element in the second region, a third photoelectric conversion element in the third region, a fourth photoelectric conversion element in the fourth region, a first microlens at least partially overlapping both the first and second photoelectric conversion elements, and a second microlens at least partially overlapping both the third and fourth photoelectric conversion elements. The image sensors may also include a floating diffusion region and first, second and third pixel transistors configured to perform different functions from each other. Each of the first, second and third pixel transistors may be disposed in at least one of first, second, third and fourth pixel regions. The first pixel transistor may include multiple first pixel transistors.
US11581338B2

A vertical field effect transistor (VFET) cell implementing a VFET circuit over a plurality of gate grids includes: a 1st circuit including at least one VFET and provided over at least one gate grid; and a 2nd circuit including at least one VFET and provided over at least one gate grid formed on a left or right side of the 1st circuit, wherein a gate of the VFET of the 1st circuit is configured to share a gate signal or a source/drain signal of the VFET of the 2nd circuit, and the 1st circuit is an (X−1)-contacted poly pitch (CPP) circuit, which is (X−1) CPP wide, converted from an X-CPP circuit which is X CPP wide and performs a same logic function as the (X−1)-CPP circuit, X being an integer greater than 1.
US11581330B2

A memory array comprises laterally-spaced memory blocks individually comprising a vertical stack comprising alternating insulative tiers and conductive tiers. Channel-material strings of memory cells extend through the insulative tiers and the conductive tiers. Dummy pillars extend through the insulative tiers and the conductive tiers. A lowest of the conductive tiers comprises conducting material and dummy-region material that is aside and of different composition from that of the conducting material. The channel-material strings extend through the conducting material of the lowest conductive tier. The dummy pillars extend through the dummy-region material of the lowest conductive tier. Other embodiments, including method, are disclosed.
US11581325B2

A memory structure including a substrate, a first dielectric layer, a second dielectric layer, a charge storage layer, an oxide layer, and a conductive layer is provided. The first dielectric layer is disposed on the substrate. The second dielectric layer is disposed on the first dielectric layer. The charge storage layer is disposed between the first dielectric layer and the second dielectric layer. The oxide layer is located at two ends of the charge storage layer and is disposed between the first dielectric layer and the second dielectric layer. The conductive layer is disposed on the second dielectric layer.
US11581319B2

Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a memory cell, first, second, and third data lines, and first and second access lines. Each of the first, second, and third data lines includes a length extending in a first direction. Each of the first and second access lines includes a length extending in a second direction. The memory cell includes a first transistor including a charge storage structure, and a first channel region electrically separated from the charge storage structure, and a second transistor including a second channel region electrically coupled to the charge storage structure. The first data line is electrically coupled to the first channel region. The second data line is electrically coupled to the first channel region. The third data line is electrically coupled to the second channel region, the second channel region being between the charge storage structure and the third data line. The first access line is located on a first level of the apparatus and separated from the first channel by a first dielectric. The second access line is located on a second level of the apparatus and separated from the second channel by a second dielectric. The charge storage structure is located on a level of the apparatus between the first and second levels.
US11581314B2

An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is separated from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. A first metallic structure is electrically coupled with the first source region. A second metallic structure is electrically coupled with the second drain region. A third metallic structure is disposed over and electrically coupled with the first and second metallic structures. A width of the first metallic structure is substantially equal to or larger than a width of the third metallic structure.
US11581308B2

A method for manufacturing a semiconductor structure is provided, wherein the method includes the following operations. A substrate having a transistor is received, wherein the transistor includes a channel region and a gate on a first side of the channel region. A second side of the channel region of the transistor is exposed, wherein the second side is opposite to the first side. A metal oxide is formed on the second side of the channel region of the transistor, wherein the metal oxide contacts the channel region and is exposed to the environment. A semiconductor structure and an operation of a semiconductor structure thereof are also provided.
US11581306B2

A method of manufacture and structure for a monolithic single chip single crystal device. The method can include forming a first single crystal epitaxial layer overlying the substrate and forming one or more second single crystal epitaxial layers overlying the first single crystal epitaxial layer. The first single crystal epitaxial layer and the one or more second single crystal epitaxial layers can be processed to form one or more active or passive device components. Through this process, the resulting device includes a monolithic epitaxial stack integrating multiple circuit functions.
US11581302B2

An ESD protection diode in a semiconductor device includes: a semiconductor substrate; a diode group that has a plurality of grouped VNW diodes, each of the VNW diodes having a VNW having a lower end and an upper end, that are formed on the semiconductor substrate and have a semiconductor material; and a top plate that is formed above the diode group and is a conductive layer electrically connected to the upper ends of the VNWs of the respective VNW diodes, and there is fabricated the semiconductor device that is capable of, even when large current flows through the VNW diode, suppressing current concentration and preventing damage of the VNW diode.
US11581300B2

A method is disclosed, including the following operations: arranging a first gate structure extending continuously above a first active region and a second active region of a substrate; arranging a first separation spacer disposed on the first gate structure to isolate an electronic signal transmitted through a first gate via and a second gate via that are disposed on the first gate structure, in which the first gate via and the second gate via are arranged above the first active region and the second active region respectively; and arranging a first local interconnect between the first active region and the second active region, in which the first local interconnect is electrically coupled to a first contact disposed on the first active region and a second contact disposed on the second active region.
US11581292B2

A printed circuit board (PCB) system includes a first printed circuit board (PCB), an integrated circuit (IC) package, and a memory module. The IC package includes i) a package substrate, ii) a main IC chip that is electrically coupled to a top surface of the package substrate, iii) first contact structures that are disposed on a bottom surface of the package substrate and that are electrically coupled to the first PCB, and iv) second contact structures that are disposed on a top surface of the package substrate. The memory module includes i) a second PCB, ii) one or more memory IC chips that are disposed on the second PCB, and iii) third contact structures that are disposed on a bottom surface of the second PCB. An interposer electrically couples the second contact structures of the IC package with the third contact structures of the memory module.
US11581290B2

A semiconductor package includes a package substrate including an insulating layer having an upper surface and a lower surface and provided with a first region which is recessed to a first depth from the upper surface toward the lower surface, a redistribution wiring buried in the insulating layer, a chip connection pad on a bottom surface of the recessed first region and connected to the redistribution wiring, and a wire connection pad on the upper surface of the insulating layer and connected to the redistribution wiring, a first semiconductor chip overlapping, in a top-down view of the semiconductor package, the recessed first region of the insulating layer and comprising a first chip pad connected to the chip connection pad of the package substrate, and a second semiconductor chip on the first semiconductor chip and connected to the wire connection pad of the package substrate through a conductive wire.
US11581288B2

The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate including a porous silicon (PSi) region resides over the top surface of the device region. Herein, the PSi region has a porosity between 1% and 80%. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11581268B2

A semiconductor package includes a semiconductor die, a redistribution structure and connective terminals. The redistribution structure is disposed on the semiconductor die and includes a first metallization tier disposed in between a pair of dielectric layers. The first metallization tier includes routing conductive traces electrically connected to the semiconductor die and a shielding plate electrically insulated from the semiconductor die. The connective terminals include dummy connective terminals and active connective terminals. The dummy connective terminals are disposed on the redistribution structure and are electrically connected to the shielding plate. The active connective terminals are disposed on the redistribution structure and are electrically connected to the routing conductive traces. Vertical projections of the dummy connective terminals fall on the shielding plate.
US11581265B2

A semiconductor device of an embodiment includes a plurality of chip regions, each including a memory region in which a plurality of memory cells is arranged, and a kerf region disposed between the chip regions and surrounding each chip region. Paired marks are arranged in a vicinity of the memory region of one of the plurality of chip regions and in a common hierarchical layer in the kerf region, and the paired marks are disposed over upper and lower hierarchical layers.
US11581264B2

An electronic device comprising at least one high aspect ratio feature in a base stack of materials, overlay marks in or on only an upper portion of the base stack of materials, and an additional stack of materials adjacent the base stack of materials, the additional stack of materials comprising the at least one high aspect ratio feature. Additional electronic devices and memory devices are disclosed, as are methods of forming high aspect ratio features in an electronic device.
US11581263B2

A semiconductor package includes: a redistribution layer including a plurality of redistribution insulating layers, a plurality of redistribution line patterns that constitute lower wiring layers, and a plurality of redistribution vias that are connected to some of the plurality of redistribution line patterns while penetrating at least one of the plurality of redistribution insulating layers; at least one semiconductor chip arranged on the redistribution layer; an expanded layer surrounding the at least one semiconductor chip on the redistribution layer; and a cover wiring layer including at least one base insulating layer, a plurality of wiring patterns that constitute upper wiring layers, and a plurality of conductive vias that are connected to some of the plurality of wiring patterns while penetrating the at least one base insulating layer.
US11581259B2

The present disclosure describes a method for the fabrication of ruthenium conductive structures over cobalt conductive structures. In some embodiments, the method includes forming a first opening in a dielectric layer to expose a first cobalt contact and filling the first opening with ruthenium metal to form a ruthenium contact on the first cobalt contact. The method also includes forming a second opening in the dielectric layer to expose a second cobalt contact and a gate structure and filling the second opening with tungsten to form a tungsten contact on the second cobalt contact and the gate structure. Further, the method includes forming a copper conductive structure on the ruthenium contact and the tungsten contact, where the copper from the copper conductive structure is in contact with the ruthenium metal from the ruthenium contact.
US11581245B2

A power electronic switching device has a substrate facing in a normal direction with a first and a second conductive track, and a power semiconductor component is arranged on the first conductive track by an electrically conductive connection. The power semiconductor component has a laterally surrounding edge and an edge region and a contact region on its first primary side facing away from the substrate, and with a three-dimensionally preformed insulation molding that has an overlap segment, a connection segment and an extension segment, wherein the overlap segment, starting from the edge partially overlaps the edge region of the power semiconductor component.
US11581241B2

A circuit module (e.g., an amplifier module) includes a module substrate, a thermal dissipation structure, a semiconductor die, encapsulant material, and an interposer. The module substrate has a mounting surface and a plurality of conductive pads at the mounting surface. The thermal dissipation structure extends through the module substrate, and a surface of the thermal dissipation structure is exposed at the mounting surface of the module substrate. The semiconductor die is coupled to the surface of the thermal dissipation structure. The encapsulant material covers the mounting surface of the module substrate and the semiconductor die, and a surface of the encapsulant material defines a contact surface of the circuit module. The interposer is embedded within the encapsulant material. The interposer includes a conductive terminal with a proximal end coupled to a conductive pad of the module substrate, and a distal end exposed at the contact surface of the circuit module.
US11581238B2

A heat spreading material is integrated into a composite die structure including a first IC die having a first dielectric material and a first electrical interconnect structure, and a second IC die having a second dielectric material and a second electrical interconnect structure. The composite die structure may include a composite electrical interconnect structure comprising the first interconnect structure in direct contact with the second interconnect structure at a bond interface. The heat spreading material may be within at least a portion of a dielectric area through which the bond interface extends. The heat spreading material may be located within one or more dielectric materials surrounding the composite interconnect structure, and direct a flow of heat generated by one or more of the first and second IC dies.
US11581229B2

Provided is a power semiconductor module that can secure insulating properties. A semiconductor element is mounted on a resin-insulated base plate including a circuit pattern, a resin insulating layer, and a base plate. A case enclosing the resin-insulated base plate is bonded to the resin insulating layer with an adhesive. The resin insulating layer and the case are bonded together with a region enclosed by the resin insulating layer and a tapered portion of the case formed closer to the resin insulating layer being filled with the adhesive made of a material identical to that of the sealing resin. Air bubbles in the adhesive appear in the tapered portion opposite to the resin insulating layer.
US11581221B2

The present disclosure provides a method for fabricating an integrated circuit (IC). The method includes receiving an IC layout having active regions, conductive contact features landing on the active regions, and a conductive via feature to be landing on a first subset of the conductive contact features and to be spaced from a second subset of the conductive contact features; evaluating a spatial parameter of the conductive via feature to the conductive contact features; and modifying the IC layout according to the spatial parameter such that the conductive via feature has a S-curved shape.
US11581206B2

Embodiments disclosed herein comprise a sensor. In an embodiment, the sensor comprises a substrate having a first surface and a second surface opposite from the first surface. In an embodiment, the sensor further comprises a first electrode over the first surface of the substrate, and a second electrode over the first surface of the substrate and adjacent to the first electrode. In an embodiment, the sensor further comprises a barrier layer over the first electrode and the second electrode.
US11581200B2

There is provided a technique that includes: etching a portion of a first film formed on a surface of a substrate by performing a cycle a predetermined number of times, the cycle including: supplying an etching gas into a process chamber while raising an internal pressure of the process chamber in a state in which the substrate having the first film formed on the surface of the substrate is accommodated in the process chamber; and lowering the internal pressure of the process chamber by exhausting an interior of the process chamber in a state in which supply of the etching gas into the process chamber is stopped.
US11581197B2

This method for producing a semiconductor device comprises: a first step wherein a plurality of semiconductor chips are affixed onto a supporting substrate such that circuit surfaces of the semiconductor chips face the supporting substrate; a second step wherein a plurality of sealed layers are formed at intervals by applying the sealing resin onto the semiconductor chips by three-dimensional modeling method, each sealed layer containing one or more semiconductor chips embedded in a sealing resin; a third step wherein the sealed layers are cured or solidified; and a fourth step wherein sealed bodies are obtained by separating the cured or solidified sealed layers from the supporting substrate.
US11581191B2

A semiconductor device structure and a manufacturing method thereof are provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
US11581182B2

A wafer cleaning apparatus, a method of cleaning wafer and a method of fabricating a semiconductor device are provided. The method of fabricating the semiconductor device includes disposing a wafer on a rotatable chuck, irradiating a lower surface of the wafer with a laser to heat the wafer, and supplying a chemical to an upper surface of the wafer to clean the wafer, wherein the laser penetrates an optical system including an aspheric lens array, the laser penetrates a calibration window, which includes a first window structure including a first light projection window including first and second regions different from each other, a first coating layer covering the first region of the first light projection window, and a second coating layer covering the second region of the first light projection window, and the first coating layer and the second coating layer have different light transmissivities from each other.
US11581174B2

The disclosure relates to a method of operating a secondary-electron multiplier in the ion detector of a mass spectrometer so as to prolong the service life, wherein the secondary-electron multiplier is supplied with an operating voltage in such a way that an amplification of less than 106 secondary electrons per impinging ion results, while the output current of the secondary-electron multiplier is amplified using an electronic preamplifier mounted close to the secondary-electron multiplier with such a low noise level that the current pulses of individual ions impinging on the ion detector are detected above the noise at the input of a digitizing unit. Further disclosed are the use of the methods for imaging mass spectrometric analysis of a thin tissue section or mass spectrometric high-throughput analysis/massive-parallel analysis, and a time-of-flight mass spectrometer whose control unit is programmed to execute such methods.
US11581167B2

Embodiments of process kits are provided herein. In some embodiments, a process kit, includes: a deposition ring configured to be disposed on a substrate support, the deposition ring comprising: an annular band having an upper surface and a lower surface, the lower surface including a step between a radially inner portion and a radially outer portion, the step extending downward from the radially inner portion to the radially outer portion; an inner lip extending upwards from the upper surface of the annular band and adjacent an inner surface of the annular band, and wherein an outer surface of the inner lip extends radially outward and downward from an upper surface of the inner lip to the upper surface of the annular band; a channel disposed radially outward of the annular band; and an outer lip extending upwardly and disposed radially outward of the channel.
US11581166B2

Embodiments of deposition rings for use in a process chamber are provided herein. In some embodiments, a deposition ring includes: an annular body; an inner wall extending upward from an inner portion of the annular body; and an outer wall extending upward form an outer portion of the annular body to define a large deposition cavity between the inner wall and the outer wall, wherein a width of the large deposition cavity is about 0.35 inches to about 0.60 inches, wherein the outer wall includes an outer ledge and an inner ledge raised with respect to the outer ledge.
US11581152B2

A reversible fuse support block includes a molding, a terminal, and a fuser interface. The molding may be installed within a housing in a first position and a second position, wherein the second position is rotated 180 degrees relative to the first position. The terminal couples to the molding and includes a plurality of apertures disposed in a pattern. The fuse interface receives a first end of a fuse. The fuse interface couples to the terminal in a first arrangement and a second arrangement such that when the fuse interface is installed in the first arrangement and the molding is installed in the first position, the fuse interface is disposed in substantially the same position relative to a corresponding fuse interface on a fuse support block as when the fuse interface is installed in the second arrangement and the molding is installed in the second position.
US11581147B2

An electronic component includes: an ESD discharge member including a substrate having first and second surfaces opposing each other, first and second through-holes penetrating through the substrate, and first and second conductors; and a multilayer capacitor disposed on the first surface of the substrate, in which the multilayer capacitor may include: a capacitor body; and first and second external electrodes disposed outside the capacitor body and connected to the first and second conductors, respectively, and the first and second conductors may include first and second via electrodes coated on inner walls of the first and second through-holes, respectively.
US11581141B2

The present invention provides a leadless stacked ceramic capacitor. the capacitor body are respectively provided with internal electrode terminals. The part forms an electrical connection with the external electrodes, and a plurality of multilayer ceramic capacitors are vertically stacked, and the two adjacent external electrodes are cured to form an adhesive interface by polymer conductive adhesive, and the polymer conductive adhesive includes 75%˜85% metal powder and 15%˜25% viscose provide support strength and conductive channels.
US11581135B2

An electronic component and a board having the same mounted thereon are provided. The electronic component includes a capacitor body, a pair of external electrodes, respectively disposed on end portions of the capacitor body, a pair of metal frames, respectively disposed to be connected the pair of external electrodes, and a conductive bonding layer disposed between the external electrode and the metal frame and having a discontinuous region.
US11581127B2

There is provided an insulated electric wire formed by covering a rectangular conductor wire having a rectangular cross-sectional shape with an insulating film. The insulating film is formed of an inner layer covering a surface of the rectangular conductor wire, and an outer layer covering a surface of the inner layer. A thickness (t1) of a section of the inner layer, which covers one short side of two facing short sides of the same length of a rectangular cross section of the rectangular conductor wire, is greater than a thickness (t2) (including that t2=0) of a section of the inner layer which covers the other short side. An elastic modulus and/or a yield stress of the inner layer are less than an elastic modulus and/or a yield stress of the outer layer.
US11581122B2

A magnetic part including: a coil that generates a magnetic flux when a current flows through the coil; a core that is formed of a magnetic substance that forms a magnetic path of the magnetic flux; a support member that supports the core; and a fixing member that fixes the core to the support member. The core includes a column portion that is vertically provided with respect to a surface where the core is in contact with the support member. The fixing member presses the column portion of the core against the support member. The support member has a recess in a portion of a facing surface that faces the core, where the portion of a facing surface does not face the column portion.
US11581116B2

A method for transferring data from an actuating element to a control unit activating the actuating element. The control unit activates an inductance contained in the actuating element, for the transfer of the data in the actuating element in parallel to the inductance, a load being connected in parallel, or not.
US11581115B2

A superconducting coil module includes: a first coil composed of a superconducting wire material wound multiple times; and a first heating device coupled to one surface of the first coil and including at least one first heating pattern controlling a threshold current for each turn of the first coil as a minimum threshold current, wherein at least one first heating pattern is disposed on a path according to a predetermined ratio between the inner and outer boundaries of the first coil.
US11581114B2

A magnetic powder contains a magnetic metal particle comprising iron (Fe) and an insulating coating layer disposed on a surface of the magnetic metal particle and comprising tin (Sn), phosphorous (P) and oxygen (O), and a coil component contains such a magnetic powder.
US11581113B2

A permanent magnet may include a Fe16N2 phase in a strained state. In some examples, strain may be preserved within the permanent magnet by a technique that includes etching an iron nitride-containing workpiece including Fe16N2 to introduce texture, straining the workpiece, and annealing the workpiece. In some examples, strain may be preserved within the permanent magnet by a technique that includes applying at a first temperature a layer of material to an iron nitride-containing workpiece including Fe16N2, and bringing the layer of material and the iron nitride-containing workpiece to a second temperature, where the material has a different coefficient of thermal expansion than the iron nitride-containing workpiece. A permanent magnet including an Fe16N2 phase with preserved strain also is disclosed.
US11581106B1

A conductive substrate includes a base material and a conductive layer arranged on the base material, in which the conductive layer has a conductive thin wire part containing a metal and a transparent insulating part containing no metal, the transparent insulating part being adjacent to the conductive thin wire part, and the conductive layer contains a compound represented by Formula (1).
US11581104B2

The present disclosure is directed to nuclear thermionic avalanche cell (NTAC) systems and related methods of generating energy from captured high energy photons. Huge numbers of electrons in the intra-band of atom can be liberated through bound-to-free transition when coupled with high energy photons. If a power conversion process effectively utilizes these liberated electrons in an avalanche form through a power conversion circuit, the power output will be drastically increased. The power density of a system can be multiplied by the rate of high energy photon absorption. The present disclosure describes a system and methods built with multilayers of nuclear thermionic avalanche cells for the generation of energy. The multilayer structure of NTAC devices offers effective recoverable means to capture and harness the energy of gamma photons for useful purposes such as power systems for deep space exploration.
US11581093B2

Methods and systems are provided for detecting a mental health condition. Structured and unstructured information is analyzed using natural language processing to extract information including clinical data values and medical concepts pertaining to a user. Reference medical information is evaluated using natural language processing to correlate medical data with mental health conditions. A classification for a mental health condition of the user is determined using a machine learning model and based on the extracted information and correlations, wherein the extracted information includes blood analysis for the user. The user is assigned to a segment of users based on the extracted information. A treatment for the mental health condition of the user is indicated based on the classification and the assigned segment of users.
US11581090B2

A system includes: a processor; a memory coupled to the processor, wherein the memory stores a first content; a medical device coupled to the processor; and a reader coupled to the processor, wherein the reader is configured to read a second content from a storage medium other than the memory such that the processor switches the medical device from a first mode to a second mode based on the first content corresponding to the second content.
US11581089B2

An automated laboratory system for processing biological samples in a batch type manner is disclosed. In one embodiment, the system may receive assay instructions for biological samples processing among a plurality of devices. The devices may include a pre-analytical instrument and one or more analysis systems. The system may include an orchestration core application for determining an order of performance for the assays ordered for the samples.
US11581085B1

System and method for generating personalized nutrition prescriptions and modifying the personalized nutrition prescriptions based on feedback. Exemplary implementations may: receive user input defining biometric information, physique goals associated with individual users, and/or other information; provide the nutrition prescriptions to the individual users based on the biometric information and the physique goals; provide the nutrition prescriptions to the individual users; obtain feedback from the individual users; modify the nutrition prescriptions based on comparison between the obtained feedback and projected progress towards the physique goals associated with the individual users; provide the modified nutrition prescriptions to the individual users; and/or other exemplary implementations.
US11581084B2

A system for generating an alimentary plan is disclosed. The system comprises a computing device which is configured to receive an input that includes physiological data related to a skin sample. Computing device is configured to extract a plurality of biological indicators related to disease state from the physiological data. Computing device is configured to determine a biological indicator score for each biological score for each biological indicator of the plurality of biological indicators. Computing device is configured to generate a skin disorder classifier by receiving skin disorder training data. The computing device is configured to classify, using the skin disorder classifier, the at least one biological indicator and the biological indicator score to a positive result for a skin disorder. Computing device is configured to generate an alimentary plan as a function of the positive result. A method for generating an alimentary plan is also disclosed.
US11581083B2

Aspects of the present disclosure describe systems and methods for predicting an intra-aortic pressure of a patient receiving hemodynamic support from a transvalvular micro-axial heart pump. In some implementations, an intra-aortic pressure time series is derived from measurements of a pressure sensor of the transvalvular micro-axial heart pump and a motor speed time series is derived from a measured back electromotive force of a motor of the transvalvular micro-axial heart pump. Furthermore, in some implementations, machine learning algorithms, such as deep learning, are applied to the intra-aortic pressure and motor speed time series to accurately predict an intra-aortic pressure of the patient. In some implementations, the prediction is short-term (e.g., approximately 5 minutes in advance).
US11581081B2

Athletic activity may be tracked while providing encouragement to perform athletic activity. For example, energy expenditure values and energy expenditure intensity values may be calculated and associated with a duration and type of activity performed by an individual. These values and other movement data may be displayed on an interface in a manner to motivate the individual and maintain the individual's interest. The interface may track one or more discrete “sessions”. The sessions may be associated with energy expenditure values during a duration that is within a second duration, such as a day, that is also tracked with respect to variables, such as energy expenditure. Other individuals (e.g., friends) may also be displayed on an interface through which a user's progress is tracked. This may allow the user to also view the other individuals' progress toward completing an activity goal and/or challenge.
US11581076B2

Methods and apparatuses for automatically identifying therapeutically equivalent alternative medications for reducing patient costs. These methods and apparatuses may interface with a patient's electronic health records and Payer databases and identify alternative medications that offer cost savings to the patient and Payer. The methods and apparatuses described herein may also incentivize patients to select cost-saving medication alternatives.
US11581073B2

Methods, apparatus, systems, computing devices, computing entities, and/or the like for using machine-learning concepts (e.g., machine learning models) to determine predicted taxonomy-based classification scores for claims and dynamically update data fields based on the same.
US11581068B2

Among other things, methods, systems and computer program products for providing visual indication of documentation and coding of medical procedures may include providing a choice of medical codes associated with a medical procedure. A user selection of one of the medical codes is detected. Based on the detection, a visual indication of the user selection is generated on one or more anatomical diagrams.
US11581065B2

Provided herein are automated apparatus for the identification of microorganisms in various samples. The disclosure solves existing challenges encountered in identifying and distinguishing various types of microorganisms, including viruses and bacteria in a timely, efficient, and automated manner by sequencing.
US11581064B2

High-throughput production of modified microbes is achieved through optimization of directed build graph data structures representing biological workflows. Portions of otherwise unrelated workflows may be combined where they share common biological reaction steps, and processed by a genetic manufacturing facility to take advantage of operational efficiencies. Workflows may be mapped to physical laboratory equipment in a manner that optimizes material transfers. Different automated platforms running different machines in different languages are coordinated in a device-agnostic and language-agnostic manner.
US11581060B2

The present disclosure provides for systems and methods for generating and displaying a three dimensional map of a protein sequence. An exemplary method can provide for using deep learning models to predict protein folding and model protein folding using three dimensional representations. The method more effectively exploits the potential of deep learning approaches. The method approach overall involves three stages—computation, geometry, and assessment.
US11581054B2

A semiconductor device includes a sampling code generation circuit and a code comparator. The sampling code generation circuit includes a buffer circuit configured to receive an external set signal. The sampling code generation circuit is configured to perform a count operation during a sampling period, the sampling period adjusted based on an output signal of the buffer circuit to generate a sampling code. The code comparator is configured to compare the sampling code with a reference code to generate a comparison flag.
US11581050B2

The present technology relates to an electronic device. A memory device that controls a voltage applied to each line to prevent or mitigate a channel negative boosting phenomenon during a sensing operation includes a memory block connected to a plurality of lines, a peripheral circuit configured to perform a sensing operation on selected memory cells connected to a selected word line among the plurality of lines, and control logic configured to control voltages applied to drain select lines, source select lines, and word lines between the drain select lines and the source select lines among the plurality of lines, during the sensing operation and an equalizing operation performed after the sensing operation. The control logic controls a voltage applied to an unselected drain select line according to whether a cell string is shared with a selected drain select line among the drain select lines, during the sensing operation.
US11581040B2

A semiconductor memory apparatus may include a memory bank, a global buffer array, and an input and output circuit. The memory bank includes a local data circuit, and the global buffer array includes a global data circuit. The local data circuit is operably coupled to the global data circuit. The global buffer array may be operably coupled to the input and output circuit. The memory bank is disposed in a core region, and the global buffer array and the input and output circuit may be disposed in a peripheral region separated from the core region.
US11581037B2

Digital compute-in-memory (DCIM) bit cell circuit layouts and DCIM array circuits for multiple operations per column are disclosed. A DCIM bit cell array circuit including DCIM bit cell circuits comprising exemplary DCIM bit cell circuit layouts disposed in columns is configured to evaluate the results of multiple multiply operations per clock cycle. The DCIM bit cell circuits in the DCIM bit cell circuit layouts each couples to one of a plurality of column output lines in a column. In this regard, in each cycle of a system clock, each of the plurality of column output lines receives a result of a multiply operation of a DCIM bit cell circuit coupled to the column output line. The DCIM bit cell array circuit includes digital sense amplifiers coupled to each of the plurality of column output lines to reliably evaluate a result of a plurality of multiply operations per cycle.
US11581034B1

The present disclosure provides a sense amplification circuit and a method of reading out data, including: a first PMOS transistor; a first NMOS transistor; a second PMOS transistor; a second NMOS transistor; a first control MOS transistor configured to provide a bias voltage to the first PMOS transistor according to a control signal; a second control MOS transistor configured to provide the bias voltage to the second PMOS transistor according to the control signal; a first offset cancellation MOS transistor configured to electrically connect an initial bit line to a first complementary readout bit line according to an offset cancellation signal; and a second offset cancellation MOS transistor configured to electrically connect an initial complementary bit line to a first readout bit line according to the offset cancellation signal.
US11581032B2

An apparatus including a temperature dependent circuit is configured to receive a temperature dependent power supply voltage, and further is configured to receive a first input signal and provide a temperature dependent output signal responsive to the input signal. A power control circuit including the temperature dependent circuit is configured to receive a second input signal, and further configured provide a first control voltage based on the first temperature dependent output signal and provide a second control voltage based on the second input signal. The second control voltage has a temperature dependency based on the temperature dependent power supply voltage. A sense amplifier coupled to a pair of digit lines is configured to receive the first and second control voltages and amplify a voltage difference between the digit lines of the pair.
US11581026B2

A data receiving device of a memory device comprises a first pre-amplifier configured to receive previous data, a first reference voltage, and input data, and to output differential signals by comparing the input data with the first reference voltage in response to a clock, when the first pre-amplifier is selected in response to the previous data, a second pre-amplifier configured to receive inverted previous data, a second reference voltage, different from the first reference voltage, and the input data, and outputting a common signal in response to the clock, when the second pre-amplifier is unselected in response to the previous data; and an amplifier configured to receive the differential signals and the common signal, and to latch the input data by amplifying the differential signals.
US11581024B2

A memory module may include: a battery; a plurality of devices including a first memory, a second memory, and a controller; and a power management integrated circuit configured to adjust a level of a battery power, received from the battery, and configured to supply a power supply voltage to each of the plurality of devices.
US11581023B2

A memory device may include a memory system and an energy storage device. Additionally, the energy storage device may supply a first power to the memory system when a second power from a power supply is eliminated or insufficient.
US11581018B2

There are provided methods and systems for media processing, comprising: providing at least one media asset source selected from a media asset sources library, the at least one media asset source comprising at least one source video, via a network to a client device; receiving via the network or the client device a media recording comprising a client video recorded by a user of the client device; transcoding the at least one source video and the client video which includes parsing the client video and the source video, respectively, to a plurality of client video frames and a plurality of source video frames based on the matching; segmenting one or more frames of the plurality of source video frames to one or more character frames; detecting one or more face images in one or more frames of the plurality of client video frames and provide face markers; resizing the one or more character frames according to the face markers compositing the resized character frames with the background frames using one or more blending methods to yield a mixed media asset frames; and encoding the mixed media asset frames to yield a mixed media asset video.
US11581009B2

A method for automatic for sound recognition, comprising a) raw spectrogram generation from a sound signal spectrum; b) wide-band spectrum determination; c) wide-band continuous spectrum determination; d) tonal and time-transient spectrum determination; wide-band continuous spectrogram and tonal and time-transient spectrogram determination; and) spectrogram image generation.
US11581008B2

Embodiments of the present disclosure are directed to systems and methods for improving functional hearing. In one aspect, the system may include a housing configured to fit within an ear of a user. The housing may include a speaker, an amplifier, a transmitter, and a power supply. Additionally, the housing may include a memory storing instructions and at least one processor configured to execute instructions. The instructions may include receiving an audio input and amplifying the audio input. The instructions may include outputting the amplified audio input from a speaker. The instructions may include converting the audio input into a visual representation of the audio input and transmitting the visual representation to at least one display.
US11581006B2

An enunciation system (ES) enables users to gain acquaintance, understanding, and mastery of the relationship between letters and sounds in the context of an alphabetic writing system. The ES enables the user to experience the action of sounding out a word, before their own phonics knowledge enables them to sound out the word independently; its continuous, unbroken speech output or input avoids the common confusions that ensue from analyzing words by breaking them up into discrete sounds; its user-controlled pacing allows the user to slow down enunciation at specific points of difficulty within the word; its real-time touch control allows the written word to be “played” like a musical instrument, with expressive and aesthetic possibilities; and its highlighting of the letter cluster that is responsible for the recognized phoneme enunciated by the user as it occurs allows the user to more easily associated the letters with the sounds.
US11581005B2

A method for improving decomposition of digital signals using training sequences is presented. A method for improving decomposition of digital signals using initialization is also provided. A method for sorting digital signals using frames based upon energy content in the frame is further presented. A method for utilizing user input for combining parts of a decomposed signal is also presented.
US11580995B2

Audio objects are associated with positional metadata. A received downmix signal comprises downmix channels that are linear combinations of one or more audio objects and are associated with respective positional locators. In a first aspect, the downmix signal, the positional metadata and frequency-dependent object gains are received. An audio object is reconstructed by applying the object gain to an upmix of the downmix signal in accordance with coefficients based on the positional metadata and the positional locators. In a second aspect, audio objects have been encoded together with at least one bed channel positioned at a positional locator of a corresponding downmix channel. The decoding system receives the downmix signal and the positional metadata of the audio objects. A bed channel is reconstructed by suppressing the content representing audio objects from the corresponding downmix channel on the basis of the positional locator of the corresponding downmix channel.
US11580994B2

A method includes receiving acoustic features of a first utterance spoken by a first user that speaks with typical speech and processing the acoustic features of the first utterance using a general speech recognizer to generate a first transcription of the first utterance. The operations also include analyzing the first transcription of the first utterance to identify one or more bias terms in the first transcription and biasing the alternative speech recognizer on the one or more bias terms identified in the first transcription. The operations also include receiving acoustic features of a second utterance spoken by a second user that speaks with atypical speech and processing, using the alternative speech recognizer biased on the one or more terms identified in the first transcription, the acoustic features of the second utterance to generate a second transcription of the second utterance.
US11580993B2

Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
US11580992B2

An intelligent voice recognition method, voice recognition apparatus and intelligent computing device are disclosed. An intelligent voice recognition method of a voice recognition apparatus according to an embodiment of the present invention detects a voice of a user, receives an authentication request from the user, and performs authentication for the user on the basis of a result of determination of whether authentication for the user has recently been performed and a result of recognition of the voice of the user, thereby reducing a time and the quantity of calculations necessary for user authentication. One or more of the voice recognition apparatus and the intelligent computing device can be associated with artificial intelligence (AI) modules, unmanned aerial vehicle (UAV) robots, augmented reality (AR) devices, virtual reality (VR) devices, 5G service related devices, etc.
US11580986B2

Obtaining configuration audio data including voice information for a plurality of meeting participants. Generating localization information indicating a respective location for each meeting participant. Generating a respective voiceprint for each meeting participant. Obtaining meeting audio data. Identifying a first meeting participant and a second meeting participant. Linking a first meeting participant identifier of the first meeting participant with a first segment of the meeting audio data. Linking a second meeting participant identifier of the second meeting participant with a second segment of the meeting audio data. Generating a GUI indicating the respective locations of the first and second meeting participants, and the GUI indicating a first transcription of the first segment and a second transcription of the second segment. The first transcription is associated with the first meeting participant in the GUI, and the second transcription is associated with the second meeting participant in the GUI.
US11580981B2

An in-vehicle apparatus is connectable to a device that includes a voice assistant function. The in-vehicle apparatus includes: a voice detector that performs voice recognition of an audio signal input from a microphone and that controls functions of the in-vehicle apparatus based on a result of the voice recognition; and an interface that communicates with the device. When being informed of a detection of a predetermined word in the audio signal as the result of the voice recognition of the audio signal performed by the voice detector, the interface sends to the device, not via the voice detector, the audio signal input from the microphone. The predetermined word is for activating the voice assistant function of the device.
US11580980B2

A method and apparatus for generating a user intention understanding satisfaction evaluation model, a method and apparatus for evaluating a user intention understanding satisfaction, an electronic device and a storage medium are provided, relating to intelligent voice recognition and knowledge graphs. The method for generating a user intention understanding satisfaction evaluation model is: acquiring a plurality of sets of intention understanding data, at least one set of which comprises a plurality of sequences corresponding to multi-round behaviors of an intelligent device in multi-round man-machine interactions; and learning the plurality of sets of intention understanding data through a first machine learning model, to obtain the user intention understanding satisfaction evaluation model after the learning, wherein the user intention understanding satisfaction evaluation model is configured to evaluate user intention understanding satisfactions of the intelligent device in the multi-round man-machine interactions according to the plurality of sequences corresponding to the multi-round man-machine interactions.
US11580978B2

Provided is an in-ear device and associated computational support system that leverages machine learning to interpret sensor data descriptive of one or more in-ear phenomena during subvocalization by the user. An electronic device can receive sensor data generated by at least one sensor at least partially positioned within an ear of a user, wherein the sensor data was generated by the at least one sensor concurrently with the user subvocalizing a subvocalized utterance. The electronic device can then process the sensor data with a machine-learned subvocalization interpretation model to generate an interpretation of the subvocalized utterance as an output of the machine-learned subvocalization interpretation model.
US11580977B2

A conversation engine performs conversations with users using chatbots customized for performing a set of tasks that can be performed using an online system. The conversation engine loads a chatbot configuration that specifies the behavior of a chatbot including the tasks that can be performed by the chatbot, the types of entities relevant to each task, and so on. The conversation may be voice based and use natural language. The conversation engine may load different chatbot configurations to implement different chatbots. The conversation engine receives a conversation engine configuration that specifies the behavior of the conversation engine across chatbots. The system may be a multi-tenant system that allows customization of the chatbots for each tenant.
US11580974B2

A method for exiting a voice skill, an apparatus, a device, and a storage medium are provided by embodiments of the present disclosure, wherein a user voice instruction is received; a target exit intention corresponding to the user voice instruction is identified according to the user voice instruction and a grammar rule of a preset exit intention; and a corresponding operation is executed on a current voice skill of a device according to the target exit intention. The embodiments of the present disclosure refine and expand the user's exit intention. After the target exit intention to which the user voice instruction belongs is identified, the corresponding operation is executed according to the target exit intention so as to meet the users' different exit requirements for the voice skills, enhance the fluency and convenience of user interaction with the device and improve the user's exit experience when using the voice skills.
US11580973B2

A device implementing a system for providing content in response to a request includes a processor configured to receive a voice request for content associated with a home environment, the voice request corresponding to a user account, and determine, based on the voice request, not to provide the content via the device. The processor is further configured to select, in response to the determining, a second device from among multiple devices associated with the home environment, wherein the selecting is based at least in part on configuration settings associated with the home environment, and provide for the second device to output the content based on a profile of the user account.
US11580966B2

A method is provided that includes obtaining two or more microphone audio signals; analysing the two or more microphone audio signals for a defined noise type; and processing the two or more microphone audio signals based on the analysis to generate at least one audio signal suitable for automatic speech recognition. A corresponding apparatus is also provided.
US11580965B1

Techniques for predicting punctuation and casing using multimodal fusion are described. An exemplary method includes processing generated text by: tokenizing the generated text into sub-words, and generating a sequence of lexical features for the sub-words using a pre-trained lexical encoder; processing audio of the audio by: generating a sequence of frame level acoustic embeddings using a pre-trained acoustic encoder on the audio, and generating task specific embeddings from the frame level acoustic embeddings; performing multimodal fusion of the sub-word level acoustic embeddings and the sequence of lexical features by: aligning the task specific embeddings to the sequence of lexical features, and combining the sequence of lexical features and aligned acoustic sequence; predicting punctuation and casing from the combined sequence of lexical features and aligned acoustic sequence; concatenating the sub-words of the text, and applying the predicted punctuation and casing; and outputting text having the predicted punctuation and casing.
US11580959B2

An approach to correcting transcriptions of speech recognition models may be provided. A list of similar sounding phonemes from associated with the phonemes of high frequency terms may be generated for a particular node associated with a virtual assistant. An utterance may be transcribed and receive a confidence score regarding the correctness of the transcription based on audio metrics and other factors. The phonemes of the utterance can be compared to the phonemes of the high frequency terms from the list and a score for the matching phonemes and similar sounding phonemes can be determined. If it is determined the sounds similar score for a term from the high frequency term list is above a threshold, the transcription can be replaced with the term, providing a corrected transcription.
US11580958B2

The present disclosure relates to a method and a device for recognizing speech in a vehicle. The method for recognizing the speech in the vehicle may include collecting one or more types of information, determining information to be linked with each other for speech recognition based on an information processing priority predefined corresponding to each type of the collected information, analyzing the determined information to perform the speech recognition for a signal input through a microphone, and extracting at least one of a wake up voice or a command voice through the speech recognition to control the vehicle. Therefore, the present disclosure has an advantage of more accurately performing the speech recognition by linking collected various information in the vehicle with each other.
US11580950B2

Embodiments of the present invention provide a vehicle privacy system (700), comprising audio input means (130, 190, 720) for receiving an external audio signal (725) indicative of audio from within a vehicle (900), audio source means (710, 910) for receiving the external audio signal (725) and determining an output audio signal (735) based thereon for reducing an external intelligibility of speech within the vehicle (900), and audio output means (145, 146, 147, 730, 920) for receiving the output audio signal (735) and outputting audio (925) corresponding thereto to be at least partly audible external to the vehicle (900).
US11580944B2

A method for adjusting accompaniment music is disclosed. The method transposes the musical key of at least one section of the accompaniment music such that a song will have different musical key transpositions for different sections of the accompaniment music, so that singers whose vocal ranges are narrow can sing songs after the adjustment.
US11580940B1

An instrument holder includes an elongated crossbar including a back surface and a front surface and extending between a first end and a second end, the first end having a perpendicular portion, and the second end including an angled portion and an offset portion, a slot bar coupleable to the first end of the elongated crossbar at the perpendicular portion, and a cradle coupleable to the second end of the elongated crossbar at the offset portion, the cradle being configured and arranged to couple to the back surface of the offset portion.
US11580918B2

This document discusses, among other things, an apparatus comprising a pump configured to deliver insulin, a processor, and a user interface including a bistable display. A display element of the bistable display is placed in one of two stable orientations upon application of a biasing voltage and stays in the stable orientation when the biasing voltage is removed. The processor includes a display module configured to display a non-blank reversion display screen on the bistable display when no input is received at the user interface after a specified time duration, and to recurrently change the reversion display screen until input is received at the user interface.
US11580916B2

A display device includes a substrate, a first active pattern, a first gate electrode, a second active pattern, a second gate electrode, a first connecting pattern, and a second connecting pattern. The first connecting pattern is disposed on the second active pattern and is electrically connected to the first gate electrode, and the second connecting pattern is disposed on the first connecting pattern and is electrically connected to the first connecting pattern and the second active pattern.
US11580908B2

Embodiments of the present disclosure are related to a driving circuit and a display device, by applying an initialization voltage to a sensing node between a driving transistor and a light-emitting element and sensing a voltage change of the sensing node according to driving the light-emitting element, a threshold voltage of the light-emitting element can be detected without turning-on the driving transistor. Furthermore, by turning on the driving transistor and falling a voltage of the sensing node before sensing the voltage of the sensing node, a voltage lower than the threshold voltage of the light-emitting element can be sensed and a variation of a characteristic value of the light-emitting element is detected, thus a circuit for sensing the characteristic value of the light-emitting element can be implemented easily.
US11580904B2

A transparent display panel and a display panel. The transparent display panel includes a transparent display area. The transparent display area includes a plurality of first pixel units. Each of the first pixel units includes a plurality of first sub-pixels. Each of the first sub-pixels includes: a first electrode being light-transmitting; a first light-emitting structural block located on the first electrode; and a second electrode located on the first light-emitting structural block. At least one pixel driving circuit for driving the first sub-pixels to emit light is arranged outside of the transparent display area. A separating area is arranged between an area where the at least one pixel driving circuit is arranged and the transparent display area.
US11580895B1

A display panel and a display device are provided in the present disclosure. The display panel includes drive circuits and pixel circuits, where the drive circuits provide control signals for the pixel circuits, the pixel circuits provide drive currents for light-emitting elements of the display panel, and the drive circuits include a first drive circuit and a second drive circuit; and further includes signal line groups. The signal line groups include a first signal line group and a second signal line group. Along the second direction, a width of the first drive circuit is W1, a width of the second drive circuit is W2, a total width of the M0 signal lines in the first signal line group is D1, a total width of the N0 signal lines in the second signal line group is D2, W2>W1, D2>D1, and D2/W2>D1/W1.
US11580887B2

Disclosed is a portable communication device including a cover window, a display panel including an active area and an inactive area substantially surrounding the active area, the active area including a plurality of pixels and the inactive area including no pixels, a flexible substrate including a first portion connected with the display panel, and a second portion extended from the first portion and bent below a rear surface of the display panel; a display driver integrated circuit (DDI) disposed in the second portion of the flexible substrate, a sensing circuit disposed in the flexible substrate not to be overlapped with the DDI, a plurality of signal lines each electrically connected between the DDI and at least one pixel of the plurality of pixels, and configured to be used to transmit a signal from the DDI to the at least one pixel, and a sensing line disposed in the flexible substrate and the inactive area except the active area and including a first ending portion which is electrically connected with a power line, and a second ending portion which is electrically connected with at least one signal line of the plurality of signal lines via the sensing circuit.
US11580880B2

Braille writing devices and systems, and corresponding methods of writing braille characters on a tape medium are described herein. The devices and systems emboss tactile dots on different types of tape medium to enable braille character writing and advance the tape medium to create accurate and repeatable spacing of the braille characters. The devices and systems may be comprised of simply molded plastic parts that snap together using elastically averaging precision alignment features.
US11580877B2

The present invention relates to a control system for a movement reconstruction and/or restoration system for a patient, comprising a movement model generation module to generate movement model data information, an analysis module receiving and processing data provided at least by the movement model generation module, wherein the control system is configured and arranged to prepare and provide on the basis of data received by the movement model generation module and the analysis module a movement model describing the movement of a patient and providing, on the basis of the movement model, stimulation data for movement reconstruction and/or restoration.
US11580873B2

A method, includes saving in-flight data from an aircraft during a simulated training exercise, wherein the in-flight data includes geospatial locations of the aircraft, positional attitudes of the aircraft, and head positions of a pilot operating the aircraft, saving simulation data relating to a simulated virtual object presented to the pilot as augmented reality content in-flight, wherein the virtual object was programmed to interact with the aircraft during the simulated training exercise and representing the in-flight data from the aircraft and the simulation data relating to the simulated virtual object as a replay of the simulated training exercise.
US11580867B2

Exercise-based watch faces and complications for use with a portable multifunction device are disclosed. The methods described herein for exercise-based watch faces and complications provide indications of time and affordances representing applications (e.g., a workout application or a weather application). In response to detecting a user input corresponding to a selection of the affordance (e.g., representing a workout application), a workout routine can optionally be begun. Further disclosed are non-transitory computer-readable storage media, systems, and devices configured to perform the methods described herein, as well as electronic devices related thereto.
US11580866B2

The present disclosure aims to implement UAV (unmanned aerial vehicle) logistics operation and air traffic control in flyable airspace technically through a UAV task planning system, which depends on blockchain technology to carry out UAV air traffic surveillance on flight segments in a predetermined barrier-free airway and optimize air traffic according to a safe separation distance for fewest UAV operators, air traffic controllers, communications links and airborne loads.
US11580858B2

An advice target location at which a user had a predetermined emotion, for example, is determined based on location information, user biological information, and user transportation means information, which have been acquired by a terminal device (20) being used by the user. Advice information containing information indicating an advice presentation region set by a server device (50) is generated based on the advice target location. This advice information is supplied from the server device (50) to the terminal device (20), so that the terminal device (20) presents advice. With this, advice as to locations pedestrians find dangerous can be presented to drivers, and advice as to locations drivers find dangerous can be presented to pedestrians. Accordingly, accidents and the like can be prevented.
US11580855B1

A system and method for alerting a driver of a motor vehicle or a person walking along a road or hiking on a trail of potentially dangerous hazards in their path. Hazards may be deep water, ice, oil slicks or other hazards. In the case of a motor vehicle, the system uses cameras mounted on or within the vehicle to detect potential hazards and then analyzes the images combined with the known topography of the location to evaluate the ability of the vehicle to safely traverse the hazard. In the case of a person walking or hiking, the person may use the camera on a personal mobile device to capture images of the hazard and to combine the images with the known topography at the location to evaluate the danger presented by the hazard.
US11580853B2

A method for acquiring the surrounding environment of a motor vehicle. The motor vehicle has at least one ultrasound sensor. The ultrasound sensor includes an ultrasound transducer for sending, the ultrasound sensor receiving acoustic environmental signals, in particular audible environmental signals, in that the ultrasound sensor is controlled in its evaluation in such a way that sound waves having frequencies below a resonant frequency of the ultrasound transducer, in particular audible sound waves, of an environmental signal are acquired and evaluated. Environmental signals are understood as acoustic signals that are not produced by the ultrasound transducer itself, but rather by an external sound source that in particular differs from the motor vehicle. This can be for example the siren of a rescue vehicle or emergency vehicle, or the horn of some other motor vehicle.
US11580849B2

Wearable electronic systems having varying interactions based on device orientations are described herein. The systems include a first wearable electronic device and a second wearable electronic device having an input device and a device orientation sensor. The device orientation sensor detects a device orientation of the second wearable electronic device and generates a device orientation signal. The systems have a first mapping orientation mode that performs a first mapping between inputs from the input device and functions of a user interface displayed on the first wearable electronic device when the second wearable electronic device has a first device orientation and a second mapping orientation mode that performs a second mapping between inputs from the input device and functions of the user interface displayed on the first wearable electronic device when the device orientation of the second wearable electronic device detected by the device orientation sensor is a second device orientation.
US11580843B2

Methods and systems including computer programs encoded on a computer storage medium, for receiving, for a multi-tenant dwelling unit (MDU), a map of the MDU, where the map includes locations corresponding to multiple sensors at the MDU and defines multiple sub-areas of the MDU, receiving sensor data from one or more sensors of the plurality of sensors, where the sensor data is indicative of a fire event at the MDU, determining, from the sensor data, one or more sub-areas of the multiple sub-areas included in the fire event, generating, based on the sensor data, a targeted fire event response for the one or more sub-areas of the multiple sub-areas of the MDU, and providing, to the one or more sub-areas of the multiple sub-areas, the targeted fire event response.
US11580842B1

Embodiments for managing real-time alerts using machine learning are disclosed. For example, a method includes receiving real-time data for one or more parameters of a device for which an alert is to be generated, from one or more sources associated with the device, and selecting a first machine learning model from a plurality of machine learning models based on the received real-time data. The method further includes determining at least one anomaly in the device based on the selected first machine learning model and predicting an impact of the determined at least one anomaly based on a second machine learning model of the plurality of machine learning models. Furthermore, the method includes generating the alert for the device in real-time based on the predicted impact of the determined at least one anomaly and receiving feedback on the generated alert in real-time.
US11580829B2

A haptic system is described. The haptic system includes a linear resonant actuator (LRA), a receiver, and a transmitter. The LRA has a characteristic frequency and provides a vibration in response to an input signal. The receiver is configured to sense received vibration from the LRA. The transmitter is configured to provide the input signal to the LRA. The receiver is coupled with the transmitter and provides vibrational feedback based on the received vibration. The input signal incorporates the vibrational feedback.
US11580819B2

A gaming system includes an electronic gaming machine (EGM) located within a defined zone of a gaming venue, a transmitter configured to output a first unique identifier, and a server including a processor and a memory storing instructions, where the instructions cause the processor to receive, in connection with a request at a mobile terminal to transfer funds to a gaming wallet accessible at the EGM, a communication from the mobile terminal including the first unique identifier, determine, based on the received first unique identifier, whether the mobile terminal is within the defined zone, and transmit, in response to determining whether the mobile terminal is within the defined zone, a signal to the mobile terminal indicating whether the mobile terminal is within the defined zone.
US11580816B2

Gaming machine button decks are connected with a button deck filler for connecting between two adjacent gaming machines to provide continuity between button decks and to provide lighting effects between the gaming machines. Light sources may be controlled by a multimedia server operating to control various presentation interfaces for a group of adjacent gaming machines.
US11580805B1

A system for controlling access to a secure room containing a plurality of safety deposit boxes, comprises a motion detector, a biometric sensor, and a plurality of contact sensors, wherein each of the safety deposit boxes is associated with at least two contact sensors. The system includes a processor that is configured to unlock the gate when a plurality of access conditions are satisfied, which may include: collecting via the biometric sensor a biometric sensor a biometric credential that matches a reference biometric credential in a user database; and determining the secure room is unoccupied based on at least a predetermined period of no motion detected by the at least one motion sensor. The processor may also be configured to generate a box-accessed event identifying one of the safety deposit boxes when all of the contact sensors associated with that safety deposit box are simultaneously opened.
US11580787B2

To provide a device for measuring a time of passage that is capable of sensing passage of the torso more accurately than a photoelectric cell while maintaining the ease of use of a photoelectric cell, passage of a runner is sensed by causing the upper portion of the body of the runner to be broadly illuminated by infrared light, visible light, and/or other such electromagnetic waves, and by detecting light reflected from large part(s) of the body of the runner.
US11580782B2

Embodiments of the present invention provide a display panel, including a display region, wherein the display region includes an iris recognition region; the display panel further includes a light conversion layer disposed in the iris recognition region, the light conversion layer is configured to convert visible light incident on the light conversion layer into infrared light, and the infrared light is emitted from a display side of the display panel.
US11580766B2

A method for detecting at least one biometric trait visible in an input image, by means of a convolutional neural network, the method wherein it comprises the implementation, by data processing means of a client, of steps of: (a) Generating, by means of a feature extraction block of said CNN, a plurality of representation vectors each defining a candidate region of interest of said input image potentially containing a biometric trait, the representation vector of a candidate region of interest comprising at least one position value of the candidate region of interest, at least one size value of the candidate region of interest, an orientation value of the candidate region of interest, and an objectivity score of the candidate region of interest; (b) Selecting, by means of a filtering block of said CNN, at least one region of interest from said candidate regions based on the representation vectors thereof.
US11580765B2

A method including providing a sensor device including one or several sensors. The sensor device is arranged to perform at least one high-power type measurement and at least one low-power type measurement and includes at least one image sensor arranged to depict a person by a measurement of said high-power type. Each of the low-power type measurements over time requires less electric power for operation as compared to each of the high-power type measurements. The method includes detecting a potential presence of the person using at least one of said low-power type measurements. The method includes producing, using one of the high-power type measurements, an image depicting a person and detecting a presence of the person based on im-age analysis of the image. The method includes detecting, using at least one of the low-power type measurements, a maintained presence of the person. The method includes failing to detect a maintained presence of the person.
US11580762B2

A computer model to identify a type of physical card is trained using simulated card images. The physical card may exist with various subtypes, some of which may not exist or be unavailable when the model is trained. To more robustly identify these subtypes, the training data set for the computer model includes simulated card images that are generated for the card type. The simulated card images are generated based on a semi-randomized background that varies in appearance, onto which an identifying marking of the card type is superimposed, such that the training data for the computer model includes additional randomized sample card images and ensure the model is robust to further variations in subtypes.
US11580761B2

An ink file output method is provided, which includes: generating M (M is an integer of 1 or more) pieces of stroke data SD on the basis of event data generated as M input devices move, respectively; generating N (N is an integer of 1 or more and M or less) kinds of logical names LN (metadata) identifying the M number of input devices; generating a metadata block associating the M pieces of stroke data SD with the N kinds of logical names LN; and writing the M pieces of stroke data SD and the metadata block to an ink file.
US11580757B2

Disclosed are a fatigue state detection method and apparatus, a medium and a device. The method includes: obtaining image blocks containing an organ area of a target object from a plurality of video frames collected by a camera apparatus disposed in a mobile device, to obtain an image-block sequence that is based on the organ area; determining a fatigue state type of the target object based on the image-block sequence of the organ area; sending the image-block sequence to a cloud server if the fatigue state type meets a first preset type, and rendering the cloud server to detect a fatigue level of the target object based on the image-block sequence; and receiving fatigue level information about the target object that is returned by the cloud server. The present disclosure may improve accuracy of fatigue state detection, thereby helping to improve driving safety of the mobile device.
US11580751B2

A drive recorder according to an embodiment of the present disclosure includes: an imaging unit that is mounted on a vehicle and captures a video of the surroundings of the vehicle; a video recording unit that has, recorded therein, video data captured; a network connecting unit that receives accident information including a time and date when an accident occurred and a place where the accident occurred; and a video retrieving unit that determines whether any video data captured in a predetermined time period and in a predetermined region are available in the video data recorded in the video recording unit, the predetermined time period including the time and date when the accident occurred, the predetermined region including the place where the accident occurred.
US11580749B2

A scalable tracking system processes video of a space to track the positions of people within a space. The tracking system determines local coordinates for the people within frames of the video and then assigns these coordinates to time windows based on when the frames were received. The tracking system then combines or clusters certain local coordinates that have been assigned to the same time window to determine a combined coordinate for a person during that time window.
US11580741B2

Disclosed are a method and an apparatus for detecting abnormal objects in a video. The method for detecting abnormal objects in a video reconstructs a restored batch by applying each input batch to which an inpainting pattern is applied to a trained auto-encoder model, and fuses a time domain reconstruction error using time domain restored frames output by extracting and restoring a time domain feature point by applying a spatial domain reconstruction error and a plurality of successive frames using a restored frame output by combining the reconstructed restoring batch to a trained LSTM auto-encoder model to estimate an area where an abnormal object is positioned.
US11580720B2

In order to acquire recognition environment information impacting the recognition accuracy of a recognition engine, an information processing device 100 comprises a detection unit 101 and an environment acquisition unit 102. The detection unit 101 detects a marker, which has been disposed within a recognition target zone for the purpose of acquiring information, from an image captured by means of an imaging device which captures images of objects located within the recognition target zone. The environment acquisition unit 102 acquires the recognition environment information based on image information of the detected marker. The recognition environment information is information representing the way in which a recognition target object is reproduced in an image captured by the imaging device when said imaging device captures an image of the recognition target object located within the recognition target zone.
US11580716B2

An apparatus for color-dependent detection of image contents includes a light input coupling apparatus, carrier medium, measuring region, output coupling region, and camera apparatus. The light input coupling apparatus includes a light source to emit light at a first wavelength. The carrier medium receives the light and transmits the light by internal reflection to the measuring region. The measuring region includes a first diffraction structure that outputs light at the first wavelength. The first diffraction structure is formed as a multiplex diffraction structure to input light in a second wavelength range. The output coupling region includes a second diffraction structure formed as a multiplex diffraction structure that outputs light at the first wavelength and the second wavelength range. The camera apparatus captures light output from the carrier medium to the camera apparatus, and provides the light in a form of image data which correlates with the light.
US11580715B2

A notched 2D shape may encode information. For instance, a physical tag may display, form or include a polygon that is modified by notches and by one or more holes. This notched 2D shape may encode data that identifies, or provides information regarding, a physical product to which the tag is physically attached. Alternatively, this notched 2D shape may encode any other type of information, such as information about what we sometimes call a product shape or shape matrix. The notched shape may be an octagon that is modified by notches and by one or more holes.
US11580708B2

Provided herein are method, apparatus, and computer program products for generating a first and second three dimensional interactive environment. The first three dimensional interactive environment may contain one or more engageable virtual interfaces that correspond to one or more items. Upon engagement with a virtual interface the second three dimensional interactive environment is produced to virtual simulation related to the one or more items.
US11580705B2

A method to culling parts of a 3D reconstruction volume is provided. The method makes available to a wide variety of mobile XR applications fresh, accurate and comprehensive 3D reconstruction data with low usage of computational resources and storage spaces. The method includes culling parts of the 3D reconstruction volume against a depth image. The depth image has a plurality of pixels, each of which represents a distance to a surface in a scene. In some embodiments, the method includes culling parts of the 3D reconstruction volume against a frustum. The frustum is derived from a field of view of an image sensor, from which image data to create the 3D reconstruction is obtained.
US11580704B2

Various embodiments are provided herein for tracking a user's physical environment, to facilitate on-the-fly blending of a virtual environment with detected aspects of the physical environment. Embodiments can be employed to facilitate virtual roaming by compositing virtual representations of detected physical objects into virtual environments. A computing device coupled to a HMD can select portions of a depth map generated based on the user's physical environment, to generate virtual objects that correspond to the selected portions. The computing device can composite the generated virtual objects into an existing virtual environment, such that the user can traverse the virtual environment while remaining aware of their physical environment. Among other things, the computing device can employ various blending techniques for compositing, and further provide image pass-through techniques for selective viewing of the physical environment while remaining fully-immersed in virtual reality.
US11580699B2

Systems and methods are described for a media guidance application (e.g., implemented on a user device) that allows users to select any arbitrary position in a virtual reality environment from where to view the virtual reality content and changes a user's perspective based on the selected position.
US11580692B2

Various implementations disclosed herein include devices, systems, and methods that generates a three-dimensional (3D) model based on a selected subset of the images and depth data corresponding to each of the images of the subset. For example, an example process may include acquiring sensor data during movement of the device in a physical environment including an object, the sensor data including images of a physical environment captured via a camera on the device, selecting a subset of the images based on assessing the images with respect to motion-based defects based on device motion and depth data, and generating a 3D model of the object based on the selected subset of the images and depth data corresponding to each of the images of the selected subset.
US11580686B2

An apparatus and method are described for utilizing volume proxies. For example, one embodiment of an apparatus comprises: a volume subdivision module to subdivide a volume into a plurality of partitions, the apparatus to process a first of the partitions and to distribute data associated with each of the other partitions to each of a plurality of nodes; a proxy generation module to compute a first proxy for the first partition, the first proxy to be transmitted to the plurality of nodes; and a ray tracing engine to perform one or more traversal/intersection operations for a current ray or group of rays using the first proxy; if the ray or group of rays interacts with the first proxy, then the ray tracing engine to send the ray(s) to a second node associated with the first proxy or retrieves data related to the interaction from the second node.
US11580682B1

Systems, methods, and computer readable media for messaging system with augmented reality (AR) makeup are presented. Methods include processing a first image to extract a makeup portion of the first image, the makeup portion representing the makeup from the first image and training a neural network to process images of people to add AR makeup representing the makeup from the first image. The methods may further include receiving, via a messaging application implemented by one or more processors of a user device, input that indicates a selection to add the AR makeup to a second image of a second person. The methods may further include processing the second image with the neural network to add the AR makeup to the second image and causing the second image with the AR makeup to be displayed on a display device of the user device.
US11580681B2

An image processing apparatus includes: an image acquisition unit configured to acquire a photographed image; an editing unit configured to edit the photographed image by executing an action including an application and image processing that is a function of the application; an information acquisition unit configured to acquire photographing information on photographing of the photographed image; a first acquisition unit configured to acquire first history information indicating a history of actions for the photographed image; a second acquisition unit configured to acquire second history information based on at least a history of actions for an image different from the photographed image; and a control unit configured to determine a candidate for an action that is to be executed next on a basis of the first history information and the second history information and perform control to notify the determined candidate.
US11580674B2

An information distribution apparatus includes an imaging unit configured to capture a captured image including a specific object, an object image acquisition unit configured to acquire an object image of the specific object from the captured image, and a try-on data generation unit configured to generate try-on data based on a registration avatar in a virtual space and the object image.
US11580672B2

A method of decoding point cloud data comprises obtaining a bitstream that includes an arithmetically encoded syntax element indicating a vertical point position offset within a node of a tree that represents 3-dimensional positions of points in a point cloud represented by the point cloud data; and decoding the vertical point position offset, wherein decoding the vertical point position offset comprises: determining a laser index of a laser candidate in a set of laser candidates, wherein the determined laser index indicates a laser beam that intersects the node; determining a context index based on whether the laser beam is above a first distance threshold, between the first distance threshold and a second distance threshold, between the second distance threshold and a third distance threshold, or below the third distance threshold; and arithmetically decoding a bin of the vertical point position offset using a context indicated by the determined context index.
US11580671B2

A method, computer program, and computer system is provided for point cloud coding. Data corresponding to a point cloud is received. Hash elements corresponding to attribute values associated with the received data is reconstructed. A size of a hash table may be decreased based on deleting one or more of the hash elements corresponding to non-border regions associated with the attribute values. The data corresponding to the point cloud is decoded based on the reconstructed hash elements.
US11580665B2

An image positioning system based on upsampling and a method thereof are provided. The image positioning method based on upsampling is to fetch a region image covering a target from a wide region image, determine a rough position of the target, execute an upsampling process on the region image based on neural network data model for obtaining a super-resolution region image, map the rough position onto the super-resolution region image, and analyze the super-resolution region image for determining a precise position of the target. The present disclosed example can significantly improve the efficiency of positioning and effectively reduce the required cost of hardware.
US11580637B2

The present application related to a method for detecting an object image using a convolutional neural network. Firstly, obtaining feature images by Convolution kernel, and then positioning an image of an object under detected by a default box and a boundary box from the feature image. By Comparing with the sample image, the detected object image is classifying to an esophageal cancer image or a non-esophageal cancer image. Thus, detecting an input image from the image capturing device by the convolutional neural network to judge if the input image is the esophageal cancer image for helping the doctor to interpret the detected object image.
US11580636B2

Systems and methods of the present invention provide for: receiving a digital image data; modifying the digital image data to reduce a width of a feature within the digital image data; executing a dimension reduction process on the feature; storing a feature vector comprising: at least one feature for each of the received digital image data, and a correct or incorrect label associated with each feature vector; selecting the feature vector from a data store; training a classification software engine to classify each feature vector according to the label; classifying the image data as correct or incorrect according to a classification software engine; and generating an output labeling a second digital image data as correct or incorrect.
US11580634B2

Embodiments described herein provide a system for assessing the surface of an object for detecting contamination or other defects. During operation, the system obtains an input image indicating the contamination on the object and generates a synthetic image using an artificial intelligence (AI) model based on the input image. The synthetic image can indicate the object without the contamination. The system then determines a difference between the input image and the synthetic image to identify an image area corresponding to the contamination. Subsequently, the system generates a contamination map of the contamination by highlighting the image area based on one or more image enhancement operations.
US11580632B2

In an inspection system including a printing apparatus, an inspection apparatus configured to inspect quality of a printed product printed by the printing apparatus, and an information processing apparatus configured to transmit a print job to the printing apparatus, the information processing apparatus transmits a print job to the printing apparatus in a case where a reference image to be used for inspecting the quality of the printed product corresponding to the print job is registered, and does not transmit the print job in a case where the reference image corresponding to the print job is not registered.
US11580624B2

An image processing apparatus includes a processor configured to extract a component related to luminance of each of a sample image and a processing target image that is to undergo image processing to match an impression of the processing target image to the sample image, extract feature values of the processing target image and the sample image by attaching to a pixel value of each pixel forming the processing target image and the sample image a weight responsive to the component related to the luminance, and make adjustment to match the feature value of the processing target image to the feature value of the sample image.
US11580621B2

Aspects of the disclosure provide a device for processing frames with aliasing artifacts. For example, the device can include a motion estimation circuit, a warping circuit coupled to the motion estimation circuit, and a temporal decision circuit coupled to the warping circuit. The motion estimation circuit can estimate a motion value between a current frame and a previous frame. The warping circuit can warp the previous frame based on the motion value such that the warped previous frame is aligned with the current frame and determine whether the current frame and the warped previous frame are consistent. The temporal decision circuit can generate an output frame, the output frame including either the current frame and the warped previous frame when the current frame and the warped previous frame are consistent, or the current frame when the current frame and the warped previous frame are not consistent.
US11580616B2

A method of content production includes generating a survey of a performance area that includes a point cloud representing a first physical object, in a survey graph hierarchy, constraining the point cloud and a taking camera coordinate system as child nodes of an origin of a survey coordinate system, obtaining virtual content including a first virtual object that corresponds to the first physical object, applying a transformation to the origin of the survey coordinate system so that at least a portion of the point cloud that represents the first physical object is substantially aligned with a portion of the virtual content that represents the first virtual object, displaying the first virtual object on one or more displays from a perspective of the taking camera, capturing, using the taking camera, one or more images of the performance area, and generating content based on the one or more images.
US11580612B2

Exemplary embodiments provide a transportation staffing management system. An amount of transportations miles are forecasted for delivering inventory from a distribution enter to a store based on a sales forecast for a store. Non-driving time for drivers engaged in delivering inventory to a store is tracked based on data collected in real-time from mobile computing devices associated with delivery vehicles. An amount of time needed to deliver the inventory based on the forecasted amount of transportation miles and non-driving is calculated. An optimal transportation workload is generated for the distribution center based on the amount of time, data from a first database storing data from a central office, and data from a second database storing data from a distribution center.
US11580609B2

A method of predicting crop yield includes generating, via a processor, a plurality of vectors representative of growing conditions for a current time period and a plurality of vectors representative of growing conditions for a previous time period. The processor compares the plurality of vectors for the current time to the vectors of the previous time periods for corresponding growing conditions and determines which previous vectors are closest to the current vectors. The plurality of previous time periods are each associated with crop yields. Thus, the processor can determine a crop yield for the current time period for a selected crop producing field and crop type based on crop yields for the closest previous time periods.
US11580605B2

Systems and methods provide for an automated system for analyzing damage and processing claims associated with an insured item, such as a vehicle. An enhanced claims processing server may analyze damage associated with the insured item using photos/video transmitted to the server from a user device (e.g., a mobile device). The mobile device may receive feedback from the server regarding the acceptability of submitted photos/video, and if the server determines that any of the submitted photos/video is unacceptable, the mobile device may capture additional photos/video until all of the data are deemed acceptable. To aid in damage analysis, the server may also interface with various internal and external databases storing reference images of undamaged items and cost estimate information for repairing previously analyzed damages to similar items. Further still, the server may generate a payment for compensating a claimant for repair of the insured item.
US11580603B2

A system for providing real-time bi-directional charge capture-centralized conversation between Billing and Provider entities, comprising a first computer apparatus with a computer apparatus charge capture module installed and a second computer apparatus with a computer apparatus billing module installed that are used to transmit and/or receive real-time charge capture centralized conversation data. Real-time charge capture-centralized conversation data is comprised of real-time charge capture data. The real-time charge capture data and the real-time charge capture-centralized conversation data can be combined to create real-time claim data. The system further comprises first computer apparatus and second computer apparatus receipt and transmission via secured communication links. The real-time charge capture data, real-time charge capture-centralized conversation data and real-time claim data is presented in a social media conversation style format. The first computer apparatus and second computer apparatus make it possible for both a Billing and a Provider entity to initiate, transmit or modify any of the sets of real-time charge capture data or real-time charge capture-centralized conversation data.
US11580589B2

Systems and methods to select a product title are described. The system identifies a set of item listings respectively describing items being offered for sale on a network-based marketplace. Each item listing includes a product identifier that matches and is not associated with a product title on the network-based marketplace. Each item listing also includes an item title. The system extracts feature values from the item listings and processes the feature values. The system evaluates the feature values to adopt a product title from an item title included in the set of item titles. The system generates a product user interface including the product title. Finally, the system communicates the product user interface, over a network, for display on a client machine. The product user interface includes the product title.
US11580587B2

A cloud-based system for use by retail store employees or customers at any location to facilitate the sale of automotive tires to consumers is provided. The system accesses multiple independent tire inventory systems from different distributors/manufacturers and provides a personalized set of recommendation tire options and accompanying TPMS service packs.
US11580582B1

A method, computer program product, and system are disclosed. The method, when implemented in a computer system, includes obtaining product information, selecting a production node from a plurality of production nodes, and communicating production information to the production node. The product information is configured to facilitate production of a product. The selecting performed by the computer system comprises determining a physical location of a destination of the product and identifying the production node. The identifying is based, at least in part, on the physical location and one or more production criteria. The production information comprises information identifying the product. The computer system is configured to communicate with each production node of the plurality of production nodes. The communicating is configured to result in production of the product by the production node.
US11580574B2

Disclosed are various embodiments for establishing a connection between a client device and a third-party entity device and providing services associated with a third-party entity to the client device according to user-defined access permissions. A context environment can be determined according to user data and third-party entity data. Services available to the user device can be selected according to the context environment, the user-defined access permissions and third-party defined instructions. Upon selecting the services, the services are provided to the client device and a connection between the client device and a third-party entity device can be established.
US11580567B2

Embodiments of systems and methods for the aggregation, analysis, display and monetization of pricing data for commodities in general, and which may be particularly useful applied to vehicles are disclosed. Specifically, in certain embodiments, historical transaction data associated with a particular vehicle configuration may be obtained and processed to determine pricing data associated with the vehicle configuration. The historical transaction data or determined pricing data may then be presented in an intuitive manner.
US11580564B2

A method and system for managing, in real time and over time includes an electronic device with at least a processor, a memory and a display coupled to the processor and at least one network connection and an interactive management tool coupled to the electronic device. The interactive management tool includes features for managing captured leads such as Email Alerts, Exporting, Labels, Syncing, Value, and Mobility. Also provided is a method for utilizing the system to capture leads and to interactively manage the same. Further provided herein is a non-transitory machine-readable storage device comprising processor-executable instructions to perform the method.
US11580563B2

Aspects of the subject disclosure may include, for example, dividing a reward token in a reward token data base into a plurality of reward token pieces based on a selection of plurality of end user data delivery vehicles, sensing end user activity on a communication network on one of the plurality of end user data delivery vehicles at one of a plurality of data delivery vehicle servers, sending from a first one of the plurality of data delivery vehicle servers, a first one of the plurality of reward token pieces to the end user on a first one of the plurality of end user data delivery vehicles, and sending from a second one of the plurality of data delivery vehicle servers, a second one of the plurality of reward token pieces to the end user on a second one of the plurality of end user data delivery vehicles.
US11580552B2

A method for preventing duplicate processing of a payment transaction includes: generating a first data structure with a first predetermined time interval and generating a second data structure with a second predetermined time interval. A first overlap region and second overlap region of the first and second predetermined time interval are defined by a same time interval. The method includes receiving first transaction data associated with a first payment transaction, receiving second transaction data associated with a second payment transaction, and determining based on a first transaction ID and a second transaction ID, that the second payment transaction is a duplicate of the first payment transaction. A computer program product and system for preventing duplicate processing of a payment transaction are also disclosed.
US11580551B2

Systems and methods for providing risk determination in a crypto currency transaction include receiving, through a network via a broadcast by a first payer device, a first crypto currency transaction that includes a first payee public address. A first request for a determination of risk associated with the first crypto currency transaction is then identified in the first crypto currency transaction, with the first request including risk criteria. A first payee involved in the first crypto currency transaction is then identified using the first payee public address, and first payee risk information is accessed via at least one external risk information database based on the identification of the first payee. If it is determined that the first payee risk information satisfies the at least one risk criteria in the first request, the first crypto currency transaction is provided for addition to a block in a crypto currency public ledger.
US11580549B2

A device receives recording data, for a recording of a user associated with an account, that captures the user describing a transaction. The device processes the recording data to identify one or more characteristics of an individual that described the transaction in the recording. The device determines, based on the one or more characteristics of the individual, whether the individual that described the transaction in the recording is the user associated with the account. The device causes the recording data to be stored in association with transaction data that identifies a list of transactions that are associated with the account of the user, wherein causing the recording data to be stored in association with the transaction data allows the recording to be made accessible to the user via an interface of an application used to manage the account.
US11580542B2

Systems and methods for reducing latency in transactions are described herein. In an embodiment, an application edge acts as a system of record for an application. When a client computing device sends a request to perform a transaction to the application, the application edge receives the request and, without forwarding the request to a backend computing network, searches a transaction datastore stored at the application edge for the account balance and responds to the client computing device with the account balance. The client computing device then determines that a transaction can be performed and sends a request to perform the transaction to the application. The application edge passes this request to the backend computing network which performs the requested transaction. The application edge then uses a webhook infrastructure to update each transaction datastore stored at the application edge.
US11580539B2

Disclosed herein are methods, systems, and apparatus for processing blockchain-based guarantee information. One of the methods includes receiving a first cyphertext of a first digital document specifying a guarantee from a first computing device associated with at least a first guarantor and one or more zero-knowledge proofs (ZKPs) related to one or more values associated with the guarantee, and the first digital document specifies one or more predetermined conditions of executing the guarantee; verifying that the one or more ZKPs are correct; storing the first cyphertext to a blockchain based on performing a consensus algorithm; receiving a first message from a second computing device associated with a beneficiary or a representative of the beneficiary.
US11580533B2

A method for optimizing blockchain storage size through use of relative values includes: receiving, by a blockchain node in a blockchain network that manages a blockchain, a plurality of blockchain data values, each including unspent transaction outputs, at least one destination address, and, for each destination address, an original currency amount; identifying a base value; modifying the original currency amount included in each blockchain data value to be a relative currency amount based on a difference between the identified base value and the original currency amount; generating a new block, the new block including a block header and the modified plurality of blockchain data values; and transmitting the generated new block to a plurality of additional nodes in the blockchain network.
US11580532B1

Systems, methods, and program products for providing exchanges for converting from, to, or between digital assets, and in particular digital math-based assets, such as bitcoins, Namecoins, Litecoins, PPCoins, Tonal bitcoins, IxCoins, Devcoins, Freicoins, I0coins, Terracoins, Liquidcoins, BBQcoins, BitBars, PhenixCoins, Ripple, Dogecoins, Mastercoins, BlackCoins, Ether, Nxt, BitShares-PTS, Quark, Primecoin, Feathercoin, and Peercoin, to name a few, are disclosed. In embodiments, such systems, methods, and program products can further provide or be used in conjunction with automated transactions, digital asset arbitrage systems, and/or kiosk systems for transacting or interacting with digital math-based assets. A kiosk for transacting with digital assets and digital asset exchanges is also disclosed. Systems, methods, and program products for automated transactions and automated digital asset arbitrage transactions are also disclosed.
US11580526B2

A system includes a service provider device and a point of sale (POS) device. A session between a user device and the POS device is established. An authentication request associated with the user device is provided via a user interface of the POS device. Subsequent to an authentication of information, responsive to the authentication request, the POS device receives funding instrument (FI) proxy information corresponding to FIs, which is unusable to identify the FIs by a merchant. A selectable representation corresponding to the FI proxy information is provided via the user interface. Responsive to receiving an indication of a selected member from the selectable representation, information for the selected member is sent. The service provider device determines that the session corresponds to an account associated with the user device and the merchant, and performs a transaction for the session using a first FI that corresponds to the selected member.
US11580524B2

Advantageously, the invention is a competitor to money transfer systems. Conventional digital transactions facilitate electronic payment, such as money transfers, payment card charges, e-commerce transactions and other types of transactions. However, payees may be unbanked people (e.g., children) or people with no payment card (e.g., may have lost card), and payment card fund transfers may be expensive, time consuming, and cumbersome for financial institutions. Thus, there is need for an improved approach. The invention discloses an automated digital method of providing or sharing access to a payment card and/or similar financial account or non-card product, transactions between individuals or legal entities without physical transmission of a payment card, non-card product or its credentials, even without a recipient of an access having a payment card and/or financial account or non-card product, particularly by providing or sharing access to a payment card and/or similar financial account or non-card product of a sender.
US11580516B2

A device that includes a housing configured to couple to an interior of a vehicle. The device further includes a card reader and a user interface. The card reader is configured to receive payment card information for a payment card. The user interface is configured to receive a user input identifying a product, to determine a current location of the device, to determine a vending location where the product is available based on the current location of the device, and to modify a route to a final destination to include the vending location. The user interface is further configured to send an authorization request requests a purchase of the product, to receive an approval message, to generate an authorization token that authorizes a purchase to retrieve the products from the vending location, and output the authorization token.
US11580513B2

There are provided systems and methods for a physical stand for multiple device orientations and peripheral card reader. A device stand may include a dock that allows for placement and securing of a computing device within the device case, such as through a locking or connecting mechanism. The device dock further includes a peripheral component, such as a physical card reader, that allows for reading and entry of card data into the computing device for use with an electronic transaction processing application on the computing device. This allows the computing device to process transactions electronic with an online service provider. Further, the device stand includes a hinge or joint that allows for rotating and inverting of the computing device over a curved extension from a base of the device stand, which allows the computing device to be viewed in multiple directions and orientations.
US11580498B2

System and methods for enhancing user productivity by integrating multiple services and providing a centralized output to a user is disclosed. A message notification server may receive store a set of notification rules and, as various notifications are received, the server may dynamically monitor them for processing to users. The system may automatically re-rank the notifications based on changed conditions or to present messages of greatest urgency or importance. The system may also store sender-specific sets of rules, governing how notifications are to be handled for different application servers or services.
US11580496B2

A method, a computer program product, and a computer system manage meeting divergence for a meeting involving a plurality of participants to discuss a plurality of core intents. The method includes receiving a first contribution from a first one of the participants during the meeting. The method includes determining a first one of the core intents that the first contribution is associated. The method includes determining a linkage of the first contribution to at least one second, previous contribution provided during the meeting. The method includes generating a graphical representation of a progress of the meeting, the graphical representation including a first visual indicator corresponding to the first contribution and at least one second visual indicator respectively corresponding to the at least one second contribution. The first visual indicator is positioned with respect to the at least one second visual indicator to represent the linkage.
US11580489B2

The present invention provides systems and methods for processing return transactions over a network. An embodiment of the invention discloses an online return application that generates an electronic return shipping label that can be delivered to a browser of a customer that wishes to make a return. Also, disclosed is the creation and transmission of label delivery links, which provide for dynamic generation and delivery of shipping labels.
US11580481B2

A system performs a loss factor determination which refers to, for each of two or more different Ms from among 4 Ms (Man, Machine, Material, and Method), a time series data group representing a time series of a state of an element belonging to the M, and which determines, for each period between time points, whether or not a state combination in the same period between time points corresponds to one or a plurality of loss state combinations. In each period between time points, the state combination is a combination of two or more states belonging to the period between time points and corresponding to the two or more Ms. The loss state combination is a state combination defined as an opportunity loss. With each loss state combination, a loss factor, which is a factor of an opportunity loss corresponding to the loss state combination, is associated.
US11580476B1

An online system receives a content item including a link to a landing page and determines a likelihood the landing page violates an online system policy based on a structural similarity between the landing page and a web page violating the policy. To determine the likelihood, the online system determines a hierarchical structure associated with the web page violating the policy and an additional hierarchical structure associated with the landing page. The hierarchical structure represents a structure of at least a portion of the web page and the additional hierarchical structure represents a structure of a corresponding portion of the landing page. The online system compares the hierarchical structure and additional hierarchical structure. Based on the comparison, the online system computes a measure of dissimilarity between the hierarchical structure and additional hierarchical structure and determines a likelihood the landing page violates the policy based on the measure of dissimilarity.
US11580475B2

A device may receive historical risk data identifying historical risks associated with entities, and historical compliance data identifying historical compliance actions performed by the entities. The device may train a machine learning model with the historical risk data and the historical compliance data to generate a structured semantic model, and may receive entity risk data identifying new and existing risks associated with an entity. The device may receive entity compliance data identifying new and existing compliance actions performed by the entity, and may process the entity risk data and the entity compliance data, with the structured semantic model, to determine risk and compliance insights for the entity. The risk and compliance insights may include insights associated with a key performance indicator, a compliance issue, a regulatory issue, an operational risk, a compliance risk, or a qualification of controls. The device may perform actions based on the risk and compliance insights.
US11580471B2

Initial sales cluster is divided by the control circuit into a plurality of velocity buckets. Subsequently, each velocity bucket is divided into a plurality of micro-clusters. The micro-clusters are defined according to demographic information or store characteristic information. A importance score and a performance score for each of the micro-clusters is determined. An optimal sales cluster and a corresponding optimal planogram for each retail store in each micro-cluster are determined based upon the importance score and the performance score.
US11580470B1

A computer-implemented method for improving efficiency in an electronic procurement system for sourcing resources, comprising, during digital electronic interactions of a buyer computer with one or more software platforms and without receiving explicit request for recommendations from the buyer computer: automatically generating, at a coding computer, implicit observation data of the buyer computer; automatically determining, at the coding computer, one or more active sourcing events from a plurality of sourcing events, based on at least the implicit observation data of the buyer computer; using the coding computer, causing to display at least one of the one or more active sourcing events in a graphical user interface.
US11580465B2

According to the embodiments illustrated herein, a method is disclosed. The method comprises receiving, by a computing device comprising a processor, an input from an operator device, wherein the input facilitates determining a task to be performed. Further, the method comprises activating, by the computing device, a first light device associated with a first location in a workplace in response to receiving the input, wherein the first location is associated with the task to be performed. Furthermore, the method comprises receiving, by the computing device, a first voice input from the operator device, indicative of an exception encountered during execution of the task. Additionally, the method includes modifying the task, in response to determining that the first voice input is indicative of the exception encountered during execution of the task.
US11580458B2

A method for performance tuning in Automated Machine Learning (Auto ML) includes obtaining preset application program interface and system resources of the automatic machine learning system. Performance index measurement values are obtained according to the preset application program interface when the system pre-trains deep learning training model candidates. A distribution strategy and a resource allocation strategy are determined according to the performance index measurement values and the system resources and computing resources of the system are allocated according to the distribution strategy and the resource allocation strategy. The disclosure also provides an electronic device and a non-transitory storage medium.
US11580453B2

A method for use with a computing device is provided. The method may include inputting an input data set into a first private artificial intelligence model generated using a first private data set and a second private artificial intelligence model generated using a second private data set. The method may further include receiving a first result data set from the first private artificial intelligence model and receiving a second result data set from the second private artificial intelligence model. The method may further include training an adaptive co-distillation model with the input data set and the first result data set. The method may further include training the adaptive co-distillation model with the input data set and the second result data set. The adaptive co-distillation model may not be trained on the first private data set or the second private data set.
US11580444B2

The subject technology receives information associated with a machine learning model. The subject technology determines a set of metrics based at least in part on the information associated with the machine learning model, where the set of metrics corresponds to respective indicators of performance of the machine learning model based on input data from a data set, the set of metrics further including a number of errors produced by the machine learning model when applied to the input data from the data set. Further, the subject technology displays a user interface based at least in part on the set of metrics, where the user interface includes a set of graphical elements, and the set of graphical elements further includes representations of the set of metrics, and representations of the input data from the data set utilized by the machine learning model.
US11580428B2

Various systems and methods of initiating and performing contextualized AI inferencing, are described herein. In an example, operations performed with a gateway computing device to invoke an inferencing model include receiving and processing a request for an inferencing operation, selecting an implementation of the inferencing model on a remote service based on a model specification and contextual data from the edge device, and executing the selected implementation of the inferencing model, such that results from the inferencing model are provided back to the edge device. Also in an example, operations performed with an edge computing device to request an inferencing model include collecting contextual data, generating an inferencing request, transmitting the inference request to a gateway device, and receiving and processing the results of execution. Further techniques for implementing a registration of the inference model, and invoking particular variants of an inference model, are also described.
US11580422B1

Machine learning models used in medical diagnosis should be validated after being deployed in order to reduce the number of misdiagnoses. Validation processes presented here assess a performance of the machine learning model post-deployment. In post-deployment validation, the validation process monitoring can include: (1) monitoring to ensure a model performs as well as a reference member such as another machine learning model, and (2) monitoring to detect anomalies in data. This post-deployment validation helps identify low-performing models that are already deployed, so that relevant parties can quickly take action to improve either the machine learning model or the input data.
US11580421B2

A machine learning model is trained for user activity detection and context detection on a mobile device. The machine learning model is configured to learn a statistical relationship between an always-on sensing modality of the mobile device and actual user context. Rather than user annotations, the machine learning model is enhanced and personalized for the always-on sensing modality by automated annotations obtained from non-always-on sensing modalities. The non-always-on sensing modality opportunistically provides an imperfect label of user context, where the imperfect label has a known associated probability of error.
US11580411B2

Systems are provided for implementing a hardware accelerator. The hardware accelerator emulate a stochastic neural network, and includes a first memristor crossbar array, and a second memristor crossbar array. The first memristor crossbar array can be programmed to calculate node values of the neural network. The nodes values can be calculated in accordance with rules to reduce an energy function associated with the neural network. The second memristor crossbar array is coupled to the first memristor crossbar array and programmed to introduce noise signals into the neural network. The noise signals can be introduced such that the energy function associated with the neural network converges towards a global minimum and modifies the calculated node values.
US11580407B2

A learning data processing unit accepts, as input, a plurality of pieces of learning data for a respective plurality of tasks, and calculates, for each of the tasks, a batch size which meets a condition that a value obtained by dividing a data size of corresponding one of the pieces of learning data by the corresponding batch size is the same between the tasks. A batch sampling unit samples, for each of the tasks, samples from corresponding one of the pieces of learning data with the corresponding batch size calculated by the learning data processing unit. A learning unit updates a weight of a discriminator for each of the tasks, using the samples sampled by the batch sampling unit.
US11580402B2

A method for adapting a trained neural network is provided. Input data is input to the trained neural network and a plurality of filters are applied to generate a plurality of channels of activation data. Differences between corresponding activation values in the plurality of channels of activation data are calculated and an order of the plurality of channels is determined based on the calculated differences. The neural network is adapted so that it will output channels of activation data in the determined order. The ordering of the channels of activation data is subsequently used to compress activation data values by taking advantage of a correlation between activation data values in adjacent channels.
US11580393B2

A neural network deep learning data control apparatus includes: a memory; an encoding circuit configured to receive a data sequence, generate a compressed data sequence in which consecutive invalid bits in a bit string of the data sequence are compressed into a single bit of the compressed data sequence, generate a validity determination sequence indicating a valid bit and an invalid bit in a bit string of the compressed data sequence, and write the compressed data sequence and the validity determination sequence to the memory; and a decoding circuit configured to read the compressed data sequence and the validity determination sequence from the memory, and determine a bit in the bit string of the compressed data sequence set for transmission to a neural network circuit, based on the validity determination sequence, such that the neural network circuit omits an operation with respect to non-consecutive invalid bits.
US11580379B1

Techniques for phased deployment of machine learning models are described. Customers can call a training API to initiate model training, but then must wait while the training completes before the model can be used to perform inference. Depending on the type of model, machine learning algorithm being used for training, size of the training dataset, etc. this training process may take hours or days to complete. This leads to significant downtime where inference requests cannot be served. Embodiments improve upon existing systems by providing phased deployment of custom models. For example, a simple, less accurate model, can be provided synchronously in response to a request for a custom model. At the same time, one or more machine learning models can be trained asynchronously in the background. When the machine learning model is ready for use, the customers' traffic and jobs can be transferred over to the better model.
US11580376B2

An electronic apparatus is provided. The electronic apparatus includes: a memory storing a trained model including a plurality of layers; and a processor initializing a parameter matrix and a plurality of split variables of a trained model, calculating a new parameter matrix having a block-diagonal matrix for the plurality of split variables and the trained model to minimize a loss function for the trained model, a weight decay regularization term, and an objective function including a split regularization term defined by the parameter matrix and the plurality of split variables, vertically splitting the plurality of layers according to the group based on the computed split parameters and reconstruct the trained model using the computed new parameter matrix as parameters of the vertically split layers.
US11580367B2

The present disclosure provides a neural network processing system that comprises a multi-core processing module composed of a plurality of core processing modules and for executing vector multiplication and addition operations in a neural network operation, an on-chip storage medium, an on-chip address index module, and an ALU module for executing a non-linear operation not completable by the multi-core processing module according to input data acquired from the multi-core processing module or the on-chip storage medium, wherein the plurality of core processing modules share an on-chip storage medium and an ALU module, or the plurality of core processing modules have an independent on-chip storage medium and an ALU module. The present disclosure improves an operating speed of the neural network processing system, such that performance of the neural network processing system is higher and more efficient.
US11580366B2

An event-driven neural network including a plurality of interconnected core circuits is provided. Each core circuit includes an electronic synapse array that has multiple digital synapses interconnecting a plurality of digital electronic neurons. A synapse interconnects an axon of a pre-synaptic neuron with a dendrite of a post-synaptic neuron. A neuron integrates input spikes and generates a spike event in response to the integrated input spikes exceeding a threshold. Each core circuit also has a scheduler that receives a spike event and delivers the spike event to a selected axon in the synapse array based on a schedule for deterministic event delivery.
US11580363B2

A compatibility score generator implementing a neural network is trained for assessing compatibility of items. Elements of a feature vector representing each item and of a compatibility data structure indicating items considered compatible are retrieved. The neural network is trained using training data corresponding to the items and indicating compatibility between pairs of items. The compatibility data structure is modified by removing indications that items of a pair of items are compatible. An encoding function generating encoded representations for the items based on the compatibility data structure is evaluated. Encoded representations are provided to a decoder that learns a likelihood that the indication had been removed when modified. The neural network and the decoder are optimized based on a loss function that reflects the decoder's ability to correctly determine whether the indication had been removed. The encoded representations generate a compatibility score for at least two items of interest.
US11580361B2

An apparatus to facilitate neural network (NN) training is disclosed. The apparatus includes training logic to receive one or more network constraints and train the NN by automatically determining a best network layout and parameters based on the network constraints.
US11580359B2

The technology disclosed provides a so-called “pointer sentinel mixture architecture” for neural network sequence models that has the ability to either reproduce a token from a recent context or produce a token from a predefined vocabulary. In one implementation, a pointer sentinel-LSTM architecture achieves state of the art language modeling performance of 70.9 perplexity on the Penn Treebank dataset, while using far fewer parameters than a standard softmax LSTM.
US11580358B1

The present disclosure describes improvements in optimization systems. During an optimization loop, an advanced objective function is used to determine an objective value, a specification metric, and a rule coverage metric for a particular solution. The specification metric characterizes compliance of the solution with certain formal specifications. The rule coverage metric characterizes the degree to which all rules (or a particular rule) are tested during testing of the system. The objective value and metrics may influence future operation of the optimization loop.
US11580355B2

A circuit system and a method of analyzing audio or video input data that is capable of detecting, classifying, and post-processing patterns in an input data stream. The circuit system may consist of one or more digital processors, one or more configurable spiking neural network circuits, and digital logic for the selection of two-dimensional input data. The system may use the neural network circuits for detecting and classifying patterns and one or more the digital processors to perform further detailed analyses on the input data and for signaling the result of an analysis to outputs of the system.
US11580351B2

A technique is described herein for automatically logging journeys taken by a user, and then automatically classifying the purposes of the journeys. In one implementation, the technique obtains journey data from one or more movement-sensing devices as a user travels from a starting location to an ending location in a vehicle. The technique generates a set of features based on the journey data, and then uses a machine-trainable model (such as a neural network) to make its classification based on the features. The machine-trainable model accepts at least one feature that is based on statistical information regarding at least one aspect of prior journeys that the user has taken. Overall, the technique provides a resource-efficient solution that rapidly provides personalized results to individual respective users. In some implementations, the technique performs its personalization without sharing journey data with a remote server.
US11580347B2

A liquid lens includes a substrate, an anti-reflection (AR) coating, and a chipless radio frequency identification (RFID) tag. The substrate includes central and peripheral portions. The AR coating is disposed on the substrate. The chipless RFID tag is disposed in the peripheral portion to uniquely identify the liquid lens.
US11580344B2

An integrated circuit having Radio Frequency Identification components and circuitry used for authentication is discussed. The RFID components and circuitry include two or more coils and corresponding electrical circuits that are tuned to use two or more different resonant frequencies including: a first resonant RF used for power generation and a second resonant RF used for data communication. The integrated circuit contains a unique signature that is used for the authentication with two or more aspects including i) a first aspect that is a programmed password in a memory embedded on the integrated circuit, and ii) a second aspect that is a unique, randomly generated code based upon a physical characteristic of the integrated circuit.
US11580334B2

Systems and methods for construction zone segmentation are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes construction zones scenes having various objects. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
US11580327B2

A training method for an image denoising model that can include collecting multiple sample image groups through a shooting device, each sample image group including multiple frames of sample images with a same photographic sensitivity and sample images in different sample image groups having different photographic sensitivities. The method can further include acquiring a photographic sensitivity of each sample image group, determining a noise characterization image corresponding to each sample image group based on the photographic sensitivity, determining a training input image group and a target image associated with each sample image group, each training input image group including all or part of sample images in a corresponding sample image group and a corresponding noise characterization image, constructing multiple training pairs each including a training input image group and a target image, and training the image denoising model based on the multiple training pairs until the image denoising model converges.
US11580326B2

A method is for matching a set of first classes assigned to a first data set with a set of second classes assigned to a second data set. The method includes constructing, via a set of pre-processing functions, a plurality of alignment profiles such that at least one alignment profile is assigned to each of the first classes and each of the second classes. The method includes generating a comparison matrix for each group of the alignment profiles, such that each group includes at least one of the first classes and at least one of the second classes. The method includes training a first machine learning model, through supervised training, based on the generated comparison matrices and based on probabilistic labels generated by a second machine learning model.
US11580319B2

A display apparatus includes a sensor layer including sensors; a pixel layer disposed on the sensor layer and including pixel areas and pixels in the pixel areas; and an opaque layer disposed between the sensor layer and the pixel layer and having holes corresponding to light-transmitting areas of pixel areas in which pixels that emit light of a specific color are disposed.
US11580314B2

A document translation method includes: displaying a source text display region, a translated text region, and an editing region, wherein textual content in a document to be translated is displayed in the source text display region, and reference translated text for the textual content is displayed in the translated text region; and providing a translated text recommendation from the reference translated text according to input from a user within the editing region. The method further includes: displaying the translation recommendation in the editing area as a translation result, if a confirmation operation for the translation recommendation is detected; and receiving a translation inputted by the user that is different from the translation recommendation and displaying the translation inputted by the user in the editing area as the translation result, if a non-confirmation operation for the translation recommendation is detected.
US11580313B1

Systems and methods for profile-based language translation and filtration are provided. A user language profile specifying one or more translation rules may be stored in memory for a user. A current communication session associated with a user device of the user may be monitored. The current communication session may includes messages from one or more other user devices of one or more other users. A language set in at least one of the messages of the current communication session may be detected as triggering at least one of the translation rules in real-time. The language set in the at least one message may further be filtered in real-time based on the at least one translation rule, which may thereby modify the at least one message. Further, a presentation of the current communication session that is provided to the user device may be modified to include the filtered language set of the modified message instead of the triggering language set.
US11580310B2

A computing system can include one or more machine-learned models configured to receive context data that describes one or more entities to be named. In response to receipt of the context data, the machine-learned model(s) can generate output data that describes one or more names for the entity or entities described by the context data. The computing system can be configured to perform operations including inputting the context data into the machine-learned model(s). The operations can include receiving, as an output of the machine-learned model(s), the output data that describes the name(s) for the entity or entities described by the context data. The operations can include storing at least one name described by the output data.
US11580303B2

A method and device for keyword extraction and a storage medium. The method includes receiving, at a terminal, an original document, acquiring, at the terminal, a candidate set by extracting at least one candidate phrase from the original document, acquiring, at the terminal, an association degree between the at least one candidate phrase in the candidate set and the original document, acquiring, at the terminal, a divergence degree of the at least one candidate phrase in the candidate set, and updating, at the terminal, a key phrase set of the original document by selecting the at least one candidate phrase from the candidate set as at least one key phrase based on the association degree and the divergence degree.
US11580296B2

Methods and systems are described herein for populating application-specific information using overlay applications. For example, in order to relieve some of the difficulties users face in inputting information into mobile devices which may have smaller screen sizes and may not feature dedicated input mechanisms, the methods and systems described herein automatically populate application-specific information. The methods and systems do this using an application that presents an application overlay feature. That is, the application is accessible while a user is using another application (e.g., on the mobile device) and/or while a user is scrolling through other applications.
US11580292B2

Various implementations of the present disclosure relate to style transfer. In some implementations, a computer-implemented method comprises: obtaining a target object having a first style, a style of the target object being editable; obtaining a reference image including a reference object; obtaining a second style of the reference object, the second style of the reference object being extracted from the reference image; and applying the second style to the target object.
US11580279B1

A method for performing a thermal simulation of an additive manufacturing process that includes accessing a voxel model representing a representative system using one or more processors. The voxel model includes a first transition associated with a first group of one or more voxels transitioning between liquid and vapor, a second transition associated with a second group of one or more voxels transitioning between solid and liquid, a third transition associated with a third group of one or more voxels undergoing sinter, and a fourth transition associated with a fourth group of one or more voxels undergoing a solid state phase change. The method determines a flux imbalance metric based on a flux, a rate of change of the first transition, a rate of change of the second transition, a rate of change of the third transition, and a rate of change of the fourth transition. The method determines one or more temperatures for the representative system based on the flux imbalance metric.
US11580277B2

Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
US11580275B1

A method for producing an experimental output satisfying an objective includes conducting an experimental execution process including applying a selection criterion to select an approach to determining a set of parameters for a set of experiments, and determining a first set of parameters for a first experiment according to the selected approach based on one or more of (i) a predicted relationship between a set of parameters and a characteristic of a corresponding experimental output, (ii) the measured characteristic of a second experimental output from a second experiment executed according to a second set of parameters, (iii) the objective, and (iv) a parameter selection rule. Conducting an experimental execution process includes controlling execution of the first set of experiments according to the first set of parameters, where execution of each first experiment includes conducting the experiment according to the first set of parameters to produce a first experimental output; and measuring the characteristic of the first experimental output. The method includes determining whether the objective is satisfied by the experimental execution process, and, when the objective is not satisfied by the experimental execution process, conducting a subsequent experimental execution process.
US11580265B2

The present disclosure describes various embodiments of systems, apparatuses, and methods for detecting a Trojan inserted integrated circuit design using delay-based side channel analysis. In one such embodiment, an automated test generation algorithm produces test patterns that are likely to activate trigger conditions and change critical paths of an integrated circuit design.
US11580264B2

The present disclosure describes systems and methods for controlling access to secure debugging and profiling features of a computer system. Some illustrative embodiments include a system that includes a processor, and a memory coupled to the processor (the memory used to store information and an attribute associated with the stored information). At least one bit of the attribute determines a security level, selected from a plurality of security levels, of the stored information associated with the attribute. Asserting at least one other bit of the attribute enables exportation of the stored information from the computer system if the security level of the stored information is higher than at least one other security level of the plurality of security levels.
US11580260B2

Embodiments of the present disclosure provide methods, apparatus, systems, computing devices, and computing entities for predictive data protection using a data protection policy determination machine learning model. In one embodiment, a method is provided comprising: processing a historical data corpus using the data protection policy determination machine learning model to generate a dynamic data protection policy update describing inferred data protection instructions; determining an attestation subset of the inferred data protection instructions by comparing the instructions and prior data protection instructions described by an existing data protection policy; for each inferred data protection instruction in the attestation subset, determining a per-instruction attestation determination based on end-user feedback; generating an updated data protection policy by updating the existing policy in accordance with each inferred instruction in the attestation subset whose per-instruction attestation determination describes an affirmative attestation determination; and performing the predictive data protection using the updated data protection policy.
US11580251B1

Embodiments of the present disclosure describe systems, methods, and computer program products for redacting sensitive data within a database. An example method can include receiving a data query referencing unredacted data of a database, responsive to the data query, executing, by a processing device, a redaction operation to identify sensitive data within the unredacted data of the database, and returning a redacted data set in which the sensitive data is replaced or removed to the data query.
US11580247B2

Providing quantum file permissions is disclosed herein. In one example, a quantum computing device includes a permissions database that stores permissions information for a plurality of quantum files. A quantum file permissions service, executing on a processor device of the quantum computing device, receives from a requestor a permissions query for a permissions status (i.e., a read permission indicator, a write permission indicator, and/or an execute permission indicator, as non-limiting examples) of a quantum file including a plurality of qubits. In response, the quantum file permissions service accesses permissions information for the quantum file from the permissions database. The quantum file permissions service uses the permissions information from the permissions database to determine a permissions status of the quantum file. The quantum file permissions service then sends a response to the requestor indicating the permissions status of the quantum file.
US11580239B2

Access to data and resources in a multi-tenant computing system is managed by tagging the data and resources with attributes, as well as by tagging users with attributes. Tenant-specific access policies are configured. When an access request is received from a workload, a policy decision engine processes the attributes that are tagged to the requesting workload (e.g., user, application, etc.) as well as those tagged to the requested data or resource, given a relevant tenant-specific policy. An access decision is provided in response to the access request, and the access decision can be enforced by a tenant-specific enforcement system.
US11580234B2

In one embodiment, a processor includes a memory hierarchy and a core coupled to the memory hierarchy. The memory hierarchy stores encrypted data, and the core includes circuitry to access the encrypted data stored in the memory hierarchy, decrypt the encrypted data to yield decrypted data, perform an entropy test on the decrypted data, and update a processor state based on a result of the entropy test. The entropy test may include determining a number of data entities in the decrypted data whose values are equal to one another, determining a number of adjacent data entities in the decrypted data whose values are equal to one another, determining a number of data entities in the decrypted data whose values are equal to at least one special value from a set of special values, or determining a sum of n highest data entity value frequencies.
US11580233B1

A system including a baseboard management controller (BMC) and a socket is described. The BMC is configured to provide a management interface to a network device. The socket is configured to accept an edge connector of a removable storage card. The BMC is configured to access via the socket at least a portion of the firmware of the BMC stored on the removable storage card.
US11580229B2

A computer-implemented method includes: receiving system information data representing configurations of digital systems; receiving attack information data associated one or more of the digital systems; analyzing the received system information data and attack information data, to associated attack types; identifying, for each identified attack type, correlations and/or causalities between individual system constituents or combinations thereof in the digital systems associated with attacks; determining and assigning, based on the identified correlations and/or causalities, an attack vulnerability value, for each attack, respectively, to each of the systems and/or systems' constituents and/or combinations thereof; and retrievably storing attack vulnerability values associated with the systems, system constituents and/or combinations thereof.
US11580220B2

Methods, apparatus, systems and articles of manufacture are disclosed for classification of unknown samples using agglomerative clustering. An apparatus includes an extractor to extract a feature from a sample source code, the feature including at least one of a register, a variable, or a library based on a threshold of occurrence in a corpus of samples, the corpus of samples including malware samples, a dendrogram generator to generate a dendrogram based on features extracted from the sample source code, the dendrogram representing a collection of samples clustered based on similarity among the samples, the samples including sample clusters belonging to known malware families, and an anchor point identifier to traverse the dendrogram to identify similarity of an unknown sample to the sample clusters based on a confidence score, and identify anchor point samples from the sample clusters identified as similar to the unknown sample, the anchor point samples to provide metadata for use in extrapolating information to classify the unknown sample.
US11580218B2

Disclosed herein are systems and methods for enabling the automatic detection of executable code from a stream of bytes. In some embodiments, the stream of bytes can be sourced from the hidden areas of files that traditional malware detection solutions ignore. In some embodiments, a machine learning model is trained to detect whether a particular stream of bytes is executable code. Other embodiments described herein disclose systems and methods for automatic feature extraction using a neural network. Given a new file, the systems and methods may preprocess the code to be inputted into a trained neural network. The neural network may be used as a “feature generator” for a malware detection model. Other embodiments herein are directed to systems and methods for identifying, flagging, and/or detecting threat actors which attempt to obtain access to library functions independently.
US11580205B2

A wearable device including a skin sensor and a processor is provided. The processor is configured to receive an authentication data for authenticating a user when a wearing state of the wearable device is adjacent to a skin surface of the user, execute a predetermined function in response to a request when the authentication data matches a pre-stored data and the skin sensor determines that the wearable device does not leave the skin surface after the authentication data is received, and reject or ignore the request when the skin sensor determines that the wearable device leaves the skin surface before the predetermined function is executed. The processor further calculates blood pressures according to PPG signals detected by a PPG sensor of the skin sensor.
US11580204B2

An apparatus may include an ultrasonic sensor system having a first layer stack and a second layer stack. The first layer stack may include a first ultrasonic transmitter and the second layer stack may include a second ultrasonic transmitter. The first layer stack and/or the second layer stack may include an ultrasonic receiver. A frequency splitting layer may reside between the first layer stack and the second layer stack.
US11580202B2

Systems and methods for authenticating identification information are disclosed. For example, a system may include an Automated Teller Machine (ATM). An ATM may comprise a user interface. The user interface may comprise a joystick. The user interface may be configured to receive joystick input from a user. The ATM may comprise at least one memory storing instructions. The ATM may comprise at least one processor configured to execute the instructions to perform operations. The operations may comprise receiving identification information from the user. The operations may comprise receiving the joystick input. The operations may comprise extracting a joystick sequence from the joystick input. When the joystick sequence is within a predetermined threshold from a stored joystick sequence corresponding to the identification information, the operations may comprise authenticating the user for an ATM operation.
US11580197B2

A factor, other than an external factor, having an influence on a state change of a system can be correctly identified even when an external factor having a strong correlation with the state change of the system exists. In an analysis system 1, an external factor identification unit 310 identifies a first explanatory time series among a plurality of explanatory time series. A differential time series generation unit 340 generates a difference time series between a value of an objective time series and a prediction value of the objective time series calculated based on a value of the first explanatory time series. An effect degree calculation unit 420 calculates, based on second explanatory time series among the plurality of explanatory time series and the difference time series, an influence degree of each of the second explanatory time series on a value change of the difference time series.
US11580194B2

An information processing apparatus includes a sparse element detection part, a sparse location weight addition part, a multiplication part, a non-sparse data operation part, and an addition part. The sparse element detection part detects a predetermined sparse element from input data and outputs information about the sparse element. The sparse location weight addition part adds a first weight elements corresponding to the sparse element. The multiplication part multiplies an output of the sparse location weight addition part by the sparse element. The non-sparse data operation part performs an operation on non-sparse elements, each other than the sparse element in the input data. The addition part adds an output of the multiplication part and an output of the non-sparse data operation part.
US11580188B2

The present invention may be a method, a system, and/or a computer program product. An embodiment of the present invention provides a method for paraphrasing, on a client computer, text in a webpage, the method comprising the following: transferring a request for a webpage including a plurality of passages of text to a server; receiving the webpage from the server in response to the request; judging whether or not the received webpage has text which is a subject of paraphrase; in a case where the judgment is positive, paraphrasing the text; and displaying, on a display, the webpage including the paraphrased text. Another embodiment of the present invention provides a method for updating on a server, text in a webpage, the method comprising the following: receiving, from each of the devices, a set of URLs of a webpage, a location path of text which is a subject of paraphrase in the webpage, and paraphrased text; and replacing text in the webpage with text among the received text.
US11580180B2

A system and improved method for managing an individual's job applications and networking processes in a digital, visual manner. In one aspect of the present invention, the platform is realized in the form of a web application with different sections, including one for tracking job applications, one for tracking networking outreach and engagement, and another for seeing tasks from both of those other sections. Data relevant to individual job applications and networking opportunities is stored in each section and displayed in an interactive kanban board-manner to enable them to manipulate their status and stay organized. Additional integrations and features include permitting importing and exporting data to third party servicers, such as job boards, applicant tracking systems, and calendars, and automated movement and prioritization using artificial intelligence/machine learning techniques applied to specific and aggregated data from other users. Machine learning further augments the application by providing additional guidance and data.
US11580173B2

Systems, methods, and non-transitory computer readable media are provided for using linked documents. A system may receive, from a computing device, a request for a document. Content of the document may be defined based on state information and stateless information. A system may determine a local replica of the document in a local database. The local replica of the document may be linked to a primary replica of the document. The local replica of the document may include a snapshot of the primary replica of the document. The primary replica of the document may be stored in a remote database which may be accessible through a remote server. The system may subscribe to the primary replica of the document through the remote server, and may provide access to the document to the computing device based at least in part on the subscription to the primary replica of the document.
US11580172B2

Non-limiting examples of the present disclosure describe creation and management of a contact associated with a document. A contact for a document in a first application may be created. The contact may be used to add content, from a second application, to the document. The contact may be stored. Contact data for the contact may be transmitted to one or more processing devices. An exemplary created contact may be used to transfer content from one or more applications to a document of another application. Other examples are also described.
US11580163B2

A URL and a categorization associated with the URL are received. A key associated with the received URL is determined. An operation is performed on a database using the determined key. Examples of such operations include inserting the categorization into the database, changing a value associated with the key in the database, removing a key-value pair from the database, and querying the database.
US11580161B1

Generally described, one or more aspects of the present application relate to data search system that can facilitate data searches such that the amount of computing resources such as processing power and bandwidth used to generate and output search results is reduced. For example, in response to a search request specifying a set of search criteria, the data search system may identify a combination of sub-criteria, access a pre-generated threshold corresponding to the combination of sub-criteria, determine a real-time index value corresponding to the combination of sub-criteria, identify a plurality of resources that satisfy the set of search criteria, and output a subset of the plurality of resources to the user computing device from which the search request was received.
US11580159B2

Systems and methods for full motion video search are provided. In one aspect, a method includes receiving one or more search terms. The search terms include one or more of a characterization of the amount of man-made features in a video image and a characterization of the amount of natural features in the video image. The method further includes searching a full motion video database based on the one or more search terms.
US11580155B2

A digital image display device for displaying a sequence of digital media assets, the digital media assets including both individual digital still images and groups of related digital still images, comprising a display screen; a processor; and a processor-accessible program memory. The processor-accessible program memory stores executable instructions for causing the processor to execute the steps of: designating a sequence of digital media assets; and sequentially displaying each digital media asset in the sequence of digital media assets on the display screen, wherein if a displayed digital media asset is an individual digital still image it is displayed for a specified display time duration, and if a displayed digital media asset is a group of related digital still images the display time duration is subdivided and each of the digital still images in the group of related digital still images is displayed for a corresponding display time duration fraction.
US11580154B2

Systems and methods for enabling quick access to media options are provided. A display of a plurality of icons is generated, wherein each of the plurality of icons represents a different one of a plurality of applications. A user input is detected that identifies a first of the plurality of icons associated with a first of the plurality of applications. In response to determining that the user input corresponds to a quick access operation, first and second media asset identifiers and corresponding media options are retrieved from each of second and third applications. A menu that includes the retrieved first and second media asset identifiers is generated for display with the plurality of icons.
US11580150B1

Some embodiments may perform operations of a process that includes obtaining a natural language text document and use a machine learning model to generate a set of attributes based on a set of machine-learning-model-generated classifications in the document. The process may include performing hierarchical data extraction operations to populate the attributes, where different machine learning models may be used in sequence. The process may include using a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model augmented with a pooling operation to determine a BERT output via a multi-channel transformer model to generate vectors on a per-sentence level or other per-text-section level. The process may include using a finer-grain model to extract quantitative or categorical values of interest, where the context of the per-sentence level may be retained for the finer-grain model.
US11580149B2

Data analytics systems and methods are disclosed herein. A parser can parse reference data from various data sources to store in a data structure. An uploader can receive study data designated by a researcher and store the study data in the data structure. A matcher can compare analyte nameset data in the study data with analyte nameset data from the reference data to generate one or more links each correlating an instance of an analyte in the study data with an instance of that analyte in the reference data. Library overlays each include one or more modules to access reference data to generate organized associations of reference data. A calculation engine can receive a selection of one or more library overlay(s) and manipulate the reference data and study data according to the organized associations of the selected library overlay(s) to generate configured data stored in a collection of data caches for presentation to a researcher via a user interface.
US11580146B2

A rule storing unit stores a set of rules each defining facts and a relation between the facts, and weights representing importance levels of the rules. An input data storing unit stores input data. A query storing unit stores a query. An importance level calculating unit calculates an importance level of each fact type of the facts defined by the rules. A fact data generating unit generates, for each fact type, fact data in which true/false is observed as a fact by a number corresponding to the importance level of the fact type, from the input data. A fact data storing unit stores the fact data. An inference performing unit performs probabilistic inference of a result of the query by using the fact data, the rules, and the weights. An output unit outputs a result of the inference.
US11580143B1

Techniques for improved data services are provided. Upon receiving a first request from a first client, a first timeline comprising a first plurality of events for an asset indicated in the first request is generated. Upon receiving a second request from a second client, a second timeline comprising a second plurality of events is generated. A first submission for the asset is provided to the first client, comprising updating a first graphical user interface (GUI) output on a first device of the first client. Upon determining that the first client approved the first submission, a merged timeline is generated based on the first and second timelines, where the merged timeline includes the first and second pluralities of events, comprising: updating the first GUI output on the first device, and a second GUI output on a second device of the second client, to indicate the merged timeline.
US11580141B2

Provided are systems and methods for classifying and tagging records in a record management system using information extracted and analyzed from specific areas or regions of records. A specific area or region of the record may be scanned, and the content disposed therein processed against a plurality of classification templates. Based on proximity to the classification templates, the record may be assigned one or more tags corresponding to the classification templates.
US11580136B2

The present disclosure provides a method of user clustering, and the method includes: acquiring a clustering condition for a predetermined user group, wherein the clustering condition includes a time selecting condition and an event selecting condition; determining at least one target time period for each user behavior data in a user behavior database based on the time selecting condition; determining association data indicating a relationship between the each user behavior data and each target time period based on the each user behavior data and the each target time period; and selecting target association data for a time period to be monitored based on the time period to be monitored and the event selecting condition, so as to determine a target user belonging to the predetermined user group according to the target association data. The present disclosure also provides an apparatus of user clustering, a computer device and a non-transitory medium.
US11580135B2

Requests are received for handling by a cloud computing environment which are then executed by the cloud computing environment. While each request is executing, performance metrics associated with the request are monitored. A vector is subsequently generated that encapsulates information associated with the request including the text within the request and the corresponding monitored performance metrics. Each request is then assigned (after it has been executed) to either a normal request cluster or an abnormal request cluster based on which cluster has a nearest mean relative to the corresponding vector. In addition, data can be provided that characterizes requests assigned to the abnormal request cluster. Related apparatus, systems, techniques and articles are also described.
US11580134B1

Source database precommitted transactions are resolved in a target database of a database replication system when selected source database precommitted transactions are subsequently aborted in the source database.
US11580133B2

Methods and systems for cross cluster replication are provided. Exemplary methods include: periodically requesting by a follower cluster history from a leader cluster, the history including at least one operation and sequence number pair, the operation having changed data in a primary shard of the leader cluster; receiving history and a first global checkpoint from the leader cluster; when a difference between the first global checkpoint and a second global checkpoint exceeds a user-defined value, concurrently making multiple additional requests for history from the leader cluster; and when a difference between the first global checkpoint and the second global checkpoint is less than a user-defined value, executing the at least one operation, the at least one operation changing data in a primary shard of the follower cluster, such that an index of the follower cluster replicates an index of the leader cluster.
US11580125B2

A method for accessing information. The information is received by a computer system from sources for distribution to client computer systems. A piece of the information received from the sources without temporal data is identified by the computer system. The temporal data for the piece of the information based on a policy is identified by the computer system. The temporal data is associated with the piece of the information by the computer system, enabling analyzing the information by a client computer system with increased accuracy.
US11580119B2

Systems and methods for automated and explainable machine learning to generate seamlessly actionable insights by generating explainable personas directly from customer relationship management systems are disclosed. The personas are defined as a collection of segments, scored by likelihood to generate good opportunities, accompanied ranked profile attribute importance, with descriptive names and summaries, associated human and database readable queries which have been generated to optimally find cluster candidates in a broader data universe. Such a system would effectively and accurately model the composition of past clients, perform the categorization in an explainable way such that actions can be taken on the information to have predictable results. What is further required are the mean to categorize small text components, trained over dependent and independent model sets, to enable a cleaner and more explicit representation of information rich short-strings, in order to facilitate a more meaningful representation of the user profiles.
US11580109B2

Method and apparatus for stress management in a searchable data service. The searchable data service may provide a searchable index to a backend data store, and an interface to build and query the searchable index, that enables client applications to search for and retrieve locators for stored entities in the backend data store. Embodiments of the searchable data service may implement a distributed stress management mechanism that may provide functionality including, but not limited to, the automated monitoring of critical resources, analysis of resource usage, and decisions on and performance of actions to keep resource usage within comfort zones. In one embodiment, in response to usage of a particular resource being detected as out of the comfort zone on a node, an action may be performed to transfer at least part of the resource usage for the local resource to another node that provides a similar resource.
US11580101B2

The present disclosure provides an apparatus for and method of generating a context category dataset. According to some embodiments, the present disclosure provides a context category dataset generating apparatus and method which predict a context category to which a user-inputted hashtag belongs, receive from the user the user's context category to which the hashtag belongs, and generate and update the context category dataset.
US11580098B2

An example operation may include one or more of identifying a plurality of instances of a blockchain storage request that have been independently submitted by a plurality of clients, respectively, verifying whether execution content of the plurality of instances of the blockchain storage request match, and in response to verifying the match, storing the blockchain storage request within a block among a hash-linked chain of blocks.
US11580096B2

A back-end application computer server may access a potential metadata entries data store containing a set of potential metadata entries, each entry including at least a data element name and a data element definition. A metadata collection system may be executed to automatically populate a metadata template based on the set of potential metadata entries. The system may update entries in the metadata template using a translation tool and validate the updated entries in the metadata template to ensure that required data elements are present. The system may also certify the validated entries load the set of certified metadata entries, including the certified data element names and certified data element definitions, into an enterprise metadata repository data store. Electronic messages may be exchanged to support at least one interactive user interface display associated with certification of the metadata template.
US11580094B2

An audio stream is detected during a communication session with a user. Natural language processing on the audio stream is performed to update a set of attributes by supplementing the set of attributes based on attributes derived from the audio stream. A set of filter values is updated based on the updated set of attributes. The updated set of filter values is used to query a set of databases to obtain datasets. A probabilistic program is executed during the communication session by determining a set of probability parameters characterizing a probability of an anomaly occurring based on the datasets and the set of attributes. A determination is made if whether the probability satisfies a threshold. In response to a determination that the probability satisfies the threshold, a record is updated to identify the communication session to indicate that the threshold is satisfied.
US11580090B2

A system and method are disclosed for the collection and aggregation of data from contributing members of a community, such as health-related, personal, genomic, medical, and other data of interest for individuals and populations. Contributors become members of a community upon creation of an account and providing of data or files. The data is received and processed, such as to analyze, structure, perform quality control, and curate the data. Value or shares in one or more community databases are computed and attributed to each contributing member. The data is controlled to avoid identification or personalization. Steps are taken to determine incompleteness and incorrectness of the data, and the data may be improved or completed automatically, based upon interaction with members, additional contributions of data, and so forth.
US11580088B2

Technologies are described for generating, acquiring, transferring, and manipulating sets of interaction representations, where an interaction representation represents user interaction with content on a computer device, typically using a software application. The set can be represented as an interaction representation. To facilitate set creation, including adding items to a set, a request can be sent to an application to provide an interaction representation, such as an interaction representation of a current state of user-content interaction associated with the software application. Sets can be associated with different types, where the set type can determine whether, and what types, of interaction representations can be added to a set. Sets can be associated with expiration events, where the interaction representation for the set, and in some cases the component interaction representations, can be deleted upon the occurrence of the expiration event. In some cases, a set can be designated not to expire.
US11580080B2

An apparatus and methods are provided to cross-check the reliability of data. Referring to one of the methods, the cross-checking includes receiving a client request containing data in the form of geographic-related information associated with a location. The method also includes determining one or more knowledge providers to determine one or more confidence levels for the data of the client request based on a type of the geographic-related information at the specific location. The method further includes causing the transmission of at least some of the geographic-related information the client request to the one or more knowledge providers. The method still further includes determining one or more confidence levels of the geographic-related information based on a comparison of the geographic-related information and a known resource associated the specific location. A corresponding apparatus and additional method are also provided.
US11580071B2

Embodiments are directed towards managing and tracking item identification of a plurality of items to determine if an item is a new or existing item, where an existing item has been previously processed. In some embodiments, two or more item identifiers may be generated. In one embodiment, generating the two or more item identifiers may include analyzing the item using a small item size characteristic, a compressed item, or for an identifier collision. The two or more item identifiers may be employed to determine if the item is a new or existing item. In one embodiment, the two or more item identifiers may be compared to a record about an existing item to determine if the item is a new or existing item. If the item is an existing item, then the item may be further processed to determine if the existing item has actually changed.
US11580068B2

Systems and methods are provided for analyzing data in one or more datasets, where the one or more datasets are embodied as local, embedded databases in a client-side application, such as a web browser or web browser tab. A client-side data analysis application or artifact may be used to interact, i.e., query, the local, embedded databases, and retrieve results to analyze data. Because the one or more datasets are localized, there is no need to access a remote database/datastore in order to analyze the data. Moreover, the client-side data analysis application or artifact can be executed as individual instances in the client-side application. The state of a local, embedded database may be stored as another file that can be used as a local, embedded database for another instance of the client-side data analysis application or artifact.
US11580066B2

A method of summarizing data files includes implementing, at a server, a storage event for a data file, analyzing the data file and creating a summary of the data file, and storing the summary linked to the data file.
US11580054B2

Described herein are memory controllers for integrated circuits that implement network-on-chip (NoC) to provide access to memory to couple processing cores of the integrated circuit to a memory device. The NoC may be dedicated to service the memory controller and may include one or more routers to facilitate management of the access to the memory controller.
US11580050B2

A user station for a serial bus system. The user station includes a receiver for receiving a signal from a bus of the bus system, and a device for evaluating the reception signal that is output by the receiver. The receiver generates a digital reception signal from the signal received from the bus and to output the signal to the device at a terminal. The device evaluates the digital reception signal with regard to a predetermined communication protocol that establishes when a predetermined communication phase, which indicates a subsequent transfer of useful data in a message, begins and ends. The device reverses the data flow of the digital reception signal to the receiver at the terminal for a time period of at least one bit if the evaluation of the device shows that data at that time are being received from the bus in the predetermined communication phase.
US11580044B2

Implementations of the present disclosure are directed to systems and methods for reducing design complexity and critical path timing challenges of credit return logic. A wide bus supports simultaneous transmission of multiple flits, one per lane of the wide bus. A source device transmitting flits on a wide bus selects from among multiple credit return options to ensure that only one of the multiple flits being simultaneously transmitted includes a credit return value. In some example embodiments, the receiving device checks only the flit of one lane of the wide bus (e.g., lane 0) for credit return data. In other example embodiments, the receiving device uses a bitwise-OR to combine the credit return data of all received flits in a single cycle.
US11580041B2

Enabling a protocol for efficiently and reliably using the NVME protocol over a network, referred to as NVME over Network, or NVMEoN, may include an NVMEoN exchange layer for handling exchanges between initiating and target nodes on a network, a burst transmission protocol that provides guaranteed delivery without duplicate retransmission, and an exchange status block approach to manage state information about exchanges.
US11580039B2

Memory devices, systems and methods are described, such as those including a dynamically configurable channel depth. Devices, systems and methods are described that adjust channel depth based on hardware and/or software requirements. One such device provides for virtual memory operations where a channel depth is adjusted for the same physical memory region responsive to requirements of different memory processes.
US11580027B2

Graphics processors for implementing multi-tile memory management are disclosed. In one embodiment, a graphics processor includes a first graphics device having a local memory, a second graphics device having a local memory, and a graphics driver to provide a single virtual allocation with a common virtual address range to mirror a resource to each local memory of the first and second graphics devices.
US11580026B2

In one embodiment, a system may include a memory unit, a first processing unit configured to write data into a memory region of the memory unit, a second processing unit configured to read data from the memory region, a first control unit configured to control the first processing unit's access to the memory unit and, and a second control unit configured to control the second processing unit's access to the memory unit. The first control unit may be configured to obtain, from the second control unit, a first memory address associated with a data reading process of the second processing unit, receive a write request from the first processing unit, the read request having an associated second memory address, and write data into the memory region based on the write request in response to a determination that the second memory address falls outside of the guarded reading region.
US11580025B1

Systems and methods for coordinated memory-side cache prefetching and dynamic interleaving configuration modification involve modifying one or both of the prefetch distance or the prefetch degree used by prefetcher modules of one or more memory-side caches by modifying interleaving configuration data following detection of an interleaving reconfiguration trigger condition indicative, for example, of low prefetch accuracy, low prefetch coverage, high prefetch lateness, or a combination of these. In response an interleaving reconfiguration trigger condition, a processor modifies the interleaving configuration data for the processing system based on the prefetch performance characteristics associated with the interleaving reconfiguration trigger condition. In some embodiments, the interleaving configuration data is modified by changing which physical memory address indices are used to determine the bits that define the channel identification number to which that physical memory address is to be mapped.
US11580024B2

In described examples, a processor system includes a processor core generating memory transactions, a lower level cache memory with a lower memory controller, and a higher level cache memory with a higher memory controller having a memory pipeline. The higher memory controller is connected to the lower memory controller by a bypass path that skips the memory pipeline. The higher memory controller: determines whether a memory transaction is a bypass write, which is a memory write request indicated not to result in a corresponding write being directed to the higher level cache memory; if the memory transaction is determined a bypass write, determines whether a memory transaction that prevents passing is in the memory pipeline; and if no transaction that prevents passing is determined to be in the memory pipeline, sends the memory transaction to the lower memory controller using the bypass path.
US11580022B2

In one aspect of write sort management in accordance with the present disclosure, a sort/no-sort determination is made prior to issuing to a write command to a target storage controller. The write command identifies a write data unit such track write data, for example, of a first write list of write data units to be written to storage locations of storage. The write command further identifies the storage location at which the write data unit of the first write list is to be stored. In one embodiment, the sort/no-sort determination determines whether an insertion point for an entry in a target write list is to be determined as a function of a write list search such as a logarithmic time search for a write list sort. As a result, the write list search for a write list sort, may be selectively either performed or bypassed for insertion of the target write list entry as a function of the sort/no-sort determination Other aspects and advantages are provided, depending upon the particular application.
US11580020B2

A router device may receive, from a user device, a request for access to a file. The router device may determine that a cached version of the file is stored in a first data structure associated with the router device. The router device may communicate with a server device to determine whether the cached version of the file is current. The server device may be associated with a second data structure that stores a master version of the file. The router device may generate a copy of the cached version of the file based on communicating with the server device. The router device may send the copy of the cached version of the file to the user device.
US11580019B2

Techniques for computer memory management are disclosed herein. In one embodiment, a method includes in response to receiving a request for allocation of memory, determining whether the request is for allocation from a first memory region or a second memory region of the physical memory. The first memory region has first memory subregions of a first size and the second memory region having second memory subregions of a second size larger than the first size of the first memory region. The method further includes in response to determining that the request for allocation of memory is for allocation from the first or second memory region, allocating a portion of the first or second multiple memory subregions of the first or second memory region, respectively, in response to the request.
US11580014B2

A memory device comprises a memory bank comprising a plurality of addressable memory cells, wherein the memory bank is divided into a plurality of segments. Further, the device comprises a cache memory operable for storing a second plurality of data words, wherein each data word of the second plurality of data words is either awaiting write verification associated with the memory bank or is to be re-written into the memory bank. The cache memory is divided into a plurality of primary segments, wherein each primary segment of the cache memory is direct mapped to a corresponding segment of the plurality of segments, wherein each primary segment is sub-divided into a plurality of secondary segments, and wherein each of the plurality of secondary segments comprises at least one counter for tracking a number of entries stored therein.
US11580012B2

Embodiments provide systems, methods, and computer-readable storage media for automated and objective testing of applications or processes. Graphical representations of the application may be analyzed to derive attribute data and identify flows (e.g., possible processing paths that may be accessed during utilization of the application by a user). Test cases may be automatically generated based on the attribute data and the identified flows. Additionally, testing scripts for testing the portions of the application corresponding to each identified flow may be generated using machine learning logic. Once generated, the testing scripts may be executed against the application to test different portions of the application functionality (or processes). Execution of the testing scripts may be monitored to generate feedback used to train the machine learning logic. Reports may be generated based on the monitoring and provided to users to enable the users to resolve any errors encountered during the testing.
US11580009B2

A code development engine can be programmed to evaluate build code that can be representative of program code at an instance of time during or after a software development of the program code to identify and correct coding errors in the build code. A code run-time simulation engine can be programmed to simulate the build code in a modeled program code environment for the program code to identify and correct coding failures in the build code. A build code output module can be programmed to evaluate the build code to determine whether the build code is acceptable for use in a program code environment based on a level of acceptable risk for the build code in response to the coding error and/or coding failure being corrected in the build code.
US11580006B2

A virtual machine that includes a plurality of processes executes on a computer processor. A record-replay file, trace annotations, and an application program interface request are received into the computer processor. The trace annotations and application program interface request are translated into record-replay commands. The record-replay commands capture data from the record-replay file, and the captured data can be accessed via a programmatic interface.
US11580000B2

Systems and methods for estimating a property of an error in a circuit implemented on an n-qubit quantum system are provided, where the circuit comprises a gate set that comprises a first subset () and a second subset () of elementary gates. The first subset comprises a third subset () of elementary gates each of which consists of an n-fold tensor product of a plurality of single qubit gates. A first procedure is executed that comprises preparing the system in a state ψ and then applying D1=T1 to the system. The procedure further comprises, for each respective clock cycle t in clock cycles t∈{2, . . . , m+1}, (a) applying H to the system, where H is an elementary gate in the second subset, and then (b) applying a gate Dt=TtGHTt−1†H† to the system, where Dt is an element of the first subset. The procedure further comprises performing a measurement readout R. The procedure is repeated for one or more values of {right arrow over (T)} or one or more states ψ or one or more measurement readout procedures R, where m is a positive integer greater than 1, G is an element of the first subset of elementary gates, {right arrow over (T)}=(T1, . . . , Tm, Tm+1=I), and T1, . . . , Tm are elements of , with the proviso that n>2.
US11579999B2

A computer-implemented system for dynamic aggregation of data and minimization of data loss is disclosed. The system may be configured to perform instructions for: aggregating information from a plurality of networked systems by collecting a set of data from the networked systems, the set of data comprising data associated with a predetermined period of time and comprising one or more central variables that are included in data associated with more than one networked systems of the plurality of networked systems and one or more associated variables that describe one or more aspects of the central variables; retrieving one or more data transformation rules based on a relational map among the central variables and the associated variables; and aggregating the first set of data into one or more master data structures corresponding to the central variables based on the data transformation rules.
US11579976B2

A method for rebuilding data, comprising: obtaining, from a metadata node, a source file data layout for a source file and a target file data layout for a target file, wherein the source file is associated with a degraded mapped RAID group and the target file is associated with a new mapped RAID group; generating, by the client application node, a plurality of input/output (I/O) requests to read a portion of the data associated with the source file using the source file data layout; obtaining, in response to the plurality of I/O requests, the portion of the data associated with the source file; rebuilding a second portion of the data associated with source file using the portion of the data; and initiating, storage of at least the second portion of the data associated with the source file in the storage pool using the target file data layout.
US11579969B2

A verifying method for an error checking and correcting (ECC) circuit of a static random-access memory (SRAM) is provided. The SRAM comprises a storage unit, an ECC circuit and a checking circuit. The ECC circuit receives an original data and an output first data. The checking circuit obtains a second data according to an error-injecting mask. The checking circuit performs a bit operation on the first data and the second data to obtain a third data. The checking circuit writes the third data into a test target area of the storage unit and the written data as a fourth data. The checking circuit reads the fourth data from the test target area. The ECC circuit obtains a fifth data and an error message according to the fourth data. The checking circuit obtains the bit error detection result according to the error message and the second data.
US11579960B2

The present disclosure provides a chip fault diagnosis method, which includes: determining an interrupt flag of an interrupt flag register based on first data identifying an interrupt state in the interrupt flag register; and determining a fault state of chip interrupt corresponding to the interrupt flag based on the interrupt flag. By adopting the technical solution provided by the present disclosure, a fault of the interrupt can be diagnosed in time, and the interrupt can be processed in time.
US11579957B1

A system includes a plurality of watchdog components. Each watchdog component is configured to receive a kick signal from its monitored function to determine whether the monitored function is active. Each watchdog component is further configured to receive a respective token from all watchdog components that the each watchdog component is connected to. The respective token determines whether its respective watchdog component has timed out. Each watchdog component is further configured to generate a token responsive to the kick signal and further responsive to the respective token from all watchdog component that the each watchdog component is connected to. Each watchdog component is further configured to transmit the generated token to the all watchdog components that the each watchdog component is connected to.
US11579953B2

A method includes, storing a set of valid codewords including: a first valid functional codeword representing a functional state of a controller subsystem; a first valid fault codeword representing a fault state of the controller subsystem and characterized by a minimum hamming distance from the first valid functional codeword; a second valid functional codeword representing a functional state of a controller; and a second valid fault codeword representing a fault state of the controller; in response to detecting functional operation of the controller subsystem, storing the first valid functional codeword in a first memory; in response to detecting a match between contents of the first memory and the first valid functional codeword, outputting the second valid functional codeword; in response to detecting a mismatch between contents of the first memory and every codeword in the first set of valid codewords, outputting the second valid fault codeword.
US11579947B2

A method for use with a computing device. The method may include receiving a data set including a plurality of univariate data points and determining a target kernel bandwidth for a kernel density estimator (KDE). Determining the target kernel bandwidth may include computing a plurality of sample KDEs and selecting the target kernel bandwidth based on the sample KDEs. The method may further include computing the KDE for the data set using the target kernel bandwidth. For one or more tail regions of the data set, the method may further include computing one or more respective tail extensions. The method may further include computing and outputting a renormalized piecewise density estimator that, in each tail region, equals a renormalization of the respective tail extension for that tail region, and, outside the one or more tail regions, equals a renormalization of the KDE.
US11579938B2

The disclosure provides an approach for distribution of functions among data centers of a cloud system that provides function-as-a-service (FaaS). For example, the disclosure provides one or more function distributors configured to receive a request for loading or executing a function, automatically determine an appropriate data center to load or execute the function, and automatically load or execute the function on the determined data center. In certain embodiments, the function distributors are further configured to determine an appropriate data center to provide storage resources for the function and configure the function to utilize the storage resources of the determined data center.
US11579937B1

A data model characterizing a plurality of resources is received. The data model associates a first resource within a first remote computing environment with a first tag and a second resource within a second remote computing environment with a second tag. The data model is received from a database that is separate from the first remote computing environment and the second remote computing environment. The plurality of resources is grouped based on the first tag and the second tag. The grouping can form a first group associated with the first tag and a second group associated with the second tag. A first list of resources characterizing the first group and a second list of resources characterizing the second group is provided. Related apparatus, systems, techniques and articles are also described.
US11579929B2

Disclosed herein are system, method, and computer program product embodiments for configuring a dynamic reassignment of an application flow across different computation layers based on various conditions. An embodiment operates by assigning a first rule of an application flow to a first computation layer of a plurality of computation layers. The embodiment assigns a second rule of the application flow to a second computation layer of the plurality of computation layers. The embodiment assigns a transition rule of the application flow to the first computation layer. The transition rule includes an action that causes the first rule of the application flow to be executed in the second computation layer of the plurality of computation layers based on a condition. The embodiment then transmits the application flow to the plurality of computation layers thereby causing the application flow to be configured for execution.
US11579927B2

An electronic device including an application processor and a communication processor. The communication processor including a resource memory, the communication processor configured to monitor an occupancy rate of the resource memory, determine whether the electronic device is in an idle state, forcibly release a network connection, clear the resource memory, and reconnect the network connection.
US11579923B2

Task delegation and cooperation for automated assistants is presented. A method comprises receiving, at a centralized support center that is in contact with a plurality of automated assistants including a first automated assistant and a second automated assistant, a request to perform a task on behalf of an individual, formulating, at the centralized support center, the task as a plurality of sub-tasks including a first sub-task and a second sub-task, delegating, at the centralized support center, the first sub-task to the first automated assistant, based on a determination at the centralized support center that the first automated assistant is capable of performing the first sub-task, and delegating, at the centralized support center, the second sub-task to the second automated assistant, based on a determination at the centralized support center that the second automated assistant is capable of performing the second sub-task.
US11579919B2

An example operation may include one or more of receiving, by a risk score module, a blockchain transaction proposal, obtaining transaction proposal data, obtaining external data, computing a risk score from the transaction proposal data and the external data, comparing the risk score to a risk score threshold, providing an endorsement decision, based on the comparison, and one of endorsing or rejecting the transaction proposal.
US11579918B2

Techniques for optimizing CPU usage in a host system based on VM guest OS power and performance management are provided. In one embodiment, a hypervisor of the host system can capture information from a VM guest OS that pertains to a target power or performance state set by the guest OS for a vCPU of the VM. The hypervisor can then perform, based on the captured information, one or more actions that align usage of host CPU resources by the vCPU with the target power or performance state.
US11579911B1

Various techniques for emulating edge locations in cloud-based networks are described. An example method includes generating an emulated edge location in a region. The emulated edge location can include one or more first computing resources in the region. A host in the region may launch a virtualized resource a portion of the one or more first computing resources. Output data that was output by the virtualized resource in response to input data can be received and reported to a user device, which may provide a request to migrate the virtualized resource to a non-emulated edge location. The non-emulated edge location may include one or more second computing resources that are connected to the region by an intermediary network. The virtualized resource can be migrated from the first computing resources to at least one second computing resource in the non-emulated edge location.
US11579904B2

In collection of training data for image recognition, in order to support a reduction in collection of improper images which are not suitable as training data, a learning data collection device includes a processor which is configured to acquire a captured image from an image capturing device, determine whether or not the captured image is suitable as training data, and when the captured image is determined to be not suitable as training data, perform a notification operation to prompt an image capturing person to reshoot a new image for the captured image.
US11579898B2

A fingerprint recognition-based synchronous application starting method and device. By providing a sensing unit below a fingerprint recognition area of a display unit, when a user needs to start an application, the user only needs to synchronously click an icon corresponding to an application to be started in the fingerprint recognition area of the screen; the sensing unit acquires fingerprint information of the user, and then compares the acquired fingerprint information with preset fingerprint information, to start the application or perform unlocking. Compared with an existing approach for a mobile apparatus to start an application by means of fingerprint recognition, the method and device improves the operability of application icons on a screen and enhances user experience, and can also effectively reduce the overall thickness of a mobile apparatus, making the mobile apparatus thinner and lighter to meet the market demands.
US11579896B2

Arrangements for autonomously re-initializing one or more applications after a detected change in device state are provided. In some examples, a configuration file may be received from one or more computing devices, such as a server, hosting one or more client-facing applications. In some examples, the configuration file may be modified. For instance, one or more properties or attributes may be modified or added to identify applications that have an always running status and identifying a custom class having automatic start enabled. A modified configuration file may be generated and transmitted to the one or more devices. Accordingly, upon detecting a change of device state (e.g., reboot, refresh, or the like) the modified configuration file may reboot and cause the identified applications to automatically or autonomously re-load, re-initialize and recompile prior to receiving a first request for access from a customer or user device.
US11579873B2

An apparatus is described with support for transactional memory and load/store-exclusive instructions using an exclusive monitor indication to track exclusive access to a given address. In response to a predetermined type of load instruction specifying a load target address, which is executed within a given transaction, any exclusive monitor indication previously set for the load target address is cleared. In response to a load-exclusive instruction, an abort is triggered for a transaction for which the given address is specified as one of its working set of addresses. This helps to maintain mutual exclusion between transactional and non-transactional threads even if there is load speculation in the non-transactional thread.
US11579870B2

A MAC operator includes a plurality of multipliers, a plurality of floating-point to fixed-point converters, an adder tree, an accumulator, and a fixed-point to floating-point converter. Each of the plurality of multipliers may perform a multiplication operation on first data and second data of a single-precision floating-point (FP32) format to output multiplication result data of the FP 32 format. Each of the plurality of floating-point to fixed-point converters may convert the FP 32 format into a fixed-point format. The adder tree may perform a first addition operation on the data of the fixed-point format. The accumulator may perform an accumulation operation on the data output from the adder tree. And the fixed-point to floating-point converter may convert the data of the fixed-point format into data of the FP32 format.
US11579869B2

A device, and a method and a system for editing command sets applied to the device are provided. The system includes an editor installed in a computer device for initiating an editing interface used to edit one or more command sets applied to the device and a writer used to convert the command sets into profiles with a format specified to the device. The command sets are used to form the profiles configured to be written to the device via the writer. The command sets including a set of scripts of commands and input codes specified to the device can be edited through the editor. The device is a computer mouse with multiple keys. The keys can be used to switch the profiles stored in the device, and the command set of the profile being activated is applied to the device for operating the device.
US11579865B2

A vehicle information communication system includes a center apparatus and a vehicle apparatus that includes a group of electronic control units (ECUs) and that sends vehicle configuration information including configuration information on the group of ECUs mounted in the vehicle to the center apparatus via wireless communications. The center apparatus performs a first determination of whether the vehicle configuration information received from the vehicle apparatus matches approved-configuration information registered in an approved-configuration database, and performs a second determination of whether software update data for at least one ECU of the group of ECUs mounted in the vehicle exists in an update database. When both the first and second determinations are true, the center apparatus sends the software update data for at least one ECU of the group of ECUs mounted in the vehicle to the vehicle apparatus via the wireless communications.
US11579864B1

Accelerated behavior change for upgrades in a distributed system is described herein. A method as described herein can include facilitating a file system upgrade of a first computing node of a computing cluster from a first file system version to a second file system version that is newer than the first file system version, wherein the file system upgrade comprises pre-restart operations and a system restart performed subsequent to the pre-restart operations; activating a supervisor system of the first computing node in response to the first computing node completing the file system upgrade; and causing, in response to the activating, the supervisor system of the first computing node to initiate concurrent performance of the pre-restart operations of the file system upgrade at second computing nodes of the computing cluster, distinct from the first computing node.
US11579850B2

Provided is a method for generating web codes for a user interface (UI) based on a generative adversarial network (GAN) and a convolutional neural network (CNN). The method includes steps described below. A mapping relationship between display effects of a HyperText Markup Language (HTML) element and source codes of the HTML element is constructed. A location of an HTML element in an image I is recognized. Complete HTML codes of the image I are generated. The similarity between manually-written HTML codes and the generated complete HTML codes and the similarity between the image I and an image I1 generated by the generated complete HTML codes are obtained. After training, an image-to-HTML-code generation model M is obtained. A to-be-processed UI image is input into the model M so as to obtain corresponding HTML codes. According to the method of the present disclosure, an image-to-HTML-code generation model M can be obtained.
US11579847B2

An example developer tools system provided by a messaging system includes a software development kit (SKD) engagement monitor that permits capturing app open events in third party resources (e.g., third party apps) that use the developer tools system. The SKD engagement monitor is configured to operate in a manner that preserves privacy of the third party developers and avoids conveying to the messaging system backend environment personally identifiable information (PII) about the third party resource usage.
US11579844B2

In an aspect, a processor includes circuitry for iterative refinement approaches, e.g., Newton-Raphson, to evaluating functions, such as square root, reciprocal, and for division. The circuitry includes circuitry for producing an initial approximation; which can include a LookUp Table (LUT). LUT may produce an output that (with implementation-dependent processing) forms an initial approximation of a value, with a number of bits of precision. A limited-precision multiplier multiplies that initial approximation with another value; an output of the limited precision multiplier goes to a full precision multiplier circuit that performs remaining multiplications required for iteration(s) in the particular refinement process being implemented. For example, in division, the output being calculated is for a reciprocal of the divisor. The full-precision multiplier circuit requires a first number of clock cycles to complete, and both the small multiplier and the initial approximation circuitry complete within the first number of clock cycles.
US11579837B2

A system creates an audio profile. The audio profile may be stored in a database. For example, the audio profile may be securely stored in a database of a social network and associated with a user account. The audio profile may contain data describing the way in which the specific user hears and interprets sounds. Systems and applications which present sounds to the user may access the audio profile and modify the sounds presented to the user based on the data in the audio profile to enhance the audio experience for the user.
US11579825B2

An object of the present disclosure is to provide a printing system capable of supporting a plurality of printable areas for one paper size. One embodiment of the present invention is a non-transitory computer readable storage medium storing a program for causing a computer to perform a control method in an information processing apparatus including: first printing control software; and second printing control software that converts first format print data output by the first printing control software into second format print data, and the control method includes: a first creation step of creating raster data based on the first format print data; a medium determination step of performing determination of whether a printing-target medium is a medium that needs a margin larger than a regular size; and a margin insertion step of performing margin insertion processing for raster data created at the first creation step.
US11579815B1

A printing system includes a printing device having a digital front end (DFE) and at least one client device that sends print jobs to the printing device. The DFE stores a device capability file that sets forth device and print options available for the printing device. The print options include a priority value, an option type, a grouping option, a print option icon, and a preview overlay graphic. A copy of the device capability file is made available to a client application on the client device. The client application retrieves all the print information from the device capability file. The client application also presents and previews the print options using the appropriate preview graphic overlay.
US11579807B2

Systems and processes for efficient accessing, storing and transmitting of fixed data elements and dynamic data elements, each having its own native form. The data elements are organized according to a schema, with (a) all fixed data elements stored in their native forms in a fixed memory allocation, and (b) each dynamic data element stored in memory in its own native form, in its own data allocation. With this memory structure, computational overhead of converting data elements from their native forms to JSON, XML or other markup language is avoided, making accessing data (getting), updating data (setting), converting data to a serial stream for transmission or other manipulation (serializing), deserializing, and other manipulations of the data elements much more CPU efficient and requiring less bandwidth.
US11579788B2

Technologies for providing shared memory for accelerator sleds includes an accelerator sled to receive, with a memory controller, a memory access request from an accelerator device to access a region of memory. The request is to identify the region of memory with a logical address. Additionally, the accelerator sled is to determine from a map of logical addresses and associated physical address, the physical address associated with the region of memory. In addition, the accelerator sled is to route the memory access request to a memory device associated with the determined physical address.
US11579785B2

Technologies are provided to ensure integrity of erasure coded data that is subject to read and write access from distributed processes. Multiple processes that access erasure coded data can be coordinated in an efficient, scalable and fault-tolerant manner so that integrity of the original data is maintained. The Technologies include a fault-tolerant access coordination protocol that ensures exclusive write access by a client. The coordination protocol achieves scalability by not relying on centralized components, and achieves efficiency and performance by piggy-packing access coordination messages on operations of the underlying erasure coding protocol.
US11579784B2

Methods, systems, and devices for refresh counters in a memory system are described. In some examples, a memory device may include two or more counters configured to increment a respective count based on refresh operations performed on a memory array. A comparison may be made between two or more of the respective counts, which may include determining a difference between the respective counts or a difference in rate of incrementing. A memory device may transmit an indication to a host device based on determining a difference between counters, and the memory device, the host device, or both, may perform various operations or enter various operational modes based on the determined difference.
US11579783B1

A system, apparatus and product comprising: a multi-tenant layer that comprises shared resources, wherein the shared resources are accessible to multiple tenants of the storage system, wherein the shared resources comprise shared logic resources and shared data resources; and multiple single-tenant layers, wherein each single-tenant layer is associated with a respective tenant of the multiple tenants, wherein each single-tenant layer comprises a database and business logic of the respective tenant, wherein a multi-tenant encryption scheme is configured to enable secure communications with the multiple tenants without divulging sensitive information to the multi-tenant layer.
US11579781B2

Distributed storage nodes having specialized hardware can be pooled for servicing data requests. For example, a distributed storage system can include a group of storage nodes. The distributed storage system can determine a subset of storage nodes that include the specialized hardware based on status information received from the group of storage nodes. The specialized hardware can be preconfigured with specialized functionality. The distributed storage system can then generate a node pool that includes the subset of storage nodes with the specialized hardware. The node pool can be configured to perform the specialized functionality in relation to a data request.
US11579779B2

Disclosed is a computing system which includes a storage device and a host. The storage device may include a nonvolatile memory, and the host may control the storage device based on a physical address of the nonvolatile memory and may send an asynchronous event request command to the storage device. The storage device may monitor the nonvolatile memory and may send an asynchronous event request corresponding to the asynchronous event request command to the host based on the monitoring result. The asynchronous event request may include requesting another command from the host based on the monitoring result. In some aspects, the host may send an erase command for erasing to erase a selected memory block of the nonvolatile memory to the storage device. In response, the storage device may send an erase pass response or an erase delay violation response to the host in response to the erase command.
US11579774B2

Embodiments of the invention provide systems and methods for managing processing, memory, storage, network, and cloud computing to significantly improve the efficiency and performance of processing nodes. More specifically, embodiments of the present invention are directed to an instruction set of an object memory fabric. This object memory fabric instruction set can include trigger instructions defined in metadata for a particular memory object. Each trigger instruction can comprise a single instruction and action based on reference to a specific object to initiate or perform defined actions such as pre-fetching other objects or executing a trigger program.
US11579767B2

The present disclosure provides a content deleting method, a terminal, and a non-transitory computer readable storage medium. The method deleting method includes: acquiring a selected target content in a terminal interface when a content on the terminal interface is in a deletable state; and performing deletion operation on the target content if detecting a preset sliding track aiming at the target content.
US11579748B1

Disclosed are three-dimensional (“3D”) graphical user interface (“GUI”) elements for improving user interactions with a digital environment or a device by simplifying access to different data, functionality, and operations of the digital environment or the device. A 3D GUI element may include first visual information at a first position and second visual information at a second position within the 3D space represented by the 3D GUI element. In response to first input directed to the first visual information, the 3D GUI or system may perform a first action that is mapped to the first input and the first visual information within the 3D GUI element. In response to second input directed to the second visual information, the 3D GUI or system may perform a second action that is mapped to the second input and the second visual information within the 3D GUI element.
US11579747B1

A head-worn device system includes one or more cameras, one or more display devices and one or more processors. The system also includes a memory storing instructions that, when executed by the one or more processors, configure the system to generate a virtual object, generate a virtual object collider for the virtual object, determine a conic collider for the virtual object, provide the virtual object to a user, detect a landmark on the user's hand in the real-world, generate a landmark collider for the landmark, and determine a selection of the first virtual object by the user based on detecting a collision between the landmark collider with the conic collider and with the virtual object collider.
US11579744B2

The embodiments described herein provide technologies and techniques for using available data (from a variety of data sources) to provide an integrated and virtual reality experience. Embodiments described herein include systems and methods for acquiring flight information, wherein the flight information includes at least one of seating information regarding layout and availability of seats from one or more data sources, providing the flight information in a virtual reality environment, receiving, from a virtual reality device, a user's movements of an avatar in the virtual reality environment, wherein the avatar represents an individual having pre-stored information, determining, in the virtual reality environment, a position of the avatar with respect to a first seat zone surrounding a first available seat, and assigning the avatar to the first available seat in response to the virtual reality computing system receiving a deliver command when the avatar is in vicinity of the first seat zone surrounding the first available seat.
US11579743B2

Described herein are methods, systems and computer products for supporting user interactive actions in workflows integrating multiple disparate web applications by adding (embedding) one or more User Interface (UI) elements in one or more webpages of one or more web applications and linking them with respective workflows. Users visiting these webpages may engage with the added UI elements to interact with the linked workflows. Further described are methods, systems and computer products for enhancing performance of one or more workflows integrating multiple disparate web applications by adjusting the workflows to asynchronously initiate actions which are independent of each other such that the independent actions are executed simultaneously.
US11579742B2

The present disclosure provides a frame, a display device and a display apparatus. The frame includes at least two frame assemblies. The frame assemblies in different directions are spliced through an adapter, an infrared lamp strip is installed on the frame assembly, the adapter is provided with a bunching member, and a connection line for the infrared lamp strip is bunched around the bunching member when the frame assemblies in different directions are spliced.
US11579741B2

An electronic apparatus includes a display module divided into a first non-folding area, a folding area foldable along an imaginary folding axis extending in a second direction crossing a first direction, and a second non-folding area, which are sequentially arranged in the first direction, and a sensing sensor including a first base layer disposed under the display module, first sensing coils disposed on the first base layer, second sensing coils insulated from the first sensing coils, and a first cover layer disposed between the first sensing coils and the second sensing coils. The first cover layer has a modulus less than a modulus of the first base layer.
US11579737B2

A touch substrate, including: a base substrate; a plurality of touch electrodes arranged in a touch area on the base substrate; a plurality of touch signal lines, a ground line, an antistatic member and an electrostatic protection component arranged in a peripheral area on the base substrate, the plurality of touch signal lines are respectively electrically connected to the plurality of touch electrodes, the ground line is located on a side of the plurality of touch signal lines away from the touch area, the antistatic member is located on a side of the ground line away from the touch area, an end of the electrostatic protection component away from the touch area is in contact with the antistatic member, and an orthographic projection of the electrostatic protection component on the base substrate covers an orthographic projection of each of the antistatic member and the ground line on the base substrate.
US11579735B2

The invention provides a touch electrode layer and a touch display device, including a first electrode and a second electrode. The first electrode has a first electrode stem and a plurality of first electrode branches arranged obliquely along the first electrode stem. The second electrode has a second electrode stem and a plurality of second electrode branches arranged obliquely along the second electrode stem. The first electrode and the second electrode are arranged in a symmetrical structure, and inclination angles of the first electrode branches and the second electrode branches are same. In a touch electrode unit, shape and size of the first electrode and the second electrode are almost same, and shape and size of the first electrode branches and the second electrode branches that are staggered are also almost the same.
US11579734B2

A touch sensor including a base layer including a sensing area and a non-sensing area, first and second sensor patterns disposed in the sensing area and arranged along first and second directions, respectively, first bridge patterns arranged along the first direction, second bridge patterns arranged along the second direction, and sensing lines disposed in the non-sensing area and connected to each of the first and second sensor patterns, in which each of the sensing lines includes a first metal layer and a second metal layer with an insulating layer interposed therebetween, each of the sensing lines has a first portion and a second portion, the second portion corresponding to at least one of the first bridge patterns disposed at a corner portion of the sensing area, and the second portion of at least one of the sensing lines has a single layer structure including only the second metal layer.
US11579724B2

A touch-sensing module includes a sensing unit, an optical unit, a flexible circuit unit, and a transparent cover. The transparent cover is disposed on the optical unit. The sensing unit, the optical unit, and the transparent cover define an accommodating space. A connecting space is defined between the transparent cover and the flexible circuit unit. A fixing layer is disposed in the connecting space to connect the transparent cover and the flexible circuit unit.
US11579723B2

A touch apparatus according to an exemplary embodiment of the present invention includes: a touch sensor; and a touch controller that operates in a resonance driving mode during which a first driving signal is output for generation of a resonance signal of a stylus pen to the touch sensor and an idle mode during which the driving signal output to the touch sensor is stopped, and obtains first touch coordinate information from a detection signal input from the touch sensor during the resonance driving mode.
US11579721B2

A device includes a touch-sensitive display, one or more processors, and memory storing one or more programs including instructions for receiving data from an external device representing user input received over a duration of time at the external device. The programs may include instructions for determining whether the electronic device is actively executing an application for playback. The programs may further include instructions for in accordance with a determination that the electronic device is not actively executing an application for playback: displaying an indication of the receiving of the data; and displaying an affordance, wherein the affordance when selected launches the application for playback and causes the electronic device to playback the received data according to the duration of time of the user input.
US11579719B2

Disclosed are a display device with integrated touch screen and a method of manufacturing the same, which prevent the partial detachment of an organic layer. The display device includes a light emitting device layer including a first electrode disposed on a first substrate, a light emitting layer disposed on the first electrode, and a second electrode disposed on the light emitting layer and a touch sensing layer disposed on the light emitting device layer. The touch sensing layer includes a first touch electrode layer, a second touch electrode layer, and a touch insulation layer disposed therebetween, and the touch insulation layer includes a touch inorganic layer covering the second touch electrode layer and a touch organic layer disposed on the touch inorganic layer.
US11579707B2

A shelf bracket is provided. The shelf bracket includes a shelf member and opposing side flanges extending from a back plate. A front flange extends from each of said opposing side flanges. The back plate, shelf member, side flange, and front flange define a cavity configured to receive an enclosure, such as by moving the enclosure in a vertical direction in and out of engagement with the cavity. The shelf member defines a bottom limit of the cavity such that movement of the enclosure into the cavity is limited to a first vertical direction and movement of the enclosure out of the cavity is limited to a second vertical direction, the second vertical direction being diametrically opposed to the first vertical direction. A support flange is optionally included, which is configured to engage with a support structure so as to provide support for the shelf bracket.
US11579697B2

The embodiments of the present invention enable novel methods, non-transitory mediums, and systems for encoding and generating haptic effects. According to the various embodiments, a media object is retrieved. The media object is analyzed to determine one or more time periods for rendering haptic effects. The haptic effects for rendering during the time periods are determined. The haptic effects are encoded as a haptic effect pattern that identifies a start time and duration for each of the haptic effects.
US11579684B1

A method for an augmented reality goal assistant is described. The method includes detecting an object associated with a behavioral goal of a user. The method also includes altering an appearance of the object based on the behavioral goal of the user. The method further includes displaying the altered appearance of a detected object on an augmented reality headset, such that the altered appearance of the detected object is modified based on the behavioral goal of the user.
US11579679B2

Computing devices and methods for determining opening and closing of touch sensitive interfaces are disclosed. In one example, a computing device comprises a touch screen display on a first substrate that is rotatably coupled to a second substrate that includes a trackpad. A trackpad identification signal transmitted by the trackpad is received at the touch screen display, and a touch screen identification signal transmitted by the touch screen is received at the trackpad. If the trackpad identification signal matches a trackpad identification key and the touch screen identification signal matches a touch screen identification key, then an energy level of one or both signals is compared to an energy level threshold. Based at least in part on the comparison of the energy level to the threshold, a power state transition is initiated.
US11579673B2

A system and method for logging state data from a power system control device on a computer system is disclosed. The computer system includes a power system supplying power to the computer system. The power system has a power-up sequence having a plurality of stages. The power system control device is coupled to the power system. The power system control device includes a finite state machine circuit having states corresponding to the stages of the power-up sequence. The control device also has a write controller, a storage buffer, and a communication interface. The write controller writes the state of the finite state machine circuit in the storage buffer. An external controller is coupled to the communication interface and is operable to read the stored state data.
US11579672B1

The disclosed computing device may include electronic components, at least one of which is a processor. The computing device may also include a heat sink thermally coupled to the electronic components, as well as a temperature sensor that determines the current temperature inside the computing device. The computing device may further include a controller. The processor may generate a load schedule for the electronic components based on the current temperature inside the computing device. This load schedule ensures that a maximum temperature for the heat sink is not exceeded even when the total system power load exceeds, for a short period of time, the maximum sustainable power level the heat sink can dissipate. The controller may then load the electronic components according to the generated load schedule. Various other methods, systems, and computer-readable media are also disclosed.
US11579669B2

A memory module assisting in efficient heat dissipation includes a motherboard, a plurality of fixing devices, a plurality of memory cards, and a plurality of dummy memory cards. The fixing devices are fixed on the motherboard side by side. The memory cards are fixed on some of the fixing devices as necessary, and the dummy memory cards are fixed on the remaining fixing devices which are vacant. The dummy memory cards inserted into the vacant fixing devices prevent the flow of air through the space above the vacant fixing devices. An electronic device including the memory module is also disclosed.
US11579664B2

An electronic apparatus includes a display panel including a front surface and a rear surface opposite to the front surface, a lower panel having an opening portion defined therein, a fingerprint sensor including an upper portion, a lower portion, and a lateral portion, the sensor being in the opening portion with a space from a side wall of the opening portion, and an adhesive portion to bond the fingerprint sensor to the display panel. The adhesive portion includes a first adhesive portion between the rear surface of the display panel and the upper portion of the fingerprint sensor and a second adhesive portion around at least a portion of the lateral portion of the fingerprint sensor, and a minimum width and a minimum thickness of the second adhesive portion are each at least ½ of a thickness of the fingerprint sensor.
US11579660B2

A secondary display may be integrated into a form factor of an information handling system having a primary display in a manner that synchronizes movement of the secondary display with the primary display. The secondary display may move from a closed position to an open position along with moving of a primary display from a closed to an open position. A rack and pinion mechanism may synchronize the secondary display with the primary display through a first and second primary pinion coupling a primary shaft of the primary display to a rack. A secondary pinion may couple a secondary shaft of the secondary display to the rack. Movement of the secondary display may be synchronized with movement of the primary display through the rack and pinions.
US11579658B2

A display device including a display module including a first non-folding area, a second non-folding area, and a folding area disposed between the first and second non-folding areas, a first support part disposed below the first non-folding area, a second support part disposed below the second non-folding area, a hinge part disposed below the folding area, a sheet part disposed between the folding area and the hinge part, and a support plate disposed between the sheet part and the hinge part, the support plate having a plurality of openings overlapping a portion of the hinge part in a plan view.
US11579655B2

In example implementations, an electronic device housing is provided. The electronic device housing includes a display housing, a lifting mechanism, abase housing, and a secondary display. The lifting mechanism is coupled to a side of the display housing. The base housing is coupled to the display housing. The secondary display is coupled to a distal side of the base housing. The lifting mechanism is to lift the secondary display on a rotation of the display housing.
US11579636B2

A system and method for controlling operations of a fluid distribution may include a first manifold receiving a next mode of operation for the fluid distribution system. The first manifold may calculate first and second flow requirements for the first and second manifolds that may respectively include a first and second total flowrates from the first and second manifolds. The first manifold may determine required operation states for valves of the first manifold and the second manifold for the next mode based on the first and second flow requirements. The first manifold may be controllably operated to cause the second manifold and a supply device of the fluid distribution system to operate in the required operation states and provide first and second flow requirements. The first manifold may direct the second manifold to independently balance individual outlet flowrates of the second manifold while continuing to provide the second flow requirements.
US11579634B1

An irrigation controller is disclosed together with associated methods and computer program products. User input specifying a requested start time may be received. A total desired watering time may be calculated. A total permissible watering time may be calculated. The start time may be moved back relative to the requested start time in response to determining that the total permissible watering time is less than the total desired watering time.
US11579631B1

Provided is a navigation system for a leader vehicle leading follower vehicles, including: the leader vehicle, configured to transmit, real-time movement data to follower vehicles; and, the follower vehicles, each comprising: a signal receiver for receiving the data from the leader vehicle; sensors configured to detect at least one maneuverability condition; a memory; a vehicle maneuver controller; a distance sensor; and a processor configured to: determine a route for navigating the local follower vehicle from an initial location; determine a preferred range of distances from the vehicle in front of the respective follower vehicle that the respective follower vehicle should stay within; determine a set of active maneuvering instructions for the respective follower vehicle based on at least a portion of the data received from the guiding vehicle; determine a lag in control commands; and, execute the set of active maneuvering instructions in the respective follower vehicle.
US11579630B2

Systems and methods of the present disclosure leverage distributed ledger technology (DLT) to provide decentralized control of cooperative tasks performed by a plurality of robots. Characteristics of the plurality of robots may be stored in a distribute ledger, which may be provided by a blockchain or a distributed database system. When a service request is received, a set of tasks may be identified for providing the requested service and the robot characteristics recorded to the distributed ledger may be used to identify a list of candidate robots possessing characteristics corresponding to the set of tasks may be identified. A smart contract may be utilized to select one or more candidate robots for performing the task and to verify the selected robot(s) successfully completed the task. State information associated with operation of the selected robot(s) may be monitored to verify task completion.
US11579624B2

The present disclosure provides an autonomous mobile apparatus and a control method thereof. The method includes: starting a SLAM mode; obtaining first image data captured by a first camera; extracting a first tag image of positioning tag(s) from the first image data; calculating a three-dimensional camera coordinate of feature points of the positioning tag(s) in a first camera coordinate system of the first camera based on the first tag image; calculating a three-dimensional world coordinate of the feature points of the positioning tag(s) in a world coordinate system based on a first camera pose of the first camera when obtaining the first image data in the world coordinate system and the three-dimensional camera coordinate; and generating a map file based on the three-dimensional world coordinate of the feature points of the positioning tag(s).
US11579620B2

A method docks an autonomous mobile green area maintenance robot to a docking station. An electrical conductor arrangement runs in the region of the docking station, wherein the conductor arrangement is designed such that a periodic current flows through the conductor arrangement, wherein the current generates a periodic magnetic field. The green area maintenance robot has two magnetic field sensors, wherein the two magnetic field sensors are designed such that the magnetic field respectively causes a periodic sensor signal in the magnetic field sensors. The method has the steps of: determining a phase shift between the two sensor signals or signals based on the sensor signals, and controlling movement of the green area maintenance robot for docking on the basis of the determined phase shift.
US11579618B2

Systems and techniques for generating a set of connected segments for a device or system to traverse in order to reach every point of the region (a coverage plan). Nodes defining the region to be traversed define a polygon. The polygon is decomposed into a mesh and a graph of the mesh is generated. The graph may be used to determine a longest funneled path which, in turn, may be used to either optimize for a longest path or to divide the polygon for eroding sides. The longest path and/or erosions are used to define a set of segments. The segments are connected, which in some examples is done via an optimization to minimize an amount of time or energy to traverse all segments and connections. The resultant coverage plan is sent to a system configured to receive the plan and traverse the region.
US11579614B2

A set of input conditions is obtained. A plurality of potential decisions is obtained based at least in part on the set of input conditions. A rule-based system is used to process the plurality of potential decisions and obtain a set of one or more updated potential decisions, wherein: the rule-based system specifies a plurality of rules; a rule specifies a rule condition and a corresponding action, wherein when the rule condition is met, the corresponding action is to be performed; and using the rule-based system to process the plurality of potential decisions includes: for a selected potential decision in the plurality of potential decisions, determining whether the rule condition is met for a selected rule among the plurality of rules, wherein the selected rule condition is dependent on, at least in part, the selected potential decision; and in response to the selected rule condition being met, performing the corresponding action. The set of one or more updated potential decisions to be executed is output.
US11579600B2

An estimation apparatus 1 includes: a normal index estimation unit 2 configured to estimate, using a second variable output by a second component 21 that influences a first variable output by a first component 21, an index A indicating that the first variable is achieved at a normal time; and an abnormality propagation information estimation unit 3 configured to estimate abnormality propagation information expressing an index indicating that an abnormality propagates to a third variable output by a third component 21 influenced by the first component 21, by changing the first variable.
US11579599B2

A system managing a polishing state of tips of a welding gun of each welding robot installed in a production line of a vehicle includes: a robot controller storing tip polishing data including the number of polishing of the tips and a polishing amount of the tips generated after each tip dressing of the welding gun; and a server collecting the tip polishing data from the robot controller to store the collected data according to robot identification information of the robot and learning the store data through artificial neural network to generate reference data determining the polishing state of the tips corresponding to the robot identification information. The robot controller sets artificial neural network of the robot based on the reference data and determines whether a polishing state of the tips according to the number of polishing and the polishing amount of the tips is normal.
US11579598B2

A system for controlling an operation of a machine including a plurality of actuators assisting one or multiple tools to perform one or multiple tasks, in response to receiving an acoustic mixture of signals generated by the tool performing a task and by the plurality of actuators actuating the tool, submit the acoustic mixture of signals into a neural network trained to separate from the acoustic mixture a signal generated by the tool performing the task from signals generated by the actuators actuating the tool to extract the signal generated by the tool performing the task from the acoustic mixture of signals, analyze the extracted signal to produce a state of performance of the task, and execute a control action selected according to the state of performance of the task.
US11579590B2

A mobile work machine includes a wireless communication system configured to receive a wireless communication signal from a transmitter corresponding to a machine component on the mobile work machine, machine component identification logic configured to obtain a machine component identifier, that uniquely identifies the machine component, based on the wireless communication signal, operation detection logic configured to detect a machine operation associated with the machine component and to generate component performance data correlated to the machine component based on the machine operation, and control signal generator logic configured to generate a control signal that controls the mobile work machine based on the component performance data.
US11579588B2

Methods, systems, and computer-readable storage media for receiving a time-series of data values associated with a plurality of sensors, each sensor generating at least a portion of the time-series of a respective data value, providing a plurality of auto-regression models, each auto-regression model being provided based on a respective first sub-set of the time-series of data values used as input, and a respective second sub-set of the time-series of data values used as training data during a training process, receiving respective data values associated with a time from and generated by each of the plurality of sensors, determining respective predicted values for each of the auto-regression models, and selectively indicating that an anomaly is present in the system based on respective predicted values for each of the auto-regression models, and the respective data values associated with a time.
US11579587B2

An automatic program-correction device includes: a clearance detecting unit that detects an amount of clearance between a robot and a peripheral device in an operation program; a near-miss detecting unit that detects a near-miss section; a closest-point detecting unit that detects a pair of closest points, in the near-miss section; and a program updating unit that generates a new operation program having an intermediate teaching point to which the closest points have been moved, along a straight line passing through the detected pair of closest points, until the amount of clearance becomes greater than a minimum amount of clearance and equal to or less than the threshold. While gradually reducing, from the threshold, the amount of clearance at the intermediate teaching point, the program updating unit obtains an intermediate teaching point that provides a maximum amount of clearance at which a new near-miss section is not detected.
US11579582B2

A tool for validating a wire-electric-discharge-machining (wEDM) operation to be performed using a wEDM machine comprises a body including an engagement feature shaped to removably hold a validation coupon to be machined in the wEDM operation, the validation coupon sized larger than a size of a cut-out to be made in a part using the wEDM machine. A method of manufacturing the tool and a wEDM machine assembly are also provided.
US11579581B2

Provided are a server for maintenance, a remote monitoring system, and a remote monitoring method. The server is connected, via a network, to a plurality of working machines each including a working machine display device that displays machine state information and a working machine operating device to be used for predetermined operation, and to a monitoring terminal that includes a display part and remotely monitors information on the working machines. Communication between each of the plurality of working machines and the server is one-way communication from the working machines to the server. The server includes a first storage part, a second storage part, and a display processing part. The display processing part generates a display part simulated image, and causes the display part of the monitoring terminal to display a maintenance screen including the display part simulated image.
US11579575B2

Described herein are systems and methods for inverse reinforcement learning to leverage the benefits of model-based optimization method and model-free learning method. Embodiments of a framework combining human behavior model with model predictive control are presented. The framework takes advantage of feature identification capability of a neural network to determine the reward function of model predictive control. Furthermore, embodiments of the present approach are implemented to solve the practical autonomous driving longitudinal control problem with simultaneous preference on safe execution and passenger comfort.
US11579568B2

A horological setting and/or adjustment mechanism, including a setting and/or adjustment module (400) for a horological setting machine (1000), for making a setting and/or adjustment on a horological assembly (1), including an elastic clamp (600) with clamp arms (601) arranged to drive or deform a mobile component or a component of this assembly (1), the clamp (600) including a bearing portion (602) subjected to the action of an actuator, spindle (407), eccentric or push-piece, any deformation of this bearing portion (602) modifying the relative mutual position of the arms (601), and this setting and/or adjustment module (400) includes setting and/or adjustment means which include a plurality of motorised axes which are arranged to move, open and close, in a plane perpendicular to a clamp rotation direction (DF), a said clamp (600).
US11579563B2

A process cartridge is detachably mountable to a main assembly of an electrophotographic image forming apparatus. The cartridge includes an electrophotographic photosensitive drum, a developing roller, a drum unit containing the drum, a developing unit containing the roller and being movable so the roller contacts and is spaced from the drum, and a first force receiver receiving a force from a main-assembly first force applier by movement of a door from open to closed positions when mounting the cartridge and a second force receiver movable from a stand-by position by movement of the first force receiver by a force received from the first force applier. The second force receiver takes a projected position receiving a force from the second force applier to move the developing unit so the roller moves out of contact with the drum, the projected position being higher than the stand-by position.
US11579562B2

An image-forming apparatus includes: a main body; a toner cartridge having a first opening; a process cartridge having a photosensitive drum and a second opening; a positioning part; a transfer unit; and an urging member. The toner cartridge and process cartridge are attachable to and detachable from the main body in an axial direction of the photosensitive drum. The positioning part and transfer unit are positioned above the process cartridge attached to the main body. The positioning part fixes the attached process cartridge in position relative to the main body. The urging member urges the attached process cartridge toward the positioning part and urges the process cartridge such that the toner can be supplied from the toner cartridge to the process cartridge through the first opening and the second opening when the toner cartridge and the process cartridge are attached to the main body.
US11579558B2

An image forming apparatus includes a housing having an opening, a cover movable between an open position and a closed position, a first photoconductive drum and a second photoconductive drum, a first exposing head having a first boss and rotatably coupled to the cover, a second exposing head having a second boss and rotatably coupled to the cover, and a cam rotatably coupled to each of the first exposing head and the second exposing head. The cam is configured to rotate each of the first exposing head and the second exposing head. The cam includes (i) a first elongated hole into which the first boss fits and extending a direction intersecting a movement direction in which the cam moves and (ii) a second elongated hole into which the second boss fits and extending in a direction intersecting the movement direction of the cam.
US11579548B2

According to one embodiment, a temperature control apparatus supplies power to a heater to control temperature of a temperature control target. The temperature control apparatus includes a temperature estimation unit to estimate a temperature of a temperature control target based on electrical power supplied to the heater. The temperature control apparatus also includes control signal generation unit that calculates a duty value for the heater based on an estimated temperature from the temperature estimation unit, a detected temperature from a temperature sensor, and a target temperature for the temperature control target. A pulse signal for controlling the electrical power supplied to the heater is generated based on the calculated duty value.
US11579543B2

A developer cartridge may include: a first gear having a small-diameter gear portion and a large-diameter gear portion; and a second gear including: a first columnar portion centered on a second axis; a second columnar portion having a smaller diameter than the first columnar portion; a first engagement portion extending along a portion of a peripheral surface of the first columnar portion and engageable with the small-diameter gear portion; a second engagement portion extending along a portion of a peripheral surface of the second columnar portion and positioned closer to a housing than the first engagement portion in an axial direction and engageable with the large-diameter gear portion; and a protruding portion protruding in the axial direction and rotatable together with the first engagement portion and the second engagement portion. The second engagement portion may engage the large-diameter gear portion after the first engagement portion engages the small-diameter gear portion.
US11579542B2

An image forming apparatus includes: a toner cartridge; a drum cartridge to which the toner cartridge is attachable; and a controller. The toner cartridge is configured to accommodate toner therein. The toner cartridge includes a toner memory. The drum cartridge includes: a photosensitive drum; and a drum memory. The controller is configured to perform: a first determination process to determine whether communication with the drum memory is established; and after determining in the first determination process that the communication with the drum memory is established, a second determination process to determine whether communication with the toner memory is established.
US11579538B2

A storage apparatus for storing an object includes a load port unit that a receptacle is loaded onto or unloaded from, in which the receptacle accommodates the object in a storage space formed by a body and a cover that covers the body, and a controller. The load port unit includes a housing having an interior space, a stage member that is provided on the housing and that opens the storage space by moving the body, the receptacle being seated on the stage member, and an exhaust tube that evacuates a spacing space between the body and the cover spaced apart from each other. One end of the exhaust tube faces toward the spacing space, and an opposite end of the exhaust tube faces toward the interior space.
US11579530B2

[Problem] To provide a negative type photosensitive composition which can be developed with a low-concentration developer. [Means for Solution] A negative type photosensitive composition comprising (I) an alkali-soluble resin having a carboxyl group, (II) a polymerization initiator, (III) a compound containing two or more (meth)acryloyloxy groups, and (IV) a solvent, wherein the content of the compound containing two or more (meth)acryloyloxy groups is 40 to 300 mass % based on the total mass of the alkali-soluble resin.
US11579529B2

A positive resist composition is provided comprising two onium salts, a base polymer comprising acid labile group-containing recurring units, and an organic solvent. The positive resist composition forms a pattern having PED stability and improved properties including DOF, LWR, and controlled footing profile.
US11579523B2

A method for manufacturing glass-based micro- and nanostructure comprising the step of dewetting a thin-film glass layer on a textured substrate to form the micro- and nanostructure from the thin-film glass layer.
US11579511B2

A device is provided. The device includes a first lens assembly controllable to switch between a first plurality of optical powers. The first lens assembly includes a plurality of directly optically coupled lenses, and is configured to converge or diverge a light transmitted therethrough. The device also includes a second lens assembly coupled with the first lens assembly, and controllable to switch between a second plurality of optical powers that are opposite to the first plurality of optical powers.
US11579510B2

A variable light transmission device has at least one layer of electrophoretic medium comprising charged particles. Application of a an electric field having a waveform formed by a superposition of a carrier and a modulator waveform enables the switching of the device from a closed state to an open state, wherein the open state has higher light transmission than the closed state. As a result, the device enables the selection of the desired optical state by the user.
US11579507B2

A method for producing a cholesteric liquid crystal layer is a method that can produce a cholesteric liquid crystal layer whose reflection surface is not parallel to a substrate surface by a simple method. The method includes: a step 1 of forming a composition layer satisfying a condition 1, a condition 2, or a condition 3 on a substrate, using a liquid crystal composition including a liquid crystal compound; and a step 2 of subjecting the composition layer to a treatment for cholesterically aligning the liquid crystal compound in the composition layer to form a cholesteric liquid crystal layer.
US11579502B2

The present disclosure relates to a display device. A display device according to an embodiment of the present inventive concept includes gate lines extending along a first direction, data lines extending along a second direction, pixels including pixel electrodes, each of the pixels including a transistor connected to a gate line and a data line, and a pixel electrode connected to the transistor, the pixels including a first pixel which includes a first pixel electrode connected to a first data line and is disposed in nth pixel row and mth pixel column, and a second pixel which includes a second pixel electrode connected to the first data line or a second data line disposed adjacent to the first data line and is disposed in (n+1)th pixel row and the mth pixel column. The first data line does not overlap the first pixel electrode and overlaps the second pixel electrode.
US11579494B2

A switchable glass panel, a method of forming switchable glass panel and a method of forming switchable glass are provided. The method includes: forming a first electrode layer and a first alignment layer sequentially on a first substrate, and forming a second electrode layer and a second alignment layer sequentially on a second substrate; forming first sealants distributed along a first direction, second sealants distributed along a second direction and an edge sealant at the edge of the first alignment layer on the first alignment layer, where the first sealants and the second sealants form a grid with a plurality of openings; forming a plurality of liquid crystal layers corresponding to the plurality of openings on the second alignment layer; and oppositely arranging the first substrate and the second substrate to form a cell, and curing the first sealants and the second sealants.
US11579490B2

The embodiments of the application provide a backlight module and a displaying device, relating to the technical field of display. The backlight module comprises a first support structure, an optical film material and a buffer structure; the first support structure is arranged on a side away from a light-outgoing side of the optical film material, and the first support structure and the optical film material have a through-hole; the buffer structure comprises a first buffer portion arranged in the through-hole, and a rigidity of the first buffer portion is less than a rigidity of the first support structure. The backlight module is internally provided with the buffer structure, and the first buffer portion in the buffer structure is arranged in the through-hole that penetrates through the first support structure and the optical film material.
US11579488B2

A light flux controlling member includes n incidence units for allowing incidence of light emitted from n light emitting elements, respectively; an emission unit disposed between the n incidence units and allowing emission of the light incident on the n incidence units while guiding the light; and a plurality of legs. Each incidence unit includes an incidence surface and a reflection surface reflecting, in a direction along the substrate, the light incident on the incidence surface. The emission unit includes a first emission surface emitting a part of the light from the incidence unit, and a second emission surface disposed so as to face away from the first emission surface and emitting another part of the light from the incidence unit. Each leg is disposed at a position satisfying a predetermined condition.
US11579485B2

A white light emitting device, including a circuit board; a plurality of light sources mounted on the circuit board, each light source of the plurality of light sources configured to emit monochromatic light; a light converter spaced apart from the circuit board, the light converter configured to convert the monochromatic light emitted from the light sources to white light; and a compensator provided between the circuit board and the light converter, the compensator configured to convert the emitted monochromatic light to white light.
US11579480B2

According to one embodiment, a display device includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a base, a sensor and a sensor circuit. The sensor is interposed between the base and the liquid crystal layer in a display area including pixels. The sensor outputs a sensing signal corresponding to light incident from alongside the liquid crystal layer. The sensor circuit includes a plurality of switching elements. The pixels include first to third sub-pixels. At least some of elements of the switching elements are arranged in each of areas where the first to third sub-pixels are arranged. A signal line for the sensor, which outputs the sensing signal, is placed on a same layer as a feeding line connected to the sensor.
US11579475B2

A method of controlling a display apparatus includes: when the display apparatus is in a privacy display mode, obtaining, by an image processor, a plurality of frames of display images according to a frame of original image, transmitting, by the image processor, the plurality of frames of images to a display controller; controlling, by the display controller, the display panel to display the plurality of frames of display images in sequence within a display time of the frame of original image, and controlling, by the display controller, the grating panel to form light-transmitting regions and non-light-transmitting regions that are alternately arranged when the display panel displays each frame of display image, so as to limit an exit angle of light exiting from the display side of the display apparatus, the exit angle being within a range of a privacy viewing angle.
US11579467B2

Embodiments of thin eyeglasses are provided. The eyeglasses comprise first and second lens connected by a resilient bridge. The eyeglasses comprise a first and second ear piece connected to the first and second lens by a first and second hinge. One lens can be rotated about the hinge and over the other lens to place the eyeglasses in a compact configuration.
US11579465B2

Four dimensional (4D) energy-field package assembly for projecting energy fields according to a 4D coordinate function. The 4D energy-field package assembly includes an energy-source system having energy sources capable of providing energy to energy locations, and energy waveguides for directing energy from the energy locations from one side of the energy waveguide to another side of the energy waveguide along energy propagation paths.
US11579460B2

A laser despeckle device includes a light source, a despeckle element, and a plurality of optical transmission modules. The light source is configured to emit a laser light. The despeckle element is disposed along the optical axis of the laser light. The optical transmission modules alternatively disposed at two opposite sides of the despeckle element.
US11579455B2

A near eye optical display includes a waveguide comprising a first surface and a second surface, an input coupler, a fold grating, and an output grating. The input coupler is configured to receive collimated light from a display source and to cause the light to travel within the waveguide via total internal reflection between the first surface and the second surface to the fold grating; the fold grating is configured to provide pupil expansion in a first direction and to direct the light to the output grating via total internal reflection between the first surface and the second surface; and the output grating is configured to provide pupil expansion in a second direction different than the first direction and to cause the light to exit the waveguide from the first surface or the second surface.
US11579447B2

A head-up display capable of adjusting an imaging position is provided. The head-up display includes an image generation module, a reflector, a holographic diffraction optical element and a control unit. The image generation module is configured to display and project an image. The reflector is configured to reflect the image and further project the image on a transparent screen through the reflector. The holographic diffraction optical element is disposed on the transparent screen to reflect the image to a visible range of the user's eyes. The control unit is coupled to the reflector or the transparent screen to adjust the viewing angle of the holographic diffraction optical element having a pre-determined angle with the reflector.
US11579444B1

Eye-tracking systems and methods utilize transparent illumination structures having a plurality of IR μLEDs distributed within the transparent viewing area of illumination structures. The μLEDs are small enough (<100 μm) that they are not visible by a user during use of an HMD or other mixed-reality device, for example, such that they can be positioned within the line-of-sight of the user through the illumination structure and without visibly obscuring or interfering with the user's view of the mixed-reality environment by the mixed-reality device.
US11579437B2

A multi-passage cavity made up of the assembly of a planar mounting and first and second reflective optical elements each having a main face arranged opposite one another, the main face of at least one of the optical elements being microstructured to modify the phase of incident luminous radiation that is reflected several times on each of the optical elements to form transformed radiation, the multi-passage cavity includes precisely three assembly interfaces.
US11579436B2

A light shield device, a light shield control method, an electronic device and a vehicle are provided. The light shield device includes a controller module and a light shield structure, the light shield structure includes an accommodating cavity, an electrowetting material being in the accommodating cavity and having a light-shielding property, and at least one fluid tube which is communicated with the accommodating cavity; and the controller module is configured to apply a voltage to the light shield structure, so that wettability of a surface of the at least one fluid tube is changed to allow the electrowetting material to fill the at least one fluid tube.
US11579427B2

A non-imaging concentrator is employed in an upside down configuration in which light enters a smaller aperture and exits a larger aperture. The input angle of light rays may be as large as 180 degrees, while the maximum exit angle is limited to the acceptance angle of the non-imaging concentrator. A dichroic filter placed at the larger aperture has a maximum angle of incidence equal to the acceptance angle of the non-imaging concentrator.
US11579426B2

Aspects of the embodiments are directed to an opto-electronic device and methods of using the same. The opto-electronic device can include a processing device and a photonic device. The photonic device can include an optical demultiplexer; a collimating lens optically coupled to the optical demultiplexer and positioned to receive light from the optical demultiplexer, the collimating lens to collimate light received from the optical demultiplexer; a photodetector comprising a photosensitive element, the photosensitive element to convert received light into an electrical signal; and a focusing lens optically coupled to the photodetector, the focusing lens to receive light and focus the light towards the photosensitive element.
US11579421B2

A zoom lens includes, in order from an object side along an optical axis, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a third lens group G3 having positive refractive power. Upon zooming from a wide-angle end state W to a telephoto end state T, a distance between the first lens group G1 and the second lens group G2 increases, and a distance between the second lens group G2 and the third lens group G3 decreases. Given conditions are satisfied. Accordingly, a zoom lens having high optical performance with suppressing variations in aberrations, an optical apparatus equipped therewith, and a method for manufacturing the zoom lens are provided.
US11579415B2

An optical lens assembly, including a first lens element, a second lens element, a third lens element, a fourth lens element, and a fifth lens element sequentially along an optical axis from a first side to a second side, is provided. The optical lens assembly satisfies the conditional expression of D34/D12≥2.600. Furthermore, other optical lens assemblies are also provided.
US11579409B2

The disclosure provides an infrared optical imaging lens, a camera module and a DMS. From an object side to an image side along an optical axis, the infrared optical imaging lens sequentially includes a stop, a first lens with a positive refractive power, a second lens with a positive refractive power, a third lens with a negative refractive power, and a filter. An object side surface of the first lens is convex, an image side surface of the first lens is concave. An object side surface of the second lens is concave, an image side surface of the second lens is convex. A paraxial portion of an object side surface of the third lens is convex, and a paraxial portion of an image side surface of the third lens is concave.
US11579397B2

A periscope optical module is provided. The periscope optical module includes a first optical element, a second optical element, and a third optical element. The first optical element has a first optical axis. The second optical element corresponds to the first optical element and adjusts a forward direction of a light. The third optical element has a second optical axis. The third optical element corresponds to the second optical element. The light passes through the first optical element, the second optical element, and the third optical element consecutively. The first optical axis is not parallel to the second optical axis. A minimum size of the first optical element in a direction that is perpendicular to the first optical axis is larger than a maximum size of the third optical element in a direction of the first optical axis.
US11579393B2

A fiber optic cable breakout assembly includes: a fiber optic cable including a plurality of first optical fibers and a first jacket surrounding the optical fibers; a breakout canister; a plurality of pigtail cords, each of the pigtail cords including a second optical fiber partially encased in a second jacket and an optical connector, each of the pigtail cords extending away from the canister, each of the optical fibers extending through the canister; and a flexible furcation tube attached to and extending between the fiber optic cable and the breakout canister, the furcation tube including an armored inner layer and a polymeric outer layer, wherein each of the first optical fibers is spliced to a respective second optical fiber within the inner layer of the furcation tube.
Patent Agency Ranking