US11683163B2

A server can receive a device public key and forward the device public key to a key server. The key server can perform a first elliptic curve Diffie-Hellman (ECDH) key exchange using the device public key and a network private key to derive a secret X1. The key server can send the secret X1 to the server. The server can derive an ECC PKI key pair and send to the device the server public key. The server can conduct a second ECDH key exchange using the derived server secret key and the device public key to derive a secret X2. The server can perform an ECC point addition using the secret X1 and secret X2 to derive a secret X3. The device can derive the secret X3 using (i) the server public key, a network public key, and the device private key and (ii) a third ECDH key exchange.
US11683154B2

A solution is proposed for controlling access to data that are broadcast over a telecommunication medium. A corresponding method comprises validating by a plurality of validator devices an access request that is submitted by an access device for accessing the data. The validator devices update a blockchain by adding a new block comprising an indication of the access request in response to a positive result of its validation. A provider system transmits cryptographic information for decrypting the data to the access device in response to the new block. A corresponding method for broadcasting data by a provider system and a corresponding method for accessing broadcast data by an access device are proposed. Corresponding computer programs and computer program products for performing the methods are also proposed. Moreover, corresponding structure, provider system and access device are proposed.
US11683152B2

A method comprises generating a signed blockchain transaction using a secure computing device arranged in a local area, and an apparatus set up for short-range communication. The method comprises associating the signed blockchain transactions with the local area, wherein the signed blockchain transaction indicates a presence of the apparatus in the local area.
US11683149B2

A method and apparatus for synchronizing a timebase is disclosed. A timebase management circuit includes limit circuitry, in a first clock domain, which generates, based on a global timebase, an initial timebase limit. The timebase management circuit includes, in a second clock domain, adjustment circuitry that generates an adjusted timebase limit based on the initial timebase limit. A storage circuit in the second clock domain stores a local timebase. Update circuitry, coupled to an output of the storage circuit, generates an updated local timebase using a clock signal in the second clock domain, wherein the updated local timebase is subject to the adjusted timebase limit.
US11683134B2

Embodiments of this application provide a data transmission method, a network device, and a terminal device. The method may include detecting, by a network device, a first signal in an uplink signal. The method may also include determining, by the network device, a signal structure of the uplink signal based on a result of detecting the first signal. Furthermore, the method may include receiving, by the network device, the uplink signal based on the signal structure, and/or responding to the uplink signal based on the signal structure. According to the data transmission method in the embodiments of this application, before receiving data, the network device can determine the signal structure, used by the terminal device, of the uplink signal, and then use a corresponding receiving method to avoid complexity and a reliability risk that are caused by completely blind detection performed by the network device.
US11683131B2

The purpose of the present invention is to avoid ACK/NACK collision in a system in which E-PDCCH control information is transmitted, increase the utilization efficiency of ACK/NACK resources, and suppress unnecessary PUSCH band reduction. A wireless communications terminal having a configuration comprising: a reception unit that receives control signals including ACK/NACK indexes, via an expanded physical downlink control channel; a control unit that determines, on the basis of the ACK/NACK indexes, whether to use a dynamically allocated dynamic ACK/NACK resource or a specified resource specified beforehand, to send downlink data ACK/NACK signals; and a transmission unit that sends the ACK/NACK signals using the dynamic ACK/NACK resource or the specified resource, as determined.
US11683130B2

A method and device for transmitting feedback information. The method includes: determining feedback type information and/or delay information when data is transmitted by a network device; and determining a reliability grade of a feedback transmission or that the feedback transmission is exempted at a certain situation, according to the delay information and/or the feedback type information. Therefore, HARQ feedback load may be reduced without impacting HARQ performances.
US11683126B2

Embodiments herein disclose conditioning traffic through multiple data paths of a Software-Defined Wide Area Network (SD-WAN). Some embodiments include monitoring available paths through an SD-WAN to reach a destination node, determining a quality score for packets to the destination node on a first path of the available paths, sending a data packet sequence to the destination node on the first path, generating a forward error correction (FEC) packet for the packet sequence, and sending the FEC packet to the destination node on a second path of the available paths in response to the quality score being less than a quality threshold.
US11683124B2

A data transmission device includes a de-interleaver configured to receive, from a host device at a first data rate, a data stream including encoded data, de-interleave the data stream into a plurality of forward error correction (FEC) data streams, and output the plurality of FEC data streams at a second data rate less than the first data rate. Each of a plurality of interleavers is configured to interleave a respective one of the plurality of FEC data streams into an intermediate data stream including first data blocks and second data blocks. An encoder module configured to generate, for each of the intermediate data streams, FEC blocks including a first parity section and a first data section, the first parity section including a first parity bit corresponding to the first data blocks and a second parity bit corresponding to the second data blocks, and the first data section including the first data blocks and the second data blocks, and output the FEC blocks at the second data rate.
US11683120B2

A configuration parameter for a CSI resource set can be received. The configuration parameter can indicate a first offset applicable to the CSI resource set. A control channel containing DCI with a downlink DCI format can be received in a first downlink slot. The DCI can indicate a second offset applicable to the CSI resource set. A second downlink slot in which the CSI resource set is transmitted by a network entity for an active BWP can be determined based on the first offset and the second offset.
US11683114B2

A method for allocating a point-to-point channel to a user module of an optical communication network. The network includes user modules and optical terminations, and supports point-to-multipoint channels and a plurality of point-to-point channels, one same point-to-point channel being assigned to one single optical termination. The method is implemented for a user module called a requester user module, and includes: detecting a predetermined availability signal conveyed by a point-to-point channel of the plurality of point-to-point channels; and allocating the point-to-point channel over which the predetermined availability signal is conveyed, called available point-to-point channel, to the requester user module.
US11683110B2

The present invention relates to IoT devices existing in a deployed ecosystem. The various computers in the deployed ecosystem are able to respond to requests from a device directly associated with it in a particular hierarchy, or it may seek a response to the request from a high order logic/data source (parent). The logic/data source parent may then repeat the understanding process to either provide the necessary response to the logic/data source child who then replies to the device or it will again ask a parent logic/data sources for the appropriate response. This architecture allows for a single device to make one request to a single known source and potentially get a response back from the entire ecosystem of distributed servers.
US11683102B1

A method for allocating bandwidth to a first ONU, a second ONU, M1 ONUs, and M2 ONUs includes, during an allocation cycle, (i) granting a respective upstream time slot to, of a plurality of N ONUs, only each of the M1 ONUs, and (ii) granting a first upstream time slot to the first ONU. Each of the M1 ONUs and M2 ONUs is one of the plurality of N ONUs. The method also includes, during a subsequent cycle, (i) granting a respective upstream time slot to, of the plurality of N ONUs, only each of the M2 ONUs. The N ONUs includes a skipped-ONU that is one of either, and not both, the M1 ONUs and the M2 ONUs. The method includes, during the subsequent allocation cycle, granting a second upstream time slot to a second ONU, which is not one of the plurality of N ONUs.
US11683083B2

A beam failure processing method, a terminal and a network device are provided. The method includes: sending a beam failure recovery request to a network device in a case that a beam failure event occurs on an active BWP; and receiving, through a CORESET-BFR in a target downlink BWP, response information fed back by the network device according to the beam failure recovery request, where the target downlink BWP corresponds to at least two BWPs, and the at least two BWPs includes the active BWP.
US11683081B2

Embodiments of the present disclosure relates to a method for allocating resources to a plurality of users by a base station in a communication network. The method comprises obtaining a plurality of parameters associated with each of the plurality of users. The plurality of parameters is at least one of a buffer occupancy, a channel quality, and a channel state information acquisition capability. Also, the method comprises segregating the users into a plurality of groups using at least one of the plurality of parameters, wherein each group comprises one or more users. Further, the method comprises obtaining a group specific metric for each of the plurality of groups using at least one of the plurality of parameters, and allocating resources to the one or more users of the plurality of groups using the group specific metric.
US11683080B2

A method of reporting, by a user equipment (UE), channel state information (CSI) in a wireless communication system, includes: receiving, by the UE and from a base station (BS), downlink control information (DCI) related to an aperiodic CSI report that is to be performed by the UE in a slot n; determining, by the UE, a value nCQI_ref based on a number of symbols Z′ related to a time for computing the CSI; determining, by the UE, a CSI reference resource as being a slot n−nCQI_ref in a time domain that is to be used for the aperiodic CSI report; and transmitting, by the UE and to the BS, the aperiodic CSI report in the slot n, based on the CSI reference resource being slot n−nCQI_ref. The CSI may be calculated by using the most recent A CSI-RS, and thereby the most recent CSI may be reported.
US11683071B2

Apparatus and method securely transfer first data from a source device to a target device. A wireless signal having (a) a higher speed channel conveying second data and (b) a lower speed channel conveying the first data is transmitted. The lower speed channel is formed by selectively transmitting the wireless signal from one of a first and second antennae of the source device based upon the first data. The first and second antenna are positioned a fixed distance apart and the target device uses a received signal strength indication (RSSI) of the first signal to decode the lower speed channel and receive the first data.
US11683068B1

Disclosed are systems, methods, and non-transitory computer-readable media for a segmented ECF that includes multiple filter components to replicate an echo pulse response. The different filter components are used to replicate different portions of the echo pulse response. Each filter components can include filter coefficients of different sizes based on the portions of the echo pulse response that is replicated by the filter component. For example, a filter component that replicates a portion of the echo pulse response that includes a large reflection can include large filter coefficients suitable to replicate the larger reflection. In contrast, a filter component that replicates a portion of the echo pulse response that includes smaller reflections can include smaller filter coefficients that are suitable to replicate the smaller reflection. The output of each of the filter components is combined to replicate the full echo pulse response.
US11683058B2

In a signal detection apparatus, a quadrature detection circuit subjects a reception signal to quadrature detection. An intensity detection circuit detects a signal intensity by referring to an absolute value of an amplitude of a signal subjected to quadrature detection. A zero cross detection circuit detects the number of times of zero crosses of the signal in a predetermined period of time that is based on a modulation index of the reception signal. A signal determination circuit that determines that the signal is the reception signal when the signal intensity is equal to or higher than a threshold value and the number of times of zero crosses is within a predetermined range.
US11683055B1

A first UE may transmit, to a second subset of one or more second UEs, one or more pilot signals associated with DPD training. The first UE may receive, from a third subset of the one or more second UEs, one or more feedback messages associated with DPD training. The one or more feedback messages may be based on the one or more pilot signals. Each second UE in the third subset of the one or more second UEs may correspond to one of the one or more feedback messages. The second UE may calculate one or more DPD parameters based on the one or more feedback messages. The second UE may transmit a first signal based on the calculated one or more DPD parameters.
US11683046B2

The systems and methods discussed herein utilized a wireless or wired transceiver having a transmitter and a receiver. The transceiver is configured to reduce distortion contributions associated with echo cancelling. The transmitter provides a replica signal and a transmit signal. The replica signal and the transmit signal can be provided using a common switch.
US11683044B2

In a wireless power transmitting device, a control circuit outputs a control signal for setting a frequency and a phase of an F-PLL signal generated by an F-PLL, the F-PLL generates the F-PLL signal having the frequency and the phase set by the control signal output from the control circuit, and a frequency conversion circuit generates a transmission signal by converting a frequency of the F-PLL signal generated by the F-PLL.
US11683039B1

A NOT logic circuit is provided comprising: one or more memory devices; wherein a first memory address location of the one or more memory devices stores first content data, wherein the first content data includes a first ternary value and a corresponding first priority value, wherein the first ternary value includes a continuous sequence of X-state values that represent a first range of non-X ternary values; wherein a second memory address of the one or more memory device stores second content data that includes a second ternary value and a corresponding second priority value, wherein the second ternary value includes a continuous sequence of non-X state values represent a non-X ternary value that is within the first range of non-X ternary values; an interface is coupled to receive a ternary value from a processing device; comparator circuitry operable to compare a received ternary key with the outputted first ternary value and to compare the received ternary key with the outputted second ternary value; priority encoder logic operable to, return the outputted first priority value on a condition that the received ternary key matches the first ternary value and the received ternary key does not match second ternary value, and return the outputted second priority value on a condition that the received ternary key matches the first ternary value and that the received ternary key matches the second ternary value; and detection logic operable to send a return to the processing device on a condition of a return of the first priority value.
US11683037B2

An expandable logic scheme based on a chip package, includes: an interconnection substrate comprising a set of data buses for use in an expandable interconnection scheme, wherein the set of data buses is divided into a plurality of data bus subsets; and a first field-programmable-gate-array (FPGA) integrated-circuit (IC) chip comprising a plurality of first I/O ports coupling to the set of data buses and at least one first I/O-port selection pad configured to select a first port from the plurality of first I/O ports in a first clock cycle to pass a first data between a first data bus subset of the plurality of data bus subsets and the first field-programmable-gate-array (FPGA) integrated-circuit (IC) chip.
US11683028B2

Embodiments described herein include radio frequency (RF) switches that may provide increased power handling capability. In general, the embodiments described herein can provide this increased power handling by equalizing the voltages across transistors when the RF switch is open. Specifically, the embodiments described herein can be implemented to equalize the source-drain voltages across each field effect transistor (FET) in a FET stack that occurs when the RF switch is open and not conducting current. This equalization can be provided by using one or more compensation circuits to couple one or more gates and transistor bodies in the FET stack in a way that at least partially compensates for the effects of parasitic leakage currents in the FET stack. In addition, multiple FET stacks are implemented in parallel in at least some switch branches to improve settling time for the branch.
US11683021B2

An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
US11683016B2

A power amplifier module including an input configured to receive an input radio frequency signal, the input radio-frequency signal including a series of data symbols, an output configured to provide an output radio-frequency signal, a power amplifier having a signal input to receive the input radio-frequency signal and a power supply input to receive a supply voltage, the power amplifier configured to amplify the input radio-frequency signal to provide the output radio-frequency signal, and a controller to receive an indication of a peak output power level of an upcoming data symbol in the series of data symbols, to adjust at least the supply voltage provided to the power amplifier based on the peak output power level of the upcoming data symbol, and to configure the power amplifier module to maintain a substantially constant gain over the series of data symbols.
US11683008B2

A photovoltaic inverter, a photovoltaic system, and a method for controlling discharging are provided. The photovoltaic inverter includes a first DCDC converter, an inverter circuit, a first discharging circuit, and a controller. A port capacitor is connected between a positive input end and a negative input end of the first DCDC converter. The port capacitor includes an X capacitor and a first group of Y capacitors. The first discharging circuit is connected between a common terminal of the first group of Y capacitors and a direct current bus, where the common terminal of the first group of Y capacitors is grounded. The controller is configured to control, when receiving a rapid shutdown instruction, the first discharging circuit to operate. The first discharging circuit is configured to discharge electrical energy of the port capacitor.
US11683004B2

A solar panel assembly where a solar panel(s) is mounted on a support pole that is pivotally attached to a footing. By adjusting the angle of the support pole relative to ground, the orientation of the solar panel can be changed in full-axis directions. A plurality of the solar panel assemblies can be arranged into an array of rows and columns. Each row includes a row support cable that is connected to each one of the solar panel assemblies in the row to simultaneously adjust an angle of each of the solar panels in the row. In addition, each column includes a column support cable that is connected to each one of the solar panel assemblies in the column which may be used to simultaneously adjust an angle of each of the solar panels in the column.
US11682999B2

A motor control method inputs one or more controlled variables or target values each representing a state of a motor to one or more node layers as an input value, and performs calculation in each of the one or more node layers to output one or more manipulated variables used for control of the motor and control the motor in accordance with the one or more manipulated variables. Each the one or more node layers has a plurality of nodes that execute calculations in parallel. Each of the plurality of nodes multiplies the input value by a coefficient specified for the corresponding node, and performs calculation using a function specified for the corresponding node and designating a multiplied value as an input variable to determine an output value.
US11682998B2

A motor control method for controlling a motor by using an applied AC voltage converted from a DC voltage with an inverter driven by a PWM control, the motor control method includes: calculating a voltage command value for the inverter in order to achieve a desired torque output in the motor; calculating a compensation gain configured to maintain a linear relation between the voltage command value and the applied AC voltage according to a modulation factor indicating a ratio of the applied AC voltage to the DC voltage before and after a conversion in the inverter; limiting the compensation gain using an upper limit value; calculating a compensation voltage command value by multiplying the voltage command value by the limited compensation gain; and applying the applied AC voltage to the motor by driving the inverter using the compensation voltage command value; wherein the upper limit value is set so that the upper limit value become smaller when the modulation factor changes significantly.
US11682990B2

A method for controlling an inverter-based resource (IBR) having a power converter and a generator connected to an electrical grid includes determining an available active power of the electrical grid. The method also includes determining an available active power of the IBR based on an effect of a speed and a rating of the generator. Further, the method includes determining a minimum available active power based on the available active power of the electrical grid and the available active power of the IBR. Moreover, the method includes determining an active power limit change for the IBR based on one or more thermal margins of the IBR. In addition, the method includes determining an active power estimation as a function of the minimum available active power and the active power limit change. The method further includes providing the active power estimation to a supervisory controller for controlling the IBR.
US11682989B2

A motor control device includes: a power converter to which a first motor and a second motor are connected in parallel, the power converter being configured to convert a direct-current voltage into an alternating-current voltage and supply the alternating-current voltage to the first motor and the second motor; a switching unit provided between the second motor and the power converter; a current detector configured to detect an electric current flowing through the first motor and the second motor; and a controller configured to control the power converter based on at least a current value detected by the current detector. The controller deactivates the power converter upon receiving from outside an abnormal step signal, attributed to the occurrence of an abnormality, that excludes a normal stop signal representing a stop command and switches the switching unit from an on state to an off state upon deactivation of the power converter.
US11682987B2

A drive control method is applicable to a drive system including a driver, a bus and a motor, the motor being directly connected to the bus in a first connection mode or connected to the driver in a second connection mode. The drive control method includes the driver feeding an electric signal to the motor through the output port and simultaneously detecting its own actual output feature; and the driver determining whether the output port is connected to the bus according to the actual output feature. Upon the output port being determined not to be connected to the bus, the driver starts the motor normally. Upon the output port being determined to be connected to the bus, the driver disconnects the output port. In addition, a corresponding drive system, a processing system and a storage medium are disclosed.
US11682973B2

An apparatus includes a first timer configured to determine a turn-off time of a first high-side switch of a buck-boost converter, and a second timer configured to determine a turn-off time of a second low-side switch of the buck-boost converter based on a comparison between a first signal and a second signal, the first signal being proportional to an input voltage of the buck-boost converter, and the second signal being generated based on a signal proportional to an output voltage of the buck-boost converter.
US11682968B2

Various examples of power converters including Integrated Capacitor Blocked Transistor (ICBT) cells and methods of control of power converters having ICBT cells are described. In one example, a power converter includes an upper arm including a plurality of upper ICBT cells connected in series to form a series connection path and a lower arm including a plurality of lower ICBT cells connected in series in the series connection path. A controller can be configured to provide a control signal pair to each of the upper ICBT cells and a complementary control signal pair to each of the lower ICBT cells to control the converter output. A capacitor voltage controller can be configured to balance a voltage potential among ICBT capacitors in at least one of the upper arm and the lower arm.
US11682956B2

Disclosed is a machine having a moving member. The moving member including a cold plate having a plurality of slots through the cold plate. The moving member also including a plurality of ferromagnetic cores coupled to the cold plate, each of the plurality of ferromagnetic cores protruding through a respective one of the plurality of slots, creating gaps between the plurality of ferromagnetic cores. The moving member also including a plurality of armature windings coupled to the cold plate, the plurality of armature windings occupying the gaps between the plurality of ferromagnetic cores.
US11682953B2

A system for assembling a generator, preferably a permanently excited generator of a wind turbine, comprising a rotor and a stator. A vertical assembly device connectable to the rotor and the stator is proposed, for guiding the rotor in parallel and coaxially aligned to the stator during assembly, the vertical assembly device comprising a first assembly element being connectable to the rotor, a second assembly element being connectable to the stator, and guiding means for guiding the first assembly element coaxially aligned to the second assembly element.
US11682944B2

This disclosure relates to an axial magnetic bearing for a centrifugal refrigerant compressor, and a corresponding system and method. A centrifugal refrigerant compressor system according to an exemplary aspect of the present disclosure includes, among other things, an impeller connected to a shaft, and a magnetic bearing system supporting the shaft. The magnetic bearing system includes an axial magnetic bearing, which itself includes a first permanent magnet configured to generate a first bias flux, a second permanent magnet axially spaced-apart from the first permanent magnet and configured to generate a second bias flux, and an electromagnet. The electromagnet includes a coil arranged radially outward of the first and second permanent magnets, and the electromagnet is configured to selectively generate either a first control flux or a second control flux to apply a force to the shaft in a first axial direction or second axial direction opposite the first axial direction, respectively.
US11682925B2

Disclosed in a wireless power transmission apparatus based on cavity-resonance including a transmission cavity leaking electromagnetic waves to a reception cavity through cavity-resonance with the reception cavity, and a nonlinear feedback circuit formed on a feedback path including the transmission cavity and configured to adaptively control an operating frequency in response to a change in a system resonance frequency according to the cavity-resonance.
US11682918B2

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
US11682907B2

A mobile offshore drilling unit includes a plurality of electric thrusters to dynamically position the drilling unit, and a microgrid electric power generation system for providing power to the plurality of electric thrusters, the microgrid electric power generation system including at least one combustion generator electrically coupled to a main electric power bus and at least one thruster electric power system, the thruster electric power system including a thruster electric power bus, an additional electric power bus connected to the thruster electric power bus via an interface device, and a circuit breaker electrically coupling the additional electric power bus to a main electric power bus for isolating the thruster electric power bus from the main electric power bus in case of loss of power on the main electric power bus.
US11682903B2

Responding to grid events is provided. The system determines, based on an event, to modify an electrical load of a site. The system selects a parameter for the site to adjust to modify the electrical load. The system identifies a script constructed from previously processed interactions between a human-machine interface of the building management system to adjust the parameter for the site. The system establishes a communication session with a remote access agent executed by a computing device of the site to invoke the building management system of the site. The system generates a sequence of commands defined by the script to adjust the one or more parameters for the site. The system transmits the sequence of commands to cause the remote access agent to execute the sequence of commands on the human-machine interface of the building management system to modify the electrical load of the site.
US11682901B2

In an embodiment, an airport electric vehicle charging system includes a current transducer electrically coupled with a power source; a solid state converter electrically coupleable with an aircraft at or near an airport gate and configured to provide and maintain power to the aircraft; and a controller. The system further includes a first feedback loop between the controller and the current transducer; a second feedback loop between the controller and the solid state converter; and a battery charger electrically coupled with the power source and configured to charge one or more electric vehicles. The first feedback loop provides a first feedback signal generated by the current transducer to the controller. The second feedback loop provides a second feedback signal generated by the solid state converter to the controller. The battery charger is configured to consume power from the power source in accordance with the first and second feedback signals.
US11682895B2

An inverter assembly includes an integrated coolant coupling port; a fluid connector having a chamfered lip and a fir tree circumferentially aligned with at least one O-ring on an outer body of the fluid connector; and a flexible hose configured to couple the integrated coolant coupling port to the fluid connector.
US11682889B2

An electrical device such as, for example, a mechanical interlock including one or more interconnected electrical components configured to detect or monitor an operational state or condition is hereby disclosed. In one embodiment, the electrical device may include a communications bus, one or more sensor modules coupled to the communications bus, and a sensor hub module coupled to the communications bus, wherein the sensor module(s) generate signal(s) including data indicating a sensed condition. A communications module coupled to the sensor hub module may transmit the data indicating the sensed condition to a remote device, a remote computer network, or a remote cloud service. Additionally, and/or alternatively, the device may include a water detection sensor including first and second curved conductive traces. Additionally, and/or alternatively, the device may include a voltage limiter circuit providing a DC output voltage from a high voltage AC input.
US11682856B2

A holder apparatus of a bio-signal device comprises a holder, which comprises a pocket for a bio-signal processing device, an extension with a hollow, the hollow and the pocket forming a continuous cavity through the holder, a connector, and an elastic seal with a hole. A shape of the elastic seal is matched with a shape of the hollow of the extension at an interface of the pocket, and the hollow and a shape of the hole is matched with a shape of the connector for sealing an interface between the connector and the holder while the connector and the elastic seal are within the hollow and the connector is in contact with the elastic seal. Sealant filler fills the hollow of the extension and is in physical contact with the connector, which is in the hollow against the seal, the elastic seal and the sealant filler allowing the connector to mate electrically with a counter-connector moved within the cavity in a direction from the pocket toward the hollow.
US11682850B2

An electric connector terminal assembly which allows numerous different terminal connector ends and wire diameters to be connected to a single size and type crimp cylinder using an rolled metal strip insert. Preferably, the metal strip is made of copper, and preferably the copper strip is coated with tin. The metal strip is then formed into a cylinder for insertion to the crimp cylinder. A method for connecting a crimp terminal to an electric wire is also disclosed. The method requires cutting a metal strip to form a plurality of parallel compliant members (e.g., fingers) connected to a base, rolling the cut strip to form a cylindrical insert, positioning the insert within a crimp cylinder of an electric connector with the fingers extending toward the mating end, inserting an electric wire within the cylindrical insert, and crimping the crimp cylinder to secure the electric wire within the cylindrical insert and crimp cylinder.
US11682847B2

An antenna array device and an antenna unit thereof are provided. The antenna unit includes an antenna structure and a molding support. The antenna structure includes a substrate and a plurality of patches that are formed on the substrate. The substrate has a plurality of channel holes penetrating there-through. The molding support is integrally formed on the substrate as a single one-piece structure. The molding support has a first stand, a second stand, and a plurality of connection portions that are formed in the channel holes to connect the first stand and the second stand. The first stand and the second stand are formed on two sides of the substrate, respectively.
US11682846B2

An antenna device includes a first patch radiator and a second patch radiator arranged over the first patch radiator. The antenna device further includes a central ground pin connected substantially at a center portion of the first patch radiator. The antenna device further includes a plurality of conductive feeding pins connected to the first patch radiator and separated by at least one slot of a plurality of slots provides in the first patch radiator. The antenna device further includes a cell structure having a cavity that includes a polygonal-shaped base and a metallic fence arranged at four or more side walls of the cavity. The first patch radiator and the second patch radiators are arranged in the cavity of the cell structure and are at least partially surrounded by the metallic fence such that a plurality of antenna control parameters are decoupled from each other.
US11682844B2

The invention relates to a heatsink antenna array structure, which includes a fin-shaped metal heatsink, a metal bottom base of heatsink, and a substrate. The upper surface of substrate is connected with the metal bottom base of heatsink, the lower surface is connected with a chip. The chip works as heat source. There is a rectangular through-cavity array in the bottom base as radiation aperture. The substrate contains multiple metal layers and dielectric layers. The top metal layer has rectangular apertures corresponding to the rectangular through-cavity array in the bottom base. The dielectric layers contain metallic vias to construct a substrate integrated waveguide structure. The metallic vias effectively reduce the thermal resistance between the fin-shaped metal heatsink and the chip, and form the substrate integrated waveguide structure as the feeding network of heatsink antenna array. Compared with the prior arts, the present invention realizes a conformal structure of antenna and heatsink, which improves the integration level of system.
US11682832B2

The present disclosure relates to antenna design for installation on small cell base stations. The antenna design corresponds to a conformal antenna design that fits into a traditional sun-shield of an outdoor base station. In another aspect, the antenna design supports multiple bands and multiple technologies. In a further aspect, the antenna design provides a gain pattern that allows installation of the small cells into directional sectors to further enhance the spectral efficiency while providing a single installation location. In still a further aspect, the design permits the form factor of the base station to meet unique and desirable aesthetic principals such as a modern curved surface and an attractive and distinctive height, width and depth ratio.
US11682826B2

An electronic package is provided and includes a first carrier structure having a plurality of antenna feed lines, and an antenna module disposed on the first carrier structure. The antenna module includes a substrate body having a plurality of recesses with different depths. Further, antenna layers are formed in the plurality of recesses and electromagnetically coupled to the antenna feed lines so as to improve the overall radiation efficiency of the antenna assembly.
US11682816B2

A filter circuit includes an input node, an output node, a first filtering element and a second filtering element. The first filtering element has a first terminal coupled to the input node and a second terminal, and is configured to provide a first signal conducting path toward the second terminal for conducting a first signal received at the input node to the second terminal. The second filtering element has a first terminal coupled to the input node and a second terminal, and is configured to provide a second signal conducting path toward the output node for conducting a second signal received at the input node to the output node. The second terminal of the first filtering element and the second terminal of the second filtering element are open-circuit terminals.
US11682812B2

A method includes stacking unit cells in a stacking direction. Each unit cell includes an electrode structure, a separator structure, and a counter-electrode structure. The electrode structure includes an electrode current collector and an electrode active material layer, and the counter-electrode structure includes a counter-electrode current collector and a counter-electrode active material layer. The electrode and counter-electrode structures extend in a longitudinal direction perpendicular to the stacking direction, and an end portion of the electrode current collector extends past the electrode active material and the separator structure in the longitudinal direction. The end portion of each electrode current collector is bent in a direction orthogonal to the longitudinal direction, an electrode busbar is positioned extending in the stacking direction with a surface adjacent the end portions, and heat and pressure are applied to the electrode busbar to adhere the end portions to the busbar through an adhesive layer.
US11682808B2

Provided is a pouch type battery case. The pouch type battery case include a cup part configured to accommodate an electrode assembly, which is formed by stacking electrodes and separators, therein and a plurality of die edges configured to connect an outer wall of the cup part to a side extending from the outer wall. At least one die edge includes a first area formed to be rounded with a first curvature radius and a second area formed to be rounded with a second curvature radius less than the first curvature radius.
US11682797B2

This disclosure details exemplary battery pack designs for use in electrified vehicles. Exemplary battery packs may include a sense lead assembly having a circuit board that is centrally mounted between first and second wiring members (e.g., flat flexibles cables or flat printed circuits). The circuit board establishes a suitable mounting surface for incorporating sense lead fuses into the sense lead assembly. The centralized sense lead fuses provide for simple and reliable servicing of the battery array in response to battery overcurrent conditions.
US11682792B2

A lithium-sulfur battery includes: a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises: active elemental sulfur, conductive carbon, and sulfide electrolyte, and the sulfide electrolyte is uniformly coated on at least one surface of the conductive carbon. A method of forming a composite cathode for a lithium-sulfur battery includes: synthesizing dispersed carbon fiber from cotton to form carbonized dispersed cotton fiber (CDCF) powder; in-situ coating of the CDCF with an electrolyte component to form a composite powder; and mixing active elemental sulfur powder with the composite powder to form the composite cathode.
US11682788B2

Embodiments provide a secondary battery and an apparatus containing the secondary battery. The secondary battery includes a negative electrode plate. The negative electrode plate includes a copper-based current collector and a negative electrode film layer disposed on at least one surface of the copper-based current collector and including a negative electrode active material, and the negative electrode active material includes graphite. The negative electrode plate satisfies Tx≥25, where Tx is as defined in the specification.
US11682787B2

An electrochemical cell for a lithium battery includes a negative electrode, a positive electrode, a polymeric separator, and composite flame retardant particles including a particulate host material and a flame retardant material carried by the particulate host material. The composite flame retardant particles may be positioned within the electrochemical cell along a lithium-ion transport path or an electron transport path that extends through or between one or more components of the electrochemical cell. The composite flame retardant particles may be positioned within polymeric portions of a laminate structure that defines a housing in which the electrochemical cell is enclosed.
US11682780B2

A fuel cell system that can offer fuel efficiency and water drainage performance which are compatible with each other, the fuel cell system including a fuel cell stack; a fuel gas supply device; a gas-liquid separator; a pressure measuring device; and a controlling unit, wherein the controlling unit controls pulsed operation of the fuel gas supply device in such a way that a measured pressure is within the range of a preset upper limit pressure and lower limit pressure, and the controlling unit uses a flow rate increasing control at least once when the pressure rises in the pulsed operation before the pressure reaches the upper limit pressure, as long as the pressure does not exceed the upper limit pressure, the flow rate increasing control being to increase the supply of the fuel gas supplied by means of the fuel gas supply device.
US11682775B2

To provide a space-saving bipolar plate for a fuel cell comprising an anode plate and a cathode plate, anode gas channels and cathode gas channels lead from main gas ports on opposite sides into an active area and are distributed across the width of said area such that they are subsequently diverted towards an opposite distribution area, and the coolant channels branch in the distribution area and, after branching, are diverted towards the anode gas channels and towards the cathode gas channels and, in each region of overlap with the anode gas channels and the cathode gas channels, are diverted collectively such that the coolant channels lead, together with the anode gas channels and the cathode gas channels, into the active area with no overlap and alternatingly with said anode gas channels and cathode gas channels.
US11682769B2

An electrochemical device including a positive electrode current collector; a first protruding portion including a plurality of positive electrodes in electrical contact with the positive electrode current collector, and a first dented portion disposed between each positive electrode of the plurality of positive electrodes; an electrolyte layer including a second protruding portion and a second dented portion respectively disposed on the first protruding portion including the plurality of positive electrodes and the first dented portion disposed between each positive electrode of the plurality of positive electrodes; and a negative electrode current collector layer including a third protruding portion and a third dented portion respectively disposed on the second protruding portion and the second dented portion of the electrolyte layer.
US11682751B2

Disclosed is a semiconductor device package comprising: first insulation layers disposed between first wiring lines and second wiring lines; a plurality of first pads electrically connected to the first wiring lines, respectively; and a plurality of second pads electrically connected to the second wiring lines, respectively, wherein the line having the longest length extended in a first direction, among the plurality of first wiring lines, has an area of a region, which is overlapped with an electrically connected semiconductor structure, that is larger than that of the line having the shortest extended length.
US11682749B2

A light emitting diode (LED) including a first contact. The LED further includes a first semiconductor layer over the first contact. The first semiconductor layer comprises hexagonal Boron Nitride. Additionally, the LED includes a second semiconductor layer over the first semiconductor layer. The second semiconductor layer comprises at least one hexagonal Boron Nitride quantum well and at least one hexagonal Boron Nitride quantum barrier. Moreover, the LED includes a third semiconductor layer over the second semiconductor layer. The third semiconductor layer comprises hexagonal Boron Nitride. Further, the LED includes a second contact over the third semiconductor layer.
US11682746B2

There are provided methods of growing arrays of light emitters on substrates. An example method includes adjusting a growth parameter of a given light emitter of an array of light emitters on a substrate to obtain an adjusted growth parameter. The adjusting may be based on a location of the given light emitter on the substrate. The adjusting may be to compensate for nonuniformity in a growth profile of the light emitters across the substrate. The nonuniformity may be associated with a corresponding nonuniformity among wavelengths of light generated by the light emitters. Adjusting the growth parameter may be to adjust the corresponding nonuniformity. The method may also include growing the given light emitter on the substrate based on the adjusted growth parameter. Arrays of corresponding light emitters are also described.
US11682744B2

A solar cell, and methods of fabricating said solar cell, are disclosed. The solar cell can include a substrate having a light-receiving surface and a back surface. The solar cell can include a first semiconductor region of a first conductivity type disposed on a first dielectric layer, wherein the first dielectric layer is disposed on the substrate. The solar cell can also include a second semiconductor region of a second, different, conductivity type disposed on a second dielectric layer, where a portion of the second thin dielectric layer is disposed between the first and second semiconductor regions. The solar cell can include a third dielectric layer disposed on the second semiconductor region. The solar cell can include a first conductive contact disposed over the first semiconductor region but not the third dielectric layer. The solar cell can include a second conductive contact disposed over the second semiconductor region, where the second conductive contact is disposed over the third dielectric layer and second semiconductor region. In an embodiment, the third dielectric layer can be a dopant layer.
US11682729B2

A semiconductor structure includes a source/drain (S/D) feature disposed in a semiconductor layer, a metal gate stack (MG) disposed in a first interlayer dielectric (ILD) layer and adjacent to the S/D feature, a second ILD layer disposed over the MG, and an S/D contact disposed over the S/D feature. The semiconductor structure further includes an air gap disposed between a sidewall of a bottom portion of the S/D contact and the first ILD layer, where a sidewall of a top portion of the S/D contact is in direct contact with the second ILD layer.
US11682726B2

A high voltage semiconductor device includes a semiconductor substrate, an isolation structure, a gate oxide layer, and a gate structure. The semiconductor substrate includes a channel region, and at least a part of the isolation structure is disposed in the semiconductor substrate and surrounds the channel region. The gate oxide layer is disposed on the semiconductor substrate, and the gate oxide layer includes a first portion and a second portion. The second portion is disposed at two opposite sides of the first portion in a horizontal direction, and a thickness of the first portion is greater than a thickness of the second portion. The gate structure is disposed on the gate oxide layer and the isolation structure.
US11682719B2

According to one embodiment, a semiconductor device includes first, and second conductive members, a first electrode including first and second electrode regions, a second electrode electrically connected to a first semiconductor film portion, a first semiconductor region including first to fourth partial regions, a second semiconductor region including the first semiconductor film portion, a third semiconductor region including a first semiconductor layer portion, a fourth semiconductor region provided between the first electrode and the first semiconductor region, and a first insulating member including insulating portions. The first partial region is between the first electrode region and the first conductive member. The second partial region is between the second electrode region and the second conductive member. The third partial region is between the first and second partial regions and between the first electrode and the fourth partial region. The fourth partial region is between the first and second conductive members.
US11682716B2

Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The semiconductor device structure also includes a gate stack covering a portion of the fin structure, and the gate stack includes a work function layer and a metal filling over the work function layer. The semiconductor device structure further includes an isolation element over the semiconductor substrate and adjacent to the gate stack. The isolation element is in direct contact with the work function layer and the metal filling.
US11682713B2

A method of fabricating a semiconductor structure includes forming a GaN-based semiconductor layer on a substrate, forming a silicon-containing insulating layer on the GaN-based semiconductor layer, forming a recess in the silicon-containing insulating layer in a first etching step, wherein the first etching step is performed by using a fluorine-containing etchant and applying a first bias power, and enlarging the recess to extend into the GaN-based semiconductor layer in a second etching step, wherein the second etching step is performed by using the same fluorine-containing etchant as the first etching step and applying a second bias power that is greater than the first bias power. In addition, a method of fabricating a high electron mobility transistor is provided.
US11682710B2

Structures and formation methods of a semiconductor device structure are provided. The method includes forming a first metal gate structure in a first dielectric layer. The method includes forming a second metal gate structure in the first dielectric layer, and the second metal gate structure includes a second metal electrode over a second gate dielectric layer. The method also includes forming a mask structure covering the first metal gate structure. The method includes etching a portion of the second gate dielectric layer and a portion of the second metal electrode of the second metal gate structure to form a first conductive portion extending above a top surface of the second gate dielectric layer. The method includes forming a metal layer over the first conductive portion, and the metal layer has a recess, and a top portion of the first conductive portion extends into the recess.
US11682709B2

A semiconductor device includes a semiconductor layer structure, a gate insulating pattern on the semiconductor layer structure, a gate electrode on the gate insulating pattern, and an interface layer between the gate insulating pattern and the semiconductor layer structure, the interface layer having a first segment and a second segment with a gap therebetween.
US11682702B2

A semiconductor film, a sheet like object, and a semiconductor device are provided that have inhibited semiconductor properties, particularly leakage current, and excellent withstand voltage and heat dissipation. A crystalline semiconductor film or a sheet like object includes a corundum structured oxide semiconductor as a major component, wherein the film has a film thickness of 1 μm or more. Particularly, the semiconductor film or the object includes a semiconductor component of oxide of one or more selected from gallium, indium, and aluminum as a major component. A semiconductor device has a semiconductor structure including the semiconductor film or the object.
US11682691B2

A light-emitting device includes: a first light-emitting element portion including: an n-side nitride semiconductor layer, a first light-emitting layer over the n-side nitride semiconductor layer, and a first p-side nitride semiconductor layer over the first light-emitting layer; a second light-emitting element portion including: a second light-emitting layer over the n-side nitride semiconductor layer, and a second p-side nitride semiconductor layer over the second light-emitting layer; an n-side electrode connected to the n-side nitride semiconductor layer; a first p-side electrode disposed over the first p-side nitride semiconductor layer via an upper n-type semiconductor layer; and a second p-side electrode connected to the second p-side nitride semiconductor layer. The first p-side nitride semiconductor layer and the upper n-type semiconductor layer form a tunnel junction.
US11682686B2

Photoelectric conversion apparatus includes semiconductor layer in which first photoelectric converters are arranged in light-receiving region and second photoelectric converters are arranged in light-shielded region, light-shielding wall arranged above the semiconductor layer and defining apertures respectively corresponding to the first photoelectric converters, and light-shielding film arranged above the semiconductor layer. The light-shielding film includes first portion extending along principal surface of the semiconductor layer to cover the second photoelectric converters. The first portion has lower surface and upper surface. The light-shielding wall includes second portion whose distance from the semiconductor layer is larger than distance between the upper surface and the principal surface. Thickness of the first portion in direction perpendicular to the principal surface is larger than thickness of the second portion in direction parallel to the principal surface.
US11682682B2

Embodiments of a hybrid imaging sensor that optimizes a pixel array area on a substrate using a stacking scheme for placement of related circuitry with minimal vertical interconnects between stacked substrates and associated features are disclosed. Embodiments of maximized pixel array size/die size (area optimization) are disclosed, and an optimized imaging sensor providing improved image quality, improved functionality, and improved form factors for specific applications common to the industry of digital imaging are also disclosed.
US11682673B2

A semiconductor device includes: a first active pattern on a substrate and including a first active fin and a second active fin; a device isolation layer defining the first active pattern; a gate electrode crossing the first active pattern; a first source/drain pattern and a second source/drain pattern on the first active fin and the second active fin, respectively; an inner fin spacer between the first and second source/drain patterns; and a buffer layer between the first and second active fins, wherein the inner fin spacer includes: a first inner spacer portion contacting the first source/drain pattern; a second inner spacer portion contacting the second source/drain pattern; and an inner extended portion extending from the first and second inner spacer portions, wherein the inner extended portion is between the first and second active fins, wherein the buffer layer has a dielectric constant higher than that of the inner fin spacer.
US11682666B2

An integrated circuit device includes a substrate having a first intellectual property (IP) core including a cell region and a first edge dummy region, fin-type active regions protruding from the cell region, dummy fin-type active regions protruding from the first edge dummy region, gate lines extending, over the cell region of the substrate, the gate lines including two adjacent gate lines spaced apart from each other with a first pitch and two adjacent gate lines spaced apart with a second pitch greater than the first pitch, dummy gate lines over the first edge dummy region of the substrate and equally spaced apart from each other with the first pitch.
US11682665B2

A semiconductor device includes first cell rows and second cell rows. The first cell rows extend in a first direction. Each of the first cell rows has a first row height. The second cell rows extend in the first direction. Each of the second cell rows has a second row height. The first row height is greater than the second row height. The first cell rows and the second cell rows are interlaced in a periodic sequence. A first row quantity of the first cell rows in the periodic sequence is greater than a second row quantity of the second cell rows in the periodic sequence.
US11682663B2

A display system includes (a) a display element having an organic light emitting diode-containing display active area disposed over a silicon backplane, (b) a display driver integrated circuit (DDIC) attached to the display element and electrically connected with the display active area, and (c) a thermal barrier disposed within the silicon backplane, where the thermal barrier is configured to inhibit heat flow through the silicon backplane and into the display active area.
US11682662B2

A method of manufacturing a light emitting device includes: placing a light-emitting element above a light-transmitting portion of a first resin layer; placing a protective element above the first resin layer or a first surface of the light-emitting element; forming a second resin layer on the first resin layer so as to cover an entirety of the light-emitting element and an entirety of the protective element; removing a portion of the second resin layer such that an anode and a cathode of the light-emitting element and a first electrically-conductive structure and a second electrically-conductive structure of the protective element are exposed from the second resin layer; and forming a first electrode, which is electrically connected to the anode and the first electrically-conductive structure, and a second electrode, which is electrically connected to the cathode and the second electrically-conductive structure.
US11682660B2

The present disclosure provides a semiconductor structure including a first substrate having a first surface, a first semiconductor device package disposed on the first surface of the first substrate, and a second semiconductor device package disposed on the first surface of the first substrate. The first semiconductor device package and the second semiconductor device package have a first signal transmission path through the first substrate and a second signal transmission path insulated from the first substrate. The present disclosure also provides an electronic device.
US11682656B2

A semiconductor device package includes a substrate, a stacked structure and an encapsulation layer. The substrate includes a circuit layer, a first surface and a second surface opposite to the first surface. The substrate defines at least one cavity through the substrate. The stacked structure includes a first semiconductor die disposed on the first surface and electrically connected on the circuit layer, and at least one second semiconductor die stacked on the first semiconductor die and electrically connected to the first semiconductor die. The second semiconductor die is at least partially inserted into the cavity. The encapsulation layer is disposed in the cavity and at least entirely encapsulating the second semiconductor die.
US11682649B2

Packaged modules for use in wireless devices are disclosed. A substrate supports integrated circuit die including at least a portion of a baseband system and a front end system, an oscillator assembly, and an antenna. The oscillator assembly includes an enclosure to enclose the oscillator and conductive pillars formed at least partially within a side of the enclosure to conduct signals between the top and bottom surfaces of the oscillator assembly. Components can be vertically integrated to save space and reduce trace length. Vertical integration provides an overhang volume that can include discrete components. Radio frequency shielding and ground planes within the substrate shield the front end system and antenna from radio frequency interference. Stacked filter assemblies include passive surface mount devices to filter radio frequency signals.
US11682646B2

An integrated circuit (IC) chip package includes a substrate and a wafer comprising an IC chip arranged on the substrate. The substrate includes first mounting pads unconnected to electrical connections in the substrate. The wafer includes second mounting pads that are disposed around corners of the IC chip, that extend radially outward relative to circuitry in the IC chip, that are unconnected to circuitry in the IC chip, and that mate with the first mounting pads on the substrate, respectively.
US11682637B2

A method includes forming a reconstructed wafer including encapsulating a device die in an encapsulant, forming a dielectric layer over the device die and the encapsulant, forming a plurality of redistribution lines extending into the dielectric layer to electrically couple to the device die, and forming a metal ring in a common process for forming the plurality of redistribution lines. The metal ring encircles the plurality of redistribution lines, and the metal ring extends into scribe lines of the reconstructed wafer. A die-saw process is performed along scribe lines of the reconstructed wafer to separate a package from the reconstructed wafer. The package includes the device die and at least a portion of the metal ring.
US11682626B2

A semiconductor device includes a die, an encapsulant over a front-side surface of the die, a redistribution structure on the encapsulant, a thermal module coupled to the back-side surface of the die, and a bolt extending through the redistribution structure and the thermal module. The die includes a chamfered corner. The bolt is adjacent to the chamfered corner.
US11682622B2

Provided are an interconnect structure and an electronic device including the interconnect structure. The interconnect structure includes a dielectric layer including at least one trench, a conductive wiring filling an inside of the at least one trench, and a cap layer on at least one surface of the conductive wiring. The cap layer includes nanocrystalline graphene. The nanocrystalline includes nano-sized crystals.
US11682621B2

A connector for implementing multi-faceted interconnection according to an embodiment of the present disclosure includes a first dielectric layer between a first circuit layer and a second circuit layer, a first copper pillar layer connecting the first circuit layer and the second circuit layer in the first dielectric layer, a second dielectric layer on the first circuit layer, a third circuit layer on the second dielectric layer, and a vertical second copper pillar layer connected to the third circuit layer, wherein an opening is formed in the second dielectric layer to expose the first circuit layer, and the second copper pillar layer exposes side faces facing side end faces of the first dielectric layer and the second dielectric layer.
US11682607B2

A package that includes a substrate and an integrated device. The substrate includes at least one dielectric layer, a plurality of interconnects comprising a first material, and a plurality of surface interconnects coupled to the plurality of interconnects. The plurality of surface interconnects comprises a second material. A surface of the plurality of surface interconnects is planar with a surface of the substrate. The integrated device is coupled to the plurality of surface interconnects of the substrate through a plurality of pillar interconnects and a plurality of solder interconnects.
US11682606B2

A semiconductor assembly includes a power semiconductor, a housing containing the power semiconductor, and electrically conductive channels. The electrically conductive channels are arranged to direct coolant through the housing. Heat generated by the power semiconductor can therefore be absorbed by the coolant. The electrically conductive channels are also electrically connected with the power semiconductor to form terminals for the power semiconductor.
US11682593B2

An embodiment of the disclosure is a structure comprising an interposer. The interposer has a test structure extending along a periphery of the interposer, and at least a portion of the test structure is in a first redistribution element. The first redistribution element is on a first surface of a substrate of the interposer. The test structure is intermediate and electrically coupled to at least two probe pads.
US11682590B2

A semiconductor structure includes a first semiconductor fin and a second semiconductor fin adjacent to the first semiconductor fin, a first epitaxial source/drain (S/D) feature disposed over the first semiconductor fin, a second epitaxial S/D feature disposed over the second semiconductor fin, an interlayer dielectric (ILD) layer disposed over the first and the second epitaxial S/D features, and an S/D contact disposed over and contacting the first epitaxial S/D feature, where a portion of the S/D contact laterally extends over the second epitaxial S/D feature, and the portion is separated from the second epitaxial S/D feature by the ILD layer.
US11682589B2

A method includes forming a first transistor, which includes forming a first gate dielectric layer over a first channel region in a substrate and forming a first work-function layer over the first gate dielectric layer, wherein forming the first work-function layer includes depositing a work-function material using first process conditions to form the work-function material having a first proportion of different crystalline orientations and forming a second transistor, which includes forming a second gate dielectric layer over a second channel region in the substrate and forming a second work-function layer over the second gate dielectric layer, wherein forming the second work-function layer includes depositing the work-function material using second process conditions to form the work-function material having a second proportion of different crystalline orientations.
US11682587B2

In a method of manufacturing a semiconductor device, a fin structure having a bottom portion, an intermediate portion disposed over the bottom portion and an upper portion disposed over the intermediate portion is formed. The intermediate portion is removed at a source/drain region of the fin structure, thereby forming a space between the bottom portion and the upper portion. An insulating layer is formed in the space. A source/drain contact layer is formed over the upper portion. The source/drain contact layer is separated by the insulating layer from the bottom portion of the fin structure.
US11682582B2

A method of forming a transistor device is provided. The method includes forming a plurality of gate structures including a gate spacer and a gate electrode on a substrate, wherein the plurality of gate structures are separated from each other by a source/drain contact. The method further includes reducing the height of the gate electrodes to form gate troughs, and forming a gate liner on the gate electrodes and gate spacers. The method further includes forming a gate cap on the gate liner, and reducing the height of the source/drain contacts between the gate structures to form a source/drain trough. The method further includes forming a source/drain liner on the source/drain contacts and gate spacers, wherein the source/drain liner is selectively etchable relative to the gate liner, and forming a source/drain cap on the source/drain liner.
US11682574B2

Aspects of the present disclosure relate to one or more implementations of a substrate support for a processing chamber. In one implementation, a substrate support includes a body having a center, and a support surface on the body configured to at least partially support a substrate. The substrate support includes a first angled wall that extends upward and radially outward from the support surface, and a first upper surface disposed above the support surface. The substrate support also includes a second angled wall that extends upward and radially outward from the first upper surface, the first upper surface extending between the first angled wall and the second angled wall. The substrate support also includes a second upper surface extending from the second angled wall. The second upper surface is disposed above the first upper surface.
US11682568B2

A substrate treatment apparatus according to an embodiment includes: a tank configured to store a liquid chemical with which a plurality of substrates are treated; a piping having an ejection port that ejects the liquid chemical or bubbles into the tank; a plurality of rods that support the plurality of substrates in the tank; and a converter that is provided in the plurality of rods or the tank and that converts vibration applied to each substrate by the liquid chemical or the bubbles ejected from the piping into rotation in one direction around a center of the substrate as a rotational axis.
US11682566B2

According to one embodiment, a processing apparatus for processing substrates having different base shapes includes a stage comprising a first portion having a substrate facing surface and an opening extending therethough connected to a source of a cooling fluid, and a second portion located outwardly of the first portion, a substrate support, having a substrate support surface thereon, extending over the second portion, a process fluid outlet overlying the first portion, and a driving unit coupled to one of the stage and the first portion, wherein the driving unit is configured to move at least one of the substrate support surface and the substrate facing surface such that the relative locations of the substrate support surface and the substrate facing surface of the stage are changeable based on the shape of a substrate to be processed in the apparatus.
US11682562B2

In a transistor including an oxide semiconductor layer, an oxide insulating layer is formed so as to be in contact with the oxide semiconductor layer. Then, oxygen is introduced (added) to the oxide semiconductor layer through the oxide insulating layer, and heat treatment is performed. Through these steps of oxygen introduction and heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor layer, so that the oxide semiconductor layer is highly purified.
US11682552B2

A system for performing a chemical mechanical polishing (CMP) process is provided. The system includes a CMP tool configured to polish a semiconductor wafer. The processing system further includes a wafer stage configured to support the semiconductor wafer for facilitating the insertion of the semiconductor wafer into, and its subsequent removal from, the CMP tool. The processing system also includes a number of spray nozzles positioned relative to the wafer stage. In addition, the processing system includes a spray generator connected to the spray nozzles and configured to convert a mixture to a mist spray. The processing system further includes a controller configured to activate flow of the mist spray from the spray generator to the spray nozzles to discharge the mist spray over the semiconductor wafer supported by the wafer stage.
US11682551B2

A wafer structure and a trimming method thereof are provided. The wafer structure includes a first wafer which includes a front surface, a back surface, and a sidewall connected to the front surface and the back surface. The sidewall of the first wafer includes a plurality of first regions at an edge of the sidewall and the back surface and laterally separated from one another by a pitch. Each of the first regions extends from the back surface toward the front surface and has etching streaks thereon.
US11682549B2

A method comprises depositing a mask layer on a front-side surface of a wafer, wherein a portion of the wafer has a first resistivity; with the mask layer in place, performing an ion implantation process on a backside surface of the wafer to implant a resistivity reduction impurity into the wafer through the backside surface of the wafer to lower the first resistivity of the portion of the wafer to a second resistivity; after performing the ion implantation process, removing the mask layer from the front-side surface of the wafer; and forming semiconductor devices on the front-side surface of the wafer.
US11682548B2

A light emitting sealed body includes: a housing containing light-emitting gas in an internal space, on which laser light for maintaining a plasma generated in the light-emitting gas is incident; and a charging pipe including a first end portion and a second end portion and connected to the internal space at the first end portion. The second end portion of the charging pipe is sealed by being crushed. The second end portion of the charging pipe is covered with a covering member consists of an inorganic material. The covering member is covered with a cap member consists of a metal material.
US11682546B2

A system for separating ions may include an ion source configured to generate ions from a sample, at least one ion separation instrument configured to separate the generated ions as a function of at least one molecular characteristic, and an orbitrap in which a rotating and oscillating ion induces charges on inner and outer electrode halves of the orbitrap, and wherein charge detection circuitry is configured to detect the charges induced on each of the inner electrode halves and on each of the outer electrode halves, and to combine the detected charges for each oscillation to produce a measured ion charge signal.
US11682545B2

A charge detection mass spectrometer may include an electrostatic linear ion trap (ELIT) or orbitrap, a source of ions to supply ions to the ELIT or orbitrap, a processor operatively coupled to the ELIT or orbitrap, a display monitor coupled to the processor, and a memory having instructions stored therein executable by the processor to produce a control graphic user interface (GUI) on the display monitor, the control GUI including at least one selectable GUI element for at least one corresponding operating parameter of the ELIT or orbitrap, receive a first user command, via user interaction with the control GUI, corresponding to selection of the at least one selectable GUI element, and control the ELIT or orbitrap to control the at least one corresponding operating parameter of the ELIT or orbitrap in response to receipt of, and based on, the first user command.
US11682531B1

A nanocomposite electrode and a method of making the nanocomposite. The nanocomposite electrode includes an electrode substrate, nitrogen-doped molybdenum carbide nanosheets, at least one electrolyte, at least one binding compound, and at least one conductive additive. The electrode substrate is coated with a mixture of the nitrogen-doped molybdenum carbide nanosheets, at least one binding compound, at least one conductive additive, and at least one electrolyte, where the electrolyte penetrates the pores of the nitrogen-doped molybdenum carbide nanosheets, and where the nitrogen-doped molybdenum carbide nanosheets are an outer layer of the electrode.
US11682530B2

The present disclosure relates to a device that includes a first layer having an active material and a stabilizing material, where the active material includes a semiconductor, the stabilizing material includes at least one of an oligomer, an elastomer, a polymer, and/or a resin, and the stabilizing material provides to the device an improved performance metric compared to a device constructed of the first layer but constructed of only the active material (i.e., in the absence of the stabilizing material).
US11682527B2

A multilayer capacitor includes a body including a stack structure in which a plurality of dielectric layers are stacked and a plurality of internal electrodes are stacked with the dielectric layers interposed therebetween, external electrodes formed on an external surface of the body to be connected to the internal electrodes, and including a first electrode layer covering a first surface of the body to which the internal electrodes are exposed, and a second electrode layer covering the first electrode layer, a first metal oxide layer disposed between the first and second electrode layers and having a discontinuous region, and a second metal oxide layer covering at least a portion of a surface of the body on which the external electrodes are not disposed and having a multilayer structure.
US11682524B2

A multilayer ceramic capacitor includes a ceramic body including a dielectric layer, a plurality of internal electrodes disposed inside the ceramic body and each exposed to first and second surfaces of the ceramic body and to one of the third and fourth surfaces, and a first side margin portion and a second side margin portion disposed on sides of the plurality of internal electrodes exposed to the first and second surfaces. The ceramic body includes an active portion including the plurality of internal electrodes disposed to overlap each other with the dielectric layer interposed therebetween to form capacitance, an upper cover portion disposed above the active portion, and a lower cover portion disposed below the active portion. The first and second side margin portions have a dielectric composition different from a dielectric composition of one of the upper cover portion and the lower cover portion.
US11682522B2

Provided is a conductive paste composition for an external electrode of a multilayer ceramic capacitor that includes a conductive base material, an organic solvent, a binder resin, and a dispersing agent. The conductive base material includes a flake-shaped conductive powder, a spherical conductive powder, and first and second glass frits. The flake-shaped conductive powder has a larger size D50 than the spherical conductive powder. The first glass frit includes SiO2, SrCO3, BaCO3, Li2SO4, K2SO4, V2O5, ZnO, Al2O3, and Y2O3, and the second glass frit includes SiO2, SrCO3, BaCO3, CaF, ZnO, Al2O3, Y2O3, and L2O3.
US11682517B2

An inductor component comprises an element body; first and second inductors in the body; first and second columnar wirings in the body with end surfaces exposed from a first principal surface of the body and electrically connected to the first inductor; third and fourth columnar wirings in the body with end surfaces exposed from the first principal surface and electrically connected to the second inductor; first through fourth external terminals contacting the end surfaces of the first through fourth columnar wirings, respectively; and an insulating film on the first principal surface covering a portion of the end surface of the first and third columnar wiring not contacting the first and third terminals, respectively. The first terminal is closer to the third terminal than the fourth terminal, and a shortest distance between the first and third terminals is longer than a shortest distance between the first and third columnar wirings.
US11682514B2

An illustrative memory cell disclosed herein includes a bottom electrode, a top electrode positioned above the bottom electrode and an MTJ (Magnetic Tunnel Junction) structure positioned above the bottom electrode and below the top electrode. In this example, the MTJ structure includes a first ferromagnetic material layer positioned above the bottom electrode, a non-magnetic insulation layer positioned above the first ferromagnetic material layer and a second ferromagnetic material layer positioned on the non-magnetic insulation layer, wherein there is a curved, non-planar interface between the non-magnetic insulation layer and the ferromagnetic material layer.
US11682503B2

A connector for device is configured to be attached to a device housing including a hole and configured to hold an electric wire inserted into the hole, and the connector for device includes a tube-shaped housing into which the electric wire is inserted and which is configured to be inserted into one end of the hole of the device housing, and a front holder configured to be engaged with one end of the tube-shaped housing, wherein the front holder includes an electric wire holding portion to which the electric wire is held, and a locking portion that is continuous with the electric wire holding portion and configured to be engaged with the tube-shaped housing, and wherein the electric wire holding portion is positioned inside the tube-shaped housing in a state where the locking portion is engaged with the tube-shaped housing.
US11682501B2

The present disclosure describes methods of manufacture and implementations of hybrid separators for data cables having conductive and non-conductive or metallic and non-metallic portions, and data cables including such hybrid separators. A hybrid separator comprising one or more conductive portions and one or more non-conductive portions may be positioned within a data cable between adjacent pairs of twisted insulated and shielded or unshielded conductors so as to provide physical and electrical separation of the conductors. The position and extent (laterally and longitudinally) of each conductive portion and each non-conductive portion may be selected for optimum performance of the data cable, including attenuation or rejection of cross talk, reduction of return loss, increase of stability, and control of impedance.
US11682490B2

The present invention is directed to an electronic system for the assessment of emotional state. The system allows individual employees to specify their emotions using a set of emojis. The system provides a graphical user interface that displays a list of different emotions and associated emojis that the user can select. The system allows the user to write an entry about his thoughts and emotions in conjunction with the selected emojis and send the message with the emojis to individuals with whom he chooses to share. The system provides a list of company-wide employees from which the user can select. The system receives the messages and implements data structures to process the received messages and produce individual and company-wide emotional state information.
US11682485B2

Example methods for adaptive radiotherapy treatment planning using deep learning engines are provided. One example method may comprise obtaining treatment image data associated with a first imaging modality and planning image data associated with a second imaging modality. The treatment image data may be acquired during a treatment phase of a patient. Also, planning image data associated with a second imaging modality may be acquired prior to the treatment phase to generate a treatment plan for the patient. The method may also comprise: in response to determination that an update of the treatment plan is required, processing, using the deep learning engine, the treatment image data and the planning image data to generate output data for updating the treatment plan.
US11682483B2

A system, method, and apparatus for displaying a fused reconstructed image with a multidimensional image are disclosed. An example imaging system receives a selection corresponding to a portion of a displayed multidimensional visualization of a surgical site. At the selected portion of the multidimensional visualization, the imaging system displays a portion of a three-dimensional image which corresponds to the selected multidimensional visualization such that the displayed portion of the at least one of the three-dimensional image or model is fused with the displayed multidimensional visualization.
US11682480B2

A system for improving physical motor control of affected human extremities and related cognitive and nervous system processes improvement includes a computer device having a display device and an input device each disposed in communication with the computer device. The computer device is configured to display to a user at least one virtual body part that represents a corresponding body part portion of the user requiring improvement. The virtual body part(s) is shown in a first configuration on the display device. The computer device receives user input that causes the virtual body part(s) to move in a user-directed motion. The computer device displays the user-directed motion of the virtual body part to a second configuration based on the user input. The user repeats the user input to cause improvement of physical motor control of the corresponding body part of the user.
US11682474B2

A first set of user data is received and a user profile is constructed based on the user data and in accordance with a sensitive service involving the user. A situational context is analyzed based on the first set of data. Personalized questions are generated, responsive to the user profile and to the situational context. The personalized questions are presented to a user corresponding to the user data and responses to same are received, including detection of user micro-expressions. The responses are analyzed, according to one or more machine learning models. A neural network model selects an action to be performed in response to analyzing the responses from the user; the action is a sensitive service involving the user. An apparatus is triggered to send a simple message service (SMS) message to a point of care service professional; the message recommends performance of the sensitive service on the user.
US11682456B2

Methods for programming memory cells of a resistive memory device include applying a voltage pulse sequence to a memory cell to set a logic state of the memory cell. An initial set sequence of voltage pulses may be applied to the memory cell, followed by a reform voltage pulse having an amplitude greater than the amplitudes of the initial set sequence, and within ±5% of the amplitude of a voltage pulse used in an initial forming process. Additional voltage pulses having amplitudes that are less than the amplitude of the reform voltage pulse may be subsequently applied. By applying a reform voltage pulse in the middle of, or at the end of, a memory set sequence including multiple voltage pulses, a resistive memory device may have a larger memory window and improved data retention relative to resistive memory devices programmed using conventional programming methods.
US11682448B2

A system that calibrates timing relationships between signals involved in performing write operations is described. This system includes a memory controller which is coupled to a set of memory chips, wherein each memory chip includes a phase detector configured to calibrate a phase relationship between a data-strobe signal and a clock signal received at the memory chip from the memory controller during a write operation. Furthermore, the memory controller is configured to perform one or more write-read-validate operations to calibrate a clock-cycle relationship between the data-strobe signal and the clock signal, wherein the write-read-validate operations involve varying a delay on the data-strobe signal relative to the clock signal by a multiple of a clock period.
US11682444B2

A dynamic random-access memory array includes a plurality of memory cells and sensor cells physical arranged in a row. The sensor cells include a transistor and a capacitor having an input terminal connected to a first non-gate terminal of the transistor. A wordline is connected to transistor gates of both the memory cells and sensor cells in the row. A sensor amplifier has inputs connected to the sensor cell, a high voltage reference line, and a low voltage reference line, and an output in communication with a row refresh circuit. If the sensor amplifier detects that the sensor cell voltage falls outside of the range of the high and low voltage reference lines, then a trigger signal is output to request that the row refresh circuit perform a priority row refresh of the memory cells and the sensor cell in the row.
US11682442B2

Technology for limiting a voltage difference between two selected conductive lines in a cross-point array when using a forced current approach is disclosed. In one aspect, the selected word line voltage is clamped to a voltage limit while driving an access current through a region of the selected word line and through a region of the selected bit line. The access current flows through the memory cell to allow a sufficient voltage to successfully read or write the memory cell, while not placing undue stress on the memory cell. In some aspects, the maximum voltage that is permitted on the selected word line depends on the location of the selected memory cell in the cross-point memory array. This allows memory cells for which there is a larger IR drop to receive an adequate voltage, while not over-stressing memory cells for which there is a smaller IR drop.
US11682435B2

Tracking circuitry may be used to determine if commands and/or command sequences include illegal commands and/or illegal command sequences. If the commands and/or command sequences include illegal commands and/or illegal command sequences, the tracking circuitry may activate signals that prevent execution of the commands and/or notice of the detected illegal commands and/or command sequences.
US11682425B2

A ring-shaped glass spacer is configured to be arranged in contact with a magnetic disk in a hard disk drive apparatus. A surface resistivity of a surface of a glass material of the glass spacer at 22 (° C.) is lower than a surface resistivity of an inner portion of the glass material at 22 (° C.).
US11682420B2

Certain embodiments are directed to a spin torque oscillator (STO) device in a microwave assisted magnetic recording (MAMR) device. The magnetic recording head includes a seed layer, a spin polarization layer over the seed layer, a spacer layer over the spin polarization layer, and a field generation layer is over the spacer layer. In one embodiment, the seed layer comprises a tantalum alloy layer. In another embodiment, the seed layer comprises a template layer and a damping reduction layer over the template layer. In yet another embodiment, the seed layer comprises a texture reset layer, a template layer on the texture reset layer, and a damping reduction layer on the template layer.
US11682417B1

The present disclosure is generally directed towards magnetic recording systems comprising a dual free layer (DFL) read head and a magnetic recording head having stable magnetization. The magnetic recording head comprises a main pole disposed at a media facing surface (MFS), and a plurality of shields, such as a lower leading shield, an upper leading shield, a pair of side shields, and a trailing shield. Each of the shields individually comprises a first leg disposed at and parallel to the MFS and a second leg coupled to the first leg, the second leg being recessed from the MFS. When the kind of magnetization initialization needed by the DFL read head is applied to the magnetic recording head during the manufacturing process, the second leg of each of the shields of the magnetic recording device causes the magnetization directions of the shields to individually switch to a stable state.
US11682414B1

Audio processing with audio transparency can include receiving a user content audio signal and receiving a microphone signal. The microphone signal can contain sensed sound of a user environment. Strength of the sensed sound can be increased based on strength of the user content audio signal, to reduce a masking of the sensed sound during playback. The sensed sound and the user content audio signal can be combined in a composite output audio signal used to drive a speaker. Other aspects are also described and claimed.
US11682401B2

One embodiment of the present invention sets forth a technique for processing recordings of events. The technique includes applying a machine learning model to a plurality of samples from one or more recordings of the events to generate a plurality of embeddings representing the plurality of samples. The technique also includes generating a plurality of labels that identify speakers associated with the plurality of samples based on metadata comprising timestamps of voice activity during the events and participants associated with the voice activity. The technique further includes storing mappings of the plurality of embeddings to the plurality of labels.
US11682400B1

Techniques for performing spoken language understanding (SLU) processing are described. An SLU component may include an audio encoder configured to perform an audio-to-text processing task and an audio-to-NLU processing task. The SLU component may also include a joint decoder configured to perform the audio-to-text processing task, the audio-to-NLU processing task and a text-to-NLU processing task. Input audio data, representing a spoken input, is processed by the audio encoder and the joint decoder to determine NLU data corresponding to the spoken input.
US11682398B2

An electronic apparatus includes: a communication device configured to receive a signal from each of a plurality of acceleration sensors attached to a face of a user; a memory configured to store a classification learning model that classifies words based on a plurality of sensor output values; and a processor configured to determine a word corresponding to a mouth shape of the user by input a value of the received signal to the classification learning model, when the signal is received from each of the plurality of acceleration sensors.
US11682390B2

Method, systems, and apparatus, including computer-readable media, for an interactive interface for analytics. In some implementations, the data is accessed identifying an information card configured to present data objects of a data set. User input data is received indicating user input to enable voice response interaction for the information card or the data set. A voice response application is generated based on the information card, the voice response application being configured to provide responses to voice queries using values for data objects. The voice response application is deployed to enable one or more users to use the voice response application to initiate voice interactions involving the data objects.
US11682387B2

In an approach to generating a digital sentiment signature to characterize an end to a communication, one or more computer processors detect a start of a communication between at least two participants. A computer starts a digital timer of the communication. A computer identifies one or more digital marks of the communication, where the one or more digital marks are a reflection of a sentiment of at least one of the at least two participants in the communication. A computer generates a digital sentiment signature based on the digital timer and on the one or more digital marks, where the digital sentiment signature is a digital signal that can be communicated across a plurality of types of communication channels. A computer detects an end of the communication. A computer determines a reason for the end of the communication. A computer stores the reason.
US11682384B2

A method for training an alarm system to classify audio of an event, wherein the alarm system is connected to a neural network trained to classify audio as an event type, the method comprising the steps of: receiving audio recorded during a first period of time; transmitting the audio to an external unit; receiving data from the external unit indicating a sub-period of time of the audio and data indicating an event type of the indicated sub-period of time of the audio; and re-training the neural network by inputting a sub-period of the audio corresponding to the indicated sub-period of time of the audio and using the indicated event type as a correct classification of the sub-period of the audio.
US11682383B2

Methods, systems, and apparatus for receiving audio data corresponding to a user utterance and context data, identifying an initial set of one or more n-grams from the context data, generating an expanded set of one or more n-grams based on the initial set of n-grams, adjusting a language model based at least on the expanded set of n-grams, determining one or more speech recognition candidates for at least a portion of the user utterance using the adjusted language model, adjusting a score for a particular speech recognition candidate determined to be included in the expanded set of n-grams, determining a transcription of user utterance that includes at least one of the one or more speech recognition candidates, and providing the transcription of the user utterance for output.
US11682381B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for speech recognition. One of the methods includes receiving first audio data corresponding to an utterance; obtaining a first transcription of the first audio data; receiving data indicating (i) a selection of one or more terms of the first transcription and (ii) one or more of replacement terms; determining that one or more of the replacement terms are classified as a correction of one or more of the selected terms; in response to determining that the one or more of the replacement terms are classified as a correction of the one or more of the selected terms, obtaining a first portion of the first audio data that corresponds to one or more terms of the first transcription; and using the first portion of the first audio data that is associated with the one or more terms of the first transcription to train an acoustic model for recognizing the one or more of the replacement terms.
US11682379B2

A method, computer program, and computer system is provided for synthesizing speech at one or more speeds. A context associated with one or more phonemes corresponding to a speaking voice is encoded, and the one or more phonemes are aligned to one or more target acoustic frames based on the encoded context. One or more mel-spectrogram features are recursively generated from the aligned phonemes and target acoustic frames, and a voice sample corresponding to the speaking voice is synthesized using the generated mel-spectrogram features.
US11682375B2

A speaker system includes a wearable speaker capable of outputting a first sound which is a voice of a communication partner of a talker and a second sound, a microphone, and a sound processing device which processes a sound output from the wearable speaker and a sound picked up by the microphone. The sound processing device generates a reference signal by synthesizing a first signal indicating the first sound and a second signal indicating the second sound, outputs the first signal and the second signal to the wearable speaker, obtains a sound pickup signal including the voice of the talker from the microphone, performs, on the sound pickup signal, a process of cancelling the sound component output from the wearable speaker by using the reference signal, and outputs the sound pickup signal on which the cancellation process has been performed.
US11682373B2

A packing module includes a volumetrically efficient structure for separately retaining sensors and a cable of a sensor array. The packing module includes a tray that supports the sensors and a retaining leaf arrangement that extends outwardly from the tray to retain the cable on the tray. The retaining leaf arrangement includes a plurality of nested leaves that are spaced relative to each other. Packing the module includes placing the sensors separately and in succession on the tray and inserting a portion of the cable in the retaining leaf arrangement in between each placing of a sensor. The placement of a sensor and insertion of a portion of the cable occurs alternately until the entire sensor array is accommodated. Deployment of the sensor array may occur by alternately removing a sensor and a portion of the cable until the sensor array is displaced from the module.
US11682368B1

A method of operating a mobile device, the method comprising: identifying a first image parameter for an image to be displayed on a display of the mobile device; determining a distance between the display of the mobile device and a user of the mobile device; modifying the first image parameter dependent upon the distance between the display of the mobile device and the user of the mobile device; and displaying an image on the display using the modified first image parameter.
US11682366B2

A display device having an optical sensor includes a display panel including display pixels; and a sensor controller; and sensor pixels, wherein the sensor pixels include an optical sensor located on a first area of the display panel, the display pixels display a pattern including a plurality of markers in the first area, the sensor pixels image the pattern to generate a first image, the sensor controller divides the first image into sub-images corresponding to the markers, the sensor controller calculates first representative coordinates obtained by adding an integer part and a decimal part with respect to the sub-images, a unit of the integer part is the number of the sensor pixels, and each of the integer part and the decimal part independently includes a first dimensional value for a first direction and a second dimensional value for a second direction orthogonal to the first direction.
US11682361B2

In a liquid crystal device, an electrode is provided between a pixel area of a first substrate and a seal material, and an AC signal is applied to the electrode where a potential with respect to a common potential applied to a common electrode as a reference potential is alternately switched between a positive polarity and a negative polarity. For the AC signal, a length of a positive polarity period where a polarity becomes positive with respect to the common potential and a length of a negative polarity period where a polarity becomes negative with respect to the common potential are different. When anionic impurities of a liquid crystal layer are focused, a positive polarity period length is greater than a negative polarity period length. When cationic impurities of the liquid crystal layer are focused, a negative polarity period length is greater than a positive polarity period length.
US11682350B2

According to one exemplary embodiment of the present disclosure, the electroluminescent display panel may include a plurality of pixels arranged along a row direction and a column direction, an emission line transmitting an emission signal to the plurality of pixels arranged along the row direction and an emission driving circuit providing an emission signal to the plurality of pixels. The emission driving circuit includes a plurality of emission stages wherein the number of emission stages is more than the number of the plurality of pixels arranged along the column direction. Therefore, the pulse width resolution of the display panel may be enhanced and the low gradation stain may be reduced.
US11682348B2

The present disclosure provides a display panel and a display method for use in the display panel. The display panel includes: a display region, the display region comprising a first display region and a second display region, the first display region comprising a transparent sub-display region, the transparent sub-display region having a light transmittance higher than that of the second display region; and a first light emission controller and a second light emission controller, the first light emission controller being configured to provide a light emission control signal to a plurality of pixel rows of the first display region, the second light emission controller being configured to provide a light emission control signal to a plurality of pixel rows of the second display region.
US11682340B2

A sub-pixel circuit, and an active electroluminescence display and a driving method thereof are provided. The sub-pixel circuit includes at least one electroluminescence device, and at least one first driving transistor or at least one second driving transistor and at least one third driving transistor coupled with the at least one electroluminescence device. A cathode of the electroluminescence device is coupled with a power source, an anode of the electroluminescence device is coupled with an output terminal of the first driving transistor, an input terminal of the first driving transistor is coupled with a signal line, and a control terminal of the first driving transistor is coupled with a scan line. Alternatively, the anode of the electroluminescence device is coupled with an output terminal of the second driving transistor, an input terminal of the second driving transistor is coupled with an output terminal of the third driving transistor.
US11682337B2

Disclosed is a driving environment information display method including acquiring environment information, selecting a first seed image corresponding to a curvature of a road on which driving is performed based on the acquired environment information, from among a plurality of lane surface seed images having different curvatures, disposing the selected first seed image at a display origin corresponding to a vehicle origin, primarily distorting the first seed image in a direction toward a target lane surface that becomes a display target based on a host vehicle in response to a first lateral distance of an adjacent lane division line located in the direction toward the target lane surface, secondarily distorting the image in the direction toward the target lane surface in response to a half of the lane width of a driving lane of the host vehicle, and outputting the secondarily distorted image through a display unit.
US11682335B2

A display device includes a display panel, a memory, a dithering processor, and a panel driver. The display panel includes a display surface, and the memory stores dither patterns with respect to at least one spot area included in the display surface. The dithering processor selects a dither pattern among the dither patterns in a predetermined time unit and outputs a compensation image signal corresponding to the dither pattern. The panel driver outputs a data signal corresponding to the spot area based on the compensation image signal. Each of the dither patterns includes a first grayscale area having a first grayscale value higher than a first target grayscale value of the spot area and a second grayscale area having a second grayscale value lower than the first target grayscale value.
US11682325B2

Provided is a display apparatus including an image generator configured to time-sequentially generate a plurality of images by modulating light, and an optical system including a freeform surface that is configured to time-sequentially form a plurality of virtual images respectively corresponding to the plurality of images at different depths from a user's eye, wherein each error value among error values between the plurality of images and the plurality of virtual images respectively corresponding to the plurality of images on the freeform surface is less than or equal to a profile value of the freeform surface.
US11682322B2

A device for tracking wear of a garment and related methods includes a counter body and an indicator. The counter body has a first indicia and a second indicia thereon. The indicator movably connects to the counter body and is configured to be selectively positioned relative to each of the first indicia and the second indicia for selectively aligning the indicator relative to the first indicia or the second indicia. The first indicia is different than the second indicia such that the indicator in alignment with the first indicia is configured to communicate a first wear state of the garment to a user and the indicator in alignment with the second indicia is configured to communicate a second wear state of the garment to the user.
US11682321B2

A method for making labels comprising providing a plastic substrate layer and a paper substrate layer. The paper substrate layer comprises a printed display information sheet, wherein the printed display information sheet comprises a plurality of display information tags arranged in an array. The plastic substrate layer is coupled to each of the rows of display information tags within a first portion of the display information tags to form a composite substrate row. A first line of perforations is cut into a width of the composite substrate at one or more first spaced intervals, a length of the first spaced intervals being defined by a length of the display information tags. A second line of perforations is cut into a width of the composite substrate at one or more second spaced intervals, a length of the second spaced intervals being defined by a height of the display information tags.
US11682317B2

Disclosed herein are immersive virtual and/or augmented reality education/training tools useable to teach operating room personnel any or all of scrubbing-in procedures, gowning/gloving procedures, and proper operating room etiquette. The training tools provide individuals with active practice in the operating room setting prior to the real-world applications, and thus allows the user to become more adept with the necessary procedures prior to entering the operating room. The disclosed virtual and/or augmented reality training will make for a better, less stressful, risk-reducing (e.e., infection of patient), operating room environment that is more conducive for both learning by the students and surgical performance by the experienced operating room personnel.
US11682314B2

An imaging system for a moving vehicle aggregates pre-existing data with sensor data to provide an image of the surrounding environment in real-time. The pre-existing data are combined with data from one or more 3-D sensors, and 2-D information from a camera, to create a scene model that is rendered for display. The system accepts data from a 3-D sensor, transforms the data into a 3-D data structure, fuses the pre-existing scene data with the 3-D data structure and 2-D image data from a 2-D sensor to create a combined scene model, and renders the combined scene model for display. The system may also weight aspects of data from first and second sensors to select at least one aspect from the first sensor and another aspect from the second sensor; wherein fusing the pre-existing scene data with the sensor data uses the selected aspect from the first sensor and the selected aspect from the second sensor.
US11682311B2

Methods and systems of displaying weather data for a cockpit display system of an aircraft. The methods and systems include generating a display to include a first graphical map of real-time weather data from a weather radar. The display further includes a notification graphic associated with a portion of part of a displayed flight plan in which a significant weather condition exists. When the notification graphic is selected, the display includes the first graphical map of the real time weather data based on weather data from the weather radar and a second graphical map of significant weather conditions data derived from transmitted weather data.
US11682309B2

Concepts and technologies disclosed herein are directed to intelligent drone traffic management via a radio access network (“RAN”). As disclosed herein, a RAN node, such as an eNodeB, can receive, from a drone, a flight configuration. The flight configuration can include a drone ID and a drone route. The RAN node can determine whether capacity is available in an airspace associated with the RAN node. In response to determining that capacity is available in the airspace associated with the RAN node, the RAN node can add the drone ID to a queue of drones awaiting use of the airspace associated with the RAN node. When the drone ID is next in the queue of drones awaiting use of the airspace associated with the RAN node, the RAN node can instruct the drone to fly through at least a portion of the airspace in accordance with the drone route.
US11682303B1

A vehicle parking management system includes one or more processors configured to receive data indicative of one or more characteristics of one or more parking locations. The one or more processors is also configured to determine one or more recommended parking locations of the one or more parking locations based on the data and based on an input related to a vehicle. The one or more processors is further configured to output a recommendation of the one or more recommended parking locations via a display screen to a driver of the vehicle.
US11682296B2

Techniques for determining that a first vehicle is associated with a reverse state, and controlling a second vehicle based on the reverse state, are described herein. In some examples, the first vehicle may provide an indication that the first vehicle will be executing a reverse maneuver, such as with reverse lights on the vehicle or by positioning at an angle relative to a road or parking space to allow for the reverse maneuver into a desired location. A planning system of the second vehicle (such as an autonomous vehicle) may receive sensor data and determine a variety of these indications to determine a probability that the vehicle is going to execute a reverse maneuver. The second vehicle can further determine a likely trajectory of the reverse maneuver and can provide appropriate accommodations (e.g., time and/or space) to allow the second vehicle to execute the maneuver safely and efficiently.
US11682295B2

An apparatus receives instances of probe data each comprising location data. The apparatus identifies instances of probe data corresponding to a first traversable map element (TME) of a current map version based on the location data and the current map version. The apparatus determines a current traffic measure for the first TME based on the probe data. The apparatus determines a historical traffic measure corresponding to a second TME of a previous map version that corresponds to the first TME of the current map version and a scaling factor for the first and second TMEs. The apparatus determines a scaled historical traffic measure by applying the scaling factor to the historical traffic measure and compares the current traffic measure and the scaled historical traffic measure. Responsive to determining that the comparison does not satisfy a similarity threshold requirement, the apparatus generates updated map/traffic data for the first TME.
US11682290B1

A system for notifying emergency services of a vehicular crash may (i) receive sensor data of a vehicular crash from at least one mobile device associated with a user; (ii) generate a scenario model of the vehicular crash based upon the received sensor data; (iii) store the scenario model; and/or (iv) transmit a message to one or more emergency services based upon the scenario model. As a result, the speed and accuracy of deploying emergency services to the vehicular crash location is increased. The system may also utilize vehicle occupant positional data, and internal and external sensor data to detect potential imminent vehicle collisions, take corrective actions, automatically engage autonomous or semi-autonomous vehicle features, and/or generate virtual reconstructions of the vehicle collision.
US11682283B2

An electronic patient monitoring system and method of operation that includes one or more generally non-metal, tamper-resistant patient identification and monitoring devices, an observer transmitter/receiver device configured to receive and detect one or more beacon signals that exceed a predetermined threshold from at least one of the not easily removable patient identification and monitoring devices, set a time to hold open a window for a response on the transmitter/receiver device, and send a request for information to the observer with the transmitter/receiver device, and a central computer system. Each of the transmitter/receiver device and the central computer system, including, at least, a computer processor, communications components and system software to communicate with the observer transmitter/receiver device at specified/predetermined time intervals to receive observer- and patient-specific information.
US11682282B2

A system for detecting a fire or overheating event includes a heat detector, an optical fiber, a photodetector, and a processing unit. The pneumatic heat detector includes a sealed chamber sealed with a diaphragm having an initial position, and the optical fiber is in operable communication with the diaphragm. The optical fiber includes a Fiber Bragg Grating (FBG). The optical signal generator is configured to emit an optical signal with into the optical fiber. The photodetector is configured to receive a reflected optical signal from the FBG. The processing unit is configured to correlate the reflection wavelength of the reflected optical signal with a temperature of the heat detector.
US11682281B2

A security system and apparatus for a home or business is provided. The security system has a sensor connected to a liquid dispenser. The sensor is triggered upon the breaking of glass or a door of a building. The liquid dispenser, when activated, dispenses a non-toxic liquid marker. The liquid dispenser sprays a mist of the liquid on the intruder so that the intruder may be easily identified.
US11682280B2

An electronic security system enables configuration and operation of different types of wireless security devices, such as multi-sensors, sirens/strobes, and/or key fobs, according to the specific capabilities of the devices, with minimized communication and a lower power mode. The minimized communication allows reduced data transmissions with the devices, with selective disablement of the communications system at times, which allows greater power savings and extended battery life. In one aspect, an application protocol is used to communicate with the different types of devices by applying preconfigured control parameters to the devices according to features of the devices. The application protocol can be built on a software stack executing on a wireless base station of the security system.
US11682274B2

A programmable dynamic information handling system rack lighting system may include an array of a plurality of visual indicators configured to be programmed such that each information handling system of a chassis is associated with a set of one or more of the plurality of visual indicators and a lighting control subsystem configured to control illumination of the plurality of visual indicators based on statuses of information handling systems of the chassis, such that the lighting control subsystem causes each set of the visual indicators to illuminate based on a status of the respective information handling system associated with such set.
US11682269B2

A system, method, and non-transitory medium employ a user computer including an input/output device for providing a graphical user interface (GUI) to the user; and a game server, interacting with the user computer, for displaying game screens on the GUI to conduct a game with representations of two two-sided cards having a pair of sides hidden from the user; wherein display of the hidden pair of sides of the two two-sided cards to the user by the game server determines a winning state.
US11682264B2

Games related to the aggregation of information are described.
US11682260B2

A new type of RFID tag is provided. A gaming chip that incorporates a sticker-type RFID tag comprises: an enclosing member having a predetermined shape for enclosing the RFID tag; a body member that is injection-molded to encapsulate the enclosing member with the RFID tag; and a gaming chip for amusement. The enclosing member consists of a first part and a second part, and at least the first part or the second part has a flat surface to which a sticker-type RFID tag can adhere, and the first part and the second part are combined to form an enclosing member, in which the sticker-type RFID tag is covered by the first part and the second part.
US11682252B1

A remote access locking system and transportable secure containers are provided with a wireless key fob and optional tamper alarm, location transponder and reversible coupling to secure the container to a vehicle element or to a mounting plate that is fixed to the vehicle. The wireless fob sends wireless command signals to a controller that authenticates the signal and locks or unlocks the container door. The controller may also have a sound generator configured to produce a characteristic chirp when the lock is locked or unlocked by the controller that is different from the vehicle door chirp. The wireless fob for the container may stand alone or have a coupling joining the container fob with a conventional wireless entry fob for a vehicle. The system may also use secondary security measures such as RFID tags for two step authentication.
US11682251B1

Systems, methods, and apparatuses for authenticating devices and using an authenticated device to determine an access decision include a computing system including a network interface circuit that facilitates communication via a network and a processing circuit comprising a processor and memory. The processing circuit approves or denies a request to access a secured device. The processing circuit comprises an access management circuit that receives and interprets the access request to identify a user, an authentication database storing authentication data, and a workforce database storing credential data. The access management circuit retrieves the authentication data from the authentication database to determine the user device associated with the access request. The access management circuit retrieves the credential data from the workforce database based on the identification of the user and the authentication data to determine an access decision and approve or deny access to the secured device.
US11682245B2

A diagnostic tool includes a processor, display, and memory storing instructions to perform scan tool functions (STF) including transmitting a message to a vehicle. The STF include first STF for a first system of the vehicle. Additional stored instructions are executable to display a first user-interface screen (UIS) including a first user-selectable control (USC) including an indicator of a first scanner job performable on the vehicle, and to display a second UIS instead of the first UIS in response to a selection of the first USC. The second UIS incudes: a second USC including an indicator of the first STF for the first system of the vehicle, and guidance for performing a procedure of the first scanner job. The stored instructions are executable to transmit a first vehicle data message to a component of the first system in response to a selection of the second USC.
US11682239B2

Provided is a mobile terminal characterized by comprising: a display unit which outputs visual information; a depth camera which captures a subject and acquires a depth image; a memory which stores a vein pattern of a user's hand; and a control unit connected to the display unit, the depth camera, and the memory. The control unit identifies the shape of the user's hand from the depth image, authenticates the user using a pre-stored user vein pattern, and when the user is authenticated, executes a specific application in response to a three-dimensional gesture of the user's hand, and omits an authentication procedure required by the specific application.
US11682225B2

In some implementations, a device may detect edges in an image, and may identify, based on the edges, a rectangle that bounds a document in the image. The device may detect lines in the image, and may identify edge candidate lines by discarding one or more of the lines. The device may identify intersection points where lines, included in the edge candidate lines, intersect with one another. The device may identify corner candidate points by discarding one or more points included in the intersection points, and may identify a corner point included in the corner candidate points. The corner point may be a point, included in the corner candidate points, that is closest to one corner of the bounding rectangle. The device may perform perspective correction on the image of the document based on identifying the corner point.
US11682211B2

A computer-implemented method of identifying an object within a video stream from a camera, and determining the consistency with which the object is identified within plural temporally spaced video frames of the video stream.
US11682207B2

A system and method are provided for presenting self-diagnostic test instructions in the form of audiovisual messages. The system and method include collecting by a user of a testing device a biologic sample for use with a testing device, assigning correlative values as test results, and receiving the test results at a server disposed on a network. Some aspects of the system and method present test instructions to the user in the form of audiovisual messages. The audiovisual messages are provided to the user as a response to an interaction with a retail diagnostic product. In some aspects, the complete audiovisual message is presented before the user may complete a self-diagnostic test.
US11682206B2

Methods and apparatus for projecting augmented reality (AR) enhancements to real objects in response to user gestures detected in a real environment are disclosed. An example apparatus includes one or more processors to execute computer-readable instructions to identify a user gesture within a real environment based on data obtained from a motion sensor. The user gesture is associated with a target real object from among one or more real objects located within the real environment. The user gesture represents a desired shape of a desired virtual drawing to be projected to the target real object. The one or more processors are further to execute the instructions to determine an AR enhancement based on the user gesture and the target real object. The AR enhancement includes a virtual drawing having a shape corresponding to the desired shape of the desired virtual drawing. The one or more processors are further to execute the instructions to instruct a projector to project the AR enhancement to the target real object.
US11682203B2

A feature extraction method of fruit spectrum includes taking a vector of each wavelength point in spectrum of samples as source data, and acquiring a sorting of all vectors by processing the source data by SPA; according to the sorting of the vectors, acquiring distribution points of each sample on a coordinate system; acquiring classification results of the samples by destructive analysis, and acquiring a number of first sample categories; acquiring a first Euclidean distance between the first sample categories; according to a sorting of the wavelength points, acquiring distribution points of each sample on the coordinate system; acquiring a number of second sample categories; acquiring a second Euclidean distance between the second sample categories; determining whether the first Euclidean distance is less than the second Euclidean distance; determine a (M+2)-th vector to be valid or invalid based on a comparison result.
US11682188B2

An image processing apparatus is configured to perform processing of detecting an object by using a predetermined number of sample points referred to as particles, the processing including: executing a detection processing configured to calculate a weight for each of the particles, and detect the object by using the calculated weights; and executing a resampling processing configured to assign a particle number to each of the predetermined number of particles, calculate, for each particle, a comparative value by multiplying an average of the weights of the predetermined number of particles by the particle number, calculate, for each particle, a cumulative weight by adding the particle's own weight to the weights of all the particles assigned with the respective particle numbers smaller than the particle's own particle number, and perform a reselection process that executes reselection on the particles of all the particle numbers.
US11682186B2

The present disclosure is directed to systems and methods for identifying regions of interest (ROIs) in images. A computing system may identify an image including an annotation defining an ROI. The image may have a plurality of pixels in a first color space. The computing system may convert the plurality of pixels from the first color space to a second color space to differentiate the annotation from the ROI. The computing system may select a first subset of pixels corresponding to the annotation based at least on a color value of the first subset of pixels in the second color space. The computing system may identify a second subset of pixels included in the ROI from the image using the first subset of pixels. The computing system may store an association between the second subset of pixels and the ROI defined by the annotation in the image.
US11682183B2

An augmented reality system and an anchor display method thereof are provided. An environmental image is captured by an image capturing device disposed on a head-mounted device. A reference image block in the environmental image that matches a display image on a display is detected by performing feature matching between the environmental image and the display image. Position information of the reference image block in the environmental image is obtained. Depth information of the display is obtained according to an actual screen size of the display and a block size of the reference image block in the environmental image. At least one virtual object is displayed by the head-mounted device according to the position information and the depth information. The at least one virtual object is displayed as being anchored to at least one screen bezel of the display.
US11682182B2

The present disclosure generally relates to creating and editing avatars, and navigating avatar selection interfaces. In some examples, an avatar feature user interface includes a plurality of feature options that can be customized to create an avatar. In some examples, different types of avatars can be managed for use in different applications. In some examples, an interface is provided for navigating types of avatars for an application.
US11682174B1

Introduced here computer programs and associated computer-implemented techniques for establishing the dimensions of interior spaces. These computer programs are able to accomplish this by combining knowledge of these interior spaces with spatial information that is output by an augmented reality (AR) framework. Such an approach allows two-dimensional (2D) layouts to be seamlessly created through guided corner-to-corner measurement of interior spaces.
US11682167B2

A method for creating a seamless scalable geological model may comprise identifying one or more geological scales, establishing a geological tied system, identifying one or more graphical resolution levels for each of the one or more geological scales, constructing the seamless scalable geological model, and producing a post-process model. A system for creating a seamless scalable geological model may comprise an information handling system, which may comprise a random access memory, a graphics module, a main memory, a secondary memory, and one or more processors configured to run a seamless scalable geological model software.
US11682162B1

A system, method or compute program product for generating stereoscopic images. One of the methods includes identifying, in a first three-dimensional coordinate system of a first three-dimensional virtual environment, a location and orientation of a first virtual object that is a virtual stereoscopic display object; identifying an eyepoint pair in the first virtual environment; identifying, in a second three-dimensional coordinate system of a second three-dimensional virtual environment, a location and orientation of a second virtual object that is in the second virtual environment; for each eyepoint of the eyepoint pair, rendering an inferior image of the second virtual object; for each eyepoint of the eyepoint pair, render a superior image of the first virtual environment, comprising rendering, in the superior image for each eyepoint, the corresponding inferior image onto the virtual stereoscopic display object; and display, on a physical stereoscopic display, the first virtual environment.
US11682146B2

Vector object path segment editing techniques are described that retain edibility of a path while supporting editing of a segment included within the path, individually and separately, without editing other segments of path. A vector object editing module first retrieves information on segments included in a path of a vector object. The vector object editing module then renders a selected segment separately from an adjacent segment based on the selected segment model. An editing operation is then applied to the selected segment as specified via the user interface, e.g., to change color, width, or other display characteristic. The vector object editing module then generates a joint between the edited segment and the adjacent segment to provide a transition between the segments that mimics inclusion as a single path that contains those segments.
US11682137B2

Depth estimates for an object made by one or more sensors of a vehicle may be refined using locations of environmental attributes that are proximate the object. An image captured of the object proximate an environmental attribute may be analyzed to determine where the object is positioned relative to the environmental attribute. A machine-learned model may be used to detect the environmental attribute, and a location of the environmental attribute may be determined from map data. A probability of a location of the object may be determined based on the known location of the environmental attribute. The location probability of the object may be used to refine depth estimates generated by other means, such as a monocular depth estimation from an image using computer vision.
US11682132B2

A method for determining the length of a line involves determining a length of a first electrical line, determining an identifier of the first electrical line, determining a length of a second electrical line, which is intended for installation in an electrical installation assembly, based on the length of the first electrical line and a starting length determined by means of the identifier.
US11682126B2

Methods and systems are provided for performing material capture to determine properties of an imaged surface. A plurality of images can be received depicting a material surface. The plurality of images can be calibrated to align corresponding pixels of the images and determine reflectance information for at least a portion of the aligned pixels. After calibration, a set of reference materials from a material library can be selected using the calibrated images. The set of reference materials can be used to determine a material model that accurately represents properties of the material surface.
US11682124B2

Examples disclosed herein may involve a computing system that is operable to (i) identify a source map and a target map for transferring map data, where the source map and the target map have different respective coordinate frames and respective coverage areas that at least partially overlap, (ii) select a real-world element for which to transfer previously-created map data from the source map to the target map, (iii) select a source image associated with the source map in which the selected real-world element appears and has been labeled, (iv) select a target image associated with the target map in which the selected real-world element appears, (v) derive a geometric relationship between the source image and the target image, and (vi) use the derived geometric relationship between the source image and the target image to determine a position of the real-world element within the respective coordinate frame of the target map.
US11682119B1

Systems, apparatuses, and methods are provided herein that may be used to monitor a movable barrier operated by a movable barrier operator. In some embodiments, a system includes a camera configured to capture frames, and a control circuit. The camera has a field of view that defines a boundary of each of the frames. The control circuit is configured to receive a first frame, identify a stationary object in the first frame, and define a region of interest “ROI” relative to the stationary object in the first frame. The control circuit is further configured to receive a second frame, identify the stationary object in the second frame, determine whether at least a portion of the ROI is outside of the second frame, and cause the movable barrier operator to enter a failsafe mode upon the at least a portion of the ROI being outside of the second frame.
US11682115B2

Disclosed is a computer-implemented method of determining an assignment of an object acquire patient image data of interest recognizable in a digital medical patient image such as a tumour or other medical anomaly such as an implant to an anatomical region. The medical patient image is registered with atlas data, The assignment is then determined by calculating a score value defining an amount of volume intersection between the object of interest and a digital object defining a specific anatomic region, for example a bounding box around a specific organ, which is defined in the atlas data.
US11682111B2

A system and method that identify and classify unknown microorganisms and/or known microorganisms with anomalies are provided. The system and method comprise processing images of microorganisms from an aquatic environment; extracting features from the processed images; an unsupervised partitioning algorithm for identifying and classifying known microorganisms in the aquatic environment based upon the extracted features; and a supervised classifier neural network that is trained with the unsupervised partitioning algorithm and identifies and classifies unknown microorganisms and/or known microorganisms with anomalies.
US11682106B2

Examples disclosed herein obtain first image data and the second image data for a foveated image frame to be displayed on a display, the first image data to have a first resolution and the second image data to have a second resolution lower than the first resolution. Disclosed examples also up-sample the second image data based on first metadata to generate up-sampled second image data, the up-sampled second image data to have the first resolution, and combine the first image data and the up-sampled second image data based on second metadata. Disclosed examples further perform, based on third metadata, a combination of at least two different filter operations on an overlap region including a portion of the first image data and a portion of the up-sampled second image data to generate the foveated image frame, the third metadata to specify a width in pixels of the overlap region.
US11682105B2

The technical problem of removing an object depicted in a selected region of an image to create a natural-looking edited image is addressed by providing systems, methods, and computer-readable storage media to perform automatic image inpainting. The method includes replacing the selected region using a color mask. A color mask can be generated using a mean color of pixels from a portion of the image that is distinct from and outside of the selected region.
US11682093B2

A device receives image data of a contractual document that includes an offer including terms of a proposed transaction, converts the image data to text data that identifies text within the contractual document, and receives preferences information for a recipient of the offer. The device identifies key terms within the contractual document by using term identification to analyze the text. The key terms may include a first key term that identifies subject matter of the proposed transaction and other key terms that are part of the offer. The device determines term scores that correspond to likelihoods of the other key terms being favorable to the recipient by using a data model to analyze the key terms and the preferences information. The device, based on the term scores, generates and provides another device with a recommendation to be used in determining whether the accept the offer.
US11682075B2

Systems and methods for processing items in a queue, a system including one or more memory devices storing instructions and one or more processors configured to execute the instructions to perform operations including: analyzing training data to build a predictive model; applying the predictive model to items in a queue to determine scores of the items based on respective probabilities of an entity completing an action for each item; listing the items, sorted by the scores, in a first display view; identifying a first and a second item, respectively having highest and next highest scores; grouping, with each of the first and second items, items that satisfy a grouping condition based on characteristic information of the items; and listing the groups of items including the first and second items, sorted based on the scores of the first and second items, in a second display view.
US11682074B2

System, apparatus, user equipment, and associated computer program and computing methods are provided for facilitating efficient decision-making with respect to a subject entity. In one aspect, a labeled training dataset containing N records respectively corresponding to N entities is provided for training a decision engine based on performing supervised learning. Responsive to receiving a plurality of attribute values for the subject entity requiring a decision relative to an estimate of a performance variable based on at least a portion of the attribute values, the trained decision engine is configured to determine a decision score as a function obtained as a set of linearly decomposed constituent components corresponding to the attribute values of the subject entity, thereby effectuating an objective determination of which attributes contribute to what portions of the decision score in a computationally efficient manner.
US11682070B2

Systems and techniques are disclosed for accessing accounts associated with a user and estimating a value of an attribute associated with the user based upon the retrieved account information. Transaction data associated with an account at an external user account system is received. The transactions are categorized into transaction groups. For each transaction group, a confidence value that the group is associated with the attribute is estimated, based at least in part upon a distribution of transaction amounts for the transactions of the group over a time period associated with the group. An attribute value is estimated for each group, based at least in part upon the transaction amounts of the transaction of the group. In addition a value of the attribute for a future time period may be predicted based upon the transaction groups.
US11682065B2

A computer-implemented method, comprising receiving an order associated with a user, and capturing information associated with a physical attribute of the user; for the order being completed, performing a matching operation on the physical attribute of the user and information associated with a region of the user that includes the physical attribute of the user and respective physical attributes of other users, to determine a closest match; and generating an output that identifies the user associated with the closest match in the information associated with the region of the user, and providing the output to a server to deliver the order to the user.
US11682064B2

Purchase history data is used to automatically create links within a data repository between product sold via an electronic vendor system and a plurality of shopping carts. When a customer performs a search for product, the vendor system queries the data repository to retrieve the plurality of shopping carts that have been linked to the product that is associated within the data repository to the search request. A plurality of customer interface elements, each corresponding to a one of the plurality of shopping carts, is then presented as a result to the search query. A selection of a one of the customer interface elements causes the vendor system to add one or more of the product to the corresponding one of the plurality of shopping carts.
US11682060B2

A system for retrieving products in response to a customer query includes a computing device configured to obtain query information characterizing a query initiated by the customer on an ecommerce marketplace and to determine embedding-based search results comprising a first list of items. The computing device is also configured to obtain legacy search results comprising a second list of items and to blend the embedding-based search results with the legacy search results to obtain blended search results. The computing device is also configured to send the blended search results to the customer.
US11682057B1

Techniques are described for a management system to facilitate a negotiation process and payment for a requested resource between a vehicle and a supplier machine. The vehicle sends a request for the resource to the management system. In response, the management system is configured to identify a set of candidate supplier machines from a plurality of supplier machines that provide the requested resource in accordance with one or more resource parameters. The management system then initiates a negotiation process with each of the supplier machines within the set of candidate supplier machines based on one or more negotiation parameters. Once a transaction for the requested resource is agreed upon, the management system forms a smart contract between the vehicle, the supplier machine, and the management system. The management system executes the smart contract once the resource request is fulfilled to disburse funds from the vehicle to the supplier machine.
US11682056B2

A platform comprising storage; a plurality of APIs; a plurality of resources; and one or more servers, the servers configured to enable a plurality of partners to build and manage a mobile ordering and payment facilitation application comprising a front end application and a back end application, the front end application configured to enable customers of each partner to browse products, purchase, view purchase history, set up product favorites, receive direct marketing, and wherein the back end application allows the partner to fulfill orders, track orders, manage inventory and push direct marketing to customers.
US11682045B2

An electronic device includes an image capture device and a processor. The image capture device captures an image of an environment. The processor is coupled to the image capture device and is configured to receive the image of the environment and determine situational contextual information in the image. The processor also identifies at least one non-intrusive location and performs shape detection on the at least one non-intrusive location. An advertisement asset is received based on the determined situational contextual information and the shape detection.
US11682042B2

This specification describes technologies relating to capturing an image. In general, one aspect of the subject matter described in this specification can be embodied in a device that includes a camera, a GPS receiver, and an application. The application is executed by a data processing apparatus that interacts with the camera, the GPS receiver, and one or more remote servers, to perform operations comprising: activating the camera; presenting, in a display of the device, a digital presentation of a document; guiding a user to capture an image of the document, including presenting, within the display, a user interface feature that visually frames a particular subset of information that is included in the document with other information; capturing the image of the document when the particular subset of information is focused in the camera's view; and uploading the captured image of the document to the one or more remote servers.
US11682037B2

A signage control system comprises: a primary estimation circuitry to use signage-side images and surveillance-side images to estimate a person feature, attributes and behavior of each person captured in these frame images; a storage device to associate and store results of estimations of the person feature, the attributes and the behavior of each specific person; an estimation result linkage circuitry to use the person feature stored in the storage device to link the results of estimations based on the frame images from multiple ones of the cameras for the same person so as to generate a group of estimation results for each person; and a content change circuitry to change a content displayed on the signage to another based on the attributes of each person expected to be in a position where such person can visually recognize the content on the signage, and based on preceding behavior of such person.
US11682029B2

Systems, methods, and computer-readable media for scoring an individual interaction session between a user and a software program are disclosed. A method includes recording, by a processing device, one or more actions undertaken by the user with the software program to obtain recorded session data, determining, by the processing device in real-time, one or more metrics that correspond to at least one of the one or more actions undertaken by the user with the software program, measuring, by the processing device, the one or more actions undertaken by the user based on the one or more metrics to obtain metric data, and providing, by the processing device, the recorded session data and the metric data as an input for one or more of a machine learning algorithm and a predictive analytic algorithm. The one or more of the machine learning algorithm and the predictive analytic algorithm scores the individual interaction session.
US11682016B2

According to a first aspect, there is provided an identity verifier comprising: at least one processor; at least one memory including computer program code; and a communication port coupled to the processor the at least one memory and the computer program code configured to, with the at least one processor, cause the identity verifier at least to: receive, through the communication port, query information to verify an identity provided by a party requesting a financial service; extract a unique identifier of an electronic device from the query information, the electronic device used to request the financial service; calculate a probability of an accuracy of the identity verification by at least determining whether one or more databases contain a record of the unique identifier, the one or more databases storing data used to perform the identity verification; and respond, through the communication port, to the query with the calculated probability.
US11682012B2

A contactless delivery system is provided. The contactless delivery system includes a contactless card storing a cryptogram containing a unique identifier associated with a user account. After entry into a communication field, the contactless card is configured to transmit the cryptogram to a server. Upon receipt of the cryptogram, the server is configured to validate and decrypt the cryptogram, and extract the unique identifier. The server can query a database for an identity of the user account using the unique identifier, generate a digital signature based on the identity of the user account, and transmit a verification notification including the identity of the user account and the digital signature.
US11682001B2

A card having an antenna, one or processors, and memory having stored thereon a first application and a second application configured to receive an input of the card and determine a request associated with the input. The card is further configured to activate, responsive to determining that the request is consistent with a contactless EuroPay-MasterCard-Visa (EMV) data standard, the first application. The first application is configured to communicate, via near field communication (NFC), data to the communicating device via the antenna based on the EMV data standard for payment purposes. The card is further configured to activate, responsive to determining that the request is consistent with a near field communication data exchange format (NDEF) standard, the second application. The second application is configured to communicate, via NFC, data to the communicating device via the antenna based on the NDEF standard for verification/identification purposes.
US11681999B2

A system, including: a non-transitory memory; and one or more hardware processors coupled to the non-transitory memory and configured to read instructions from the non-transitory memory to cause the system to perform operations including: receiving a transaction request from an endpoint device on a network, wherein the endpoint device is registered with a transaction service provider; locating, based on the transaction request, an authorization token corresponding to a payment mechanism, wherein the authorization token is stored to a memory device of the router; in response to receiving the transaction request, transmitting the authorization token to the transaction service provider to retrieve transaction information from the transaction service provider, wherein the transaction information includes payment data for a user of the endpoint device; and transmitting the transaction information to the upstream network location, wherein the upstream network location includes a merchant server.
US11681988B2

Systems, methods, and non-transitory computer-readable media can receive stop point data from a plurality of sources. The stop point data can be aggregated into a central repository. A request for stop point data at a particular location can be received from a first vehicle. The stop point data at the particular location stored in the central repository can be transmitted to the first vehicle.
US11681985B2

Systems and methods for providing automated inventory management of medicine and healthcare items stored within bins in care facilities are disclosed. A method includes providing an interactive storage device for attaching to a bin, and outputting, via an audiovisual element, a visual representation of a local inventory of the bin, receiving a user input, determining a change to the local inventory according to the user input, updating the local inventory in a non-volatile data store according to the change, synchronizing the local inventory with one or more nodes via a communication interface, and receiving, from the one or more nodes via the communication interface, periodic updates for a local cache comprising locations and inventories of one or more remote bins.
US11681982B2

A method determines a processing cluster including one or more stock keeping units (SKUs); divides the processing cluster into a first cluster and a second cluster based on SKU affinities between the one or more SKUs in the processing cluster; determines a first SKU of the first cluster to be replicated to the second cluster based on a demand correlation between the first SKU of the first cluster and a second SKU of the second cluster; replicates the first SKU of the first cluster to the second cluster; responsive to replicating the first SKU of the first cluster to the second cluster, determines whether the first cluster and the second cluster satisfy a defined constraint; and responsive to determining that the first cluster and the second cluster satisfy the defined constraint, assigns the first cluster to a first physical location and assigning the second cluster to a second physical location.
US11681979B2

A method for supply chain management using mobile devices with a server on an electronic data network includes receiving identifying information for a product transmitted from a mobile device via the network, the server being periodically updated with product recall data. The server queries a traceability server via the network for master data and event data related to the product using the identifying information. The server processes the recall data, master data, and event data to produce product data which is output to the mobile device.
US11681974B2

Embodiments of the present disclosure include systems, methods, and devices for tracking a shipment using a wireless tracker. In such embodiments, the wireless tracker determines a location of the wireless tracker device and regulates battery usage of wireless tracker based on the location. In addition, the wireless tracker is configured to determine a current location of the wireless tracker device at one or more intervals such that the one or more intervals are based on a delivery route of the shipment. Moreover, the wireless tracker is configured to receive and verify one or more codes to for a chain of custody of the shipment. Also, the wireless tracker is configured to determine a trigger event based on the location of the wireless tracker device and/or sensor information as well as send a notification to a computer server based on the trigger event.
US11681972B2

A system for centralized status monitoring in a multidomain network. The system includes at least one processor and at least one memory device storing instructions that when executed configure the processor to perform operations. The operations include establishing connections with domains, receiving a first request from a first domain to initiate a monitoring operation, and generating a new entry in a status table stored in a first database. The operations also may include receiving a second request from the second domain to update the monitoring operation and, in response to receiving the second request, updating the new entry in the status table by modifying the status field. The operations may also include applying a monitor operation in response to receiving a third request from a monitoring engine and generating an alert comprising entries in the status table in which the status field matches the category status.
US11681968B2

A system and method for identifying a user is described. The system identifies collaboration metrics based on user interaction data of users of an application from an enterprise. The system accesses enterprise organizational data of the enterprise and identifies topic data from the user interaction data and the enterprise organizational data. The system trains a machine learning model based on the collaboration metrics, the enterprise organizational data, and the topic data.
US11681965B2

A specialized computing environment that includes hardware and data security features to enable competitive organizations to co-analyze proprietary data without revealing the underlying proprietary data to unauthorized users. Proprietary data are stored in volatile memory, which may be automatically erased according to pre-stored criteria. The analysis is performed automatically by a processing unit without human intervention. Analytical results are sanitized (e.g., using data masking) to prevent the analytical result from being tracible to any particular data source. Sanitized analytical results are output without outputting the underlying proprietary data (except to users authorized to validate analytical results). The computing environment is enclosed within a secure enclosure (e.g., a steel box with a lock), does not include any peripheral devices outside the secure enclosure, does not communicate wirelessly, and does not have hardware ports accessible from outside the secure enclosure (except, in some embodiments, a wired connection for a web server).
US11681954B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing parallel generation of output from an autoregressive sequence to sequence model. In one aspect, a blockwise parallel decoding method takes advantage of the fact that some architectures can score sequences in sublinear time. By generating predictions for multiple time steps at once then backing off to a longest prefix validated by the scoring model, the methods can substantially improve the speed of greedy decoding without compromising performance.
US11681940B2

Degeneracy in analog processor (e.g., quantum processor) operation is mitigated via use of floppy qubits or domains of floppy qubits (i.e., qubit(s) for which the state can be flipped with no change in energy), which can significantly boost hardware performance on certain problems, as well as improve hardware performance for more general problem sets. Samples are drawn from an analog processor, and devices comprising the analog processor evaluated for floppiness. A normalized floppiness metric is calculated, and an offset added to advance the device in annealing. Degeneracy in a hybrid computing system that comprises a quantum processor is mitigated by determining a magnetic susceptibility of a qubit, and tuning a tunneling rate for the qubit based on a tunneling rate offset determined based on the magnetic susceptibility. Quantum annealing evolution is controlled by causing the evolution to pause for a determined pause duration.
US11681922B2

An inference system trains and performs inference using a sparse neural network. The sparse neural network may include one or more layers, and each layer may be associated with a set of sparse weights that represent sparse connections between nodes of a layer and nodes of a previous layer. A layer output may be generated by applying the set of sparse weights associated with the layer to the layer output of a previous layer. Moreover, the one or more layers of the sparse neural network may generate sparse layer outputs. By using sparse representations of weights and layer outputs, robustness and stability of the neural network can be significantly improved, while maintaining competitive accuracy.
US11681920B2

Embodiments of the present disclosure disclose a method and apparatus for compressing a deep learning model. An embodiment of the method includes: acquiring a to-be-compressed deep learning model; pruning each layer of weights of the to-be-compressed deep learning model in units of channels to obtain a compressed deep learning model; and sending the compressed deep learning model to a terminal device, so that the terminal device stores the compressed deep learning model. By pruning each layer of weights of the deep learning model in units of channels, the parameter redundancy of the deep learning model is effectively reduced, thereby improving the computational speed of the deep learning model and maintaining the model accuracy.
US11681905B2

Systems and methods related to hardware-assisted gradient optimization using streamed gradients are described. An example method in a system comprising a memory configured to store weights associated with a neural network model comprising L layers, where L is an integer greater than one, a gradient optimizer, and a plurality of workers is described. The method includes during a single burst cycle moving a first set of gradients, received from each of the plurality of workers, from at least one gradient buffer to the gradient optimizer and moving weights from at least one buffer, coupled to the memory, to the gradient optimizer. The method further includes during the single burst cycle writing back the new weights, calculated by the gradient optimizer, to the memory. The method further includes during the single burst cycle transmitting the new weights, from the gradient optimizer, to each of the plurality of workers.
US11681904B2

Disclosed in a processor chip configured to perform neural network processing. The processor chip includes a memory, a first processor configured to perform neural network processing on a data stored in the memory, a second processor and a third processor, and the second processor is configured to transmit a control signal to the first processor and the third processor to cause the first processor and the third processor to perform an operation.
US11681901B2

A residual estimation with an I/O kernel (“RIO”) framework provides estimates of predictive uncertainty of neural networks, and reduces their point-prediction errors. The process captures neural network (“NN”) behavior by estimating their residuals with an I/O kernel using a modified Gaussian process (“GP”). RIO is applicable to real-world problems, and, by using a sparse GP approximation, scales well to large datasets. RIO can be applied directly to any pretrained NNs without modifications to model architecture or training pipeline.
US11681892B2

A method for producing hoselines having at least the following working steps: a) providing a hoseline or pipeline blank (1, 2, 3) of at least one elastomeric and/or thermoplastic base material in a production device, while reinforcing elements may be embedded in the base material; and b) introducing an RFID structure (4, 4A, 4B, 4C) into the outer layer (3) of the hoseline or pipeline blank (1) in the axial direction parallel to the longitudinal axis of the hoseline or pipeline blank (1) and synchronously with the feed rate of the production device, the RFID structure having at least one carrier (4A) and the RFID structure (4, 4A, 4B, 4C) having RFID chips (4B) securely arranged on the carrier (4A) at predetermined spaced intervals.
US11681889B1

RFID technology may be used to provide digital identities for physical items. An RFID IC attached to or integrated into a physical item contains an identifier for the physical item. Digital identity information associated with the item, such as ownership information, history, properties, and the like, may be located on one or more networks. An entity, after authenticating itself and/or the item, may use the identifier to locate, retrieve, and/or update the item's digital identity information on the network.
US11681879B2

A method, computer system, and a computer program product for masking identifying traits contained in response text is provided. Embodiments may include receiving a request to anonymize response text in response to a predefined respondent interaction, wherein the response text is generated by the respondent and then obtaining the response text, wherein the obtained response text has semantic characteristics. Next, the obtained response text may be input into a natural language processing (NLP) algorithm and thereafter receiving an alternative masking text as output from the NLP algorithm, wherein the received alternative masking text maintains the semantic characteristics of the obtained response text. Finally, the response text may be replaced with the received alternative masking text.
US11681877B2

An agent automation system implements a virtual agent that is capable of learning new words, or new meanings for known words, based on exchanges between the virtual agent and a user in order to customize the vocabulary of the virtual agent to the needs of the user or users. The agent automation framework has access to a corpus of previous exchanges between the virtual agent and the user, such as one or more chat logs. New words and/or new meanings for known words are identified within the corpus and new word vectors are generated for these new words and/or new meanings for known words and added to refine a word vector distribution model. The refined word vector distribution model is then utilized by the agent automation system to interact with the user.
US11681873B2

Methods, apparatus, and products for creating an executable process from a text description written in a natural language in accordance with the present invention are described. A set of propositions is extracted from a text document written in a natural language. Based on the set extracted of propositions, a set of formulas is extracted from the text document. A state transition graph comprising a set of proposition value determination paths constrained by the set of formulas is then created. The state transition graph is translated into a software application.
US11681861B2

The present disclosure relates to systems for creating, organizing, viewing, and connecting annotations of web documents within web browsers that are made to be annotation capable. The rationale for designing systems using the principles disclosed herein is explained in detail. This rationale is illustrated using sequence diagrams and use case diagrams to elucidate the need for the design principles and data structures employed. The disclosure also provides exemplary hardware specifications and describes design tradeoffs.
US11681840B1

Model metadata for each of a plurality of mathematical models is stored. Data describing two sets of models is received. Each of the sets identifies one or more models of the plurality of mathematical models. One of the sets comprises a transition-from set and one of the sets comprises a transition-to set. Data describing a launch date for commencing a transition from executing the model(s) in the transition-from set to executing the model(s) in the transition-to set is received. Data describing a transition period of time for the transition is received. The models in the transition-from set and in the transition-to set are executed during the transition period of time. An output of the execution of the model(s) in the transition-from set is combined with an output of the execution of the model(s) in the transition-to set. The output is stored in a database.
US11681837B2

A method for 3-D block modelling of a resource boundary in a post-blast muckpile to optimize destination delineation for resource control is provided. An in-situ pre-blast model of an ore deposit to be mined, movement data, blast design and explosive loading information, and post-blast topographic data are input in to the memory of a general purpose computer. Using the pre-blast block model, movement data, blast design and explosive loading information, and post-blast topographic data a three-dimensional vector field is generated. The method uses the three-dimensional vector field to move a plurality of centroids of the in-situ block model to populate a three-dimensional post-blast location. Then method optimizes the populated three dimensional post-blast location to determine a plurality of sets of optimal dig boundaries.
US11681836B2

A computer-implemented method for computing an envelope (BE) for a building to be designed, the method comprising: defining an initial volume (IV) of the building; and for each one a plurality of points (P1, P2, P3) of a boundary (PRB) of a neighboring region (PR) of the building, computing a cutting surface (CS) and modifying the initial volume by cutting out portions thereof extending above said cutting surface; wherein each cutting surface is defined in such a way that the initial volume, modified by cutting out portions thereof extending above it, projects over the corresponding point of the boundary a shadow (SW) whose duration is equal to a predetermined value; said envelope being defined by a boundary surface of a remaining volume. A computer program product, a non-transitory computer-readable data-storage medium and a Computer Aided Design system for carrying out such a method.
US11681827B2

The disclosure herein generally relates to the field of privacy preserving in an application, and, more particularly, to enabling privacy in an application using fully homomorphic encryption. The disclosure more specifically refers to enabling a most optimal FHE for privacy preserving for the application based on a set of constraints using a disclosed set of optimization tasks. The set of optimization tasks comprise a multi objective-multi constraint optimization task and a single objective-multi constraint optimization task, that identifies an optimal FHE library, along with an associated FHE functionality and an optimal configuration of the associated FHE functionality based on the set of constraints. The identified FHE library along with the associated FHE functionality and the optimal configuration of the associated FHE functionality facilitate optimal implementation of privacy in the applications.
US11681814B2

A mobile device may generate a plurality of signals based on sensor data received from a plurality of sensors associated with the mobile device. Based on a logic combination of the plurality of signals, the mobile device may detect its status indicating one of different scenarios. Based on the detected mobile device status and a configured policy, the mobile device may determine a type of deletion action for deleting data on the mobile device. The mobile device may perform the determined type of deletion action.
US11681809B2

An information processing apparatus includes a first verification unit configured to perform hardware verification of the hardware by using a hardware verification unit, and if the hardware verification is successful, performs a software verification of software stored in a storage unit. If both verifications are successful and a particular function is executed, a second verification unit performs software verification of a program stored in the storage unit. And, if one or both of the verifications is unsuccessful, a restriction unit restricts use of the information processing apparatus.
US11681800B2

A system for conducting a security recognition task, the system comprising a memory configured to store a model and training data including auxiliary information that will not be available as input to the model when the model is used as a security recognition task model for the security recognition task. The system further comprising one or more processors communicably linked to the memory and comprising a training unit and a prediction unit. The training unit is configured to receive the training data and the model from the memory and subsequently provide the training data to the model, and train the model, as the security recognition task model, using the training data to predict the auxiliary information as well as perform the security recognition task, thereby improving performance of the security recognition task. The prediction unit is configured to use the security recognition task model output to perform the security recognition task while ignoring the auxiliary attributes in the model output.
US11681799B2

Provided are a computer program product, system, and method for using trap cache segments to detect malicious processes. A trap cache segment to the cache for data in the storage and indicated as a trap cache segment. Cache segments are added to the cache having data from the storage that are not indicated as trap cache segments. A memory function call from a process executing in the computer system reads data from a region of a memory device to output the read data to a buffer of the memory device. A determination is made as to whether the region of the memory device includes the trap cache segment. The memory function call is blocked and the process is treated as a potentially malicious process in response to determining that the region includes the trap cache segment.
US11681794B2

Embodiments bypass Address Space Layout Randomization (ASLR) executed on a web server that implements a web function. Embodiments, from a client remote from the web server, construct a stack layout of the web function. Embodiments identify memory locations of the stack layout that are writable and read a currently stored library instruction address of a library at the identified memory locations. Embodiments then iteratively increment the currently stored library instruction address by one and overwriting the identified memory locations until a remote shell is successfully spawned or another malicious instruction is executed.
US11681793B2

Technologies for memory management with memory protection extension include a computing device having a processor with one or more protection extensions. The processor may load a logical address including a segment base, effective limit, and effective address and generate a linear address as a function of the logical address with the effective limit as a mask. The processor may switch to a new task described by a task state segment extension. The task state extension may specify a low-latency segmentation mode. The processor may prohibit access to a descriptor in a local descriptor table with a descriptor privilege level lower than the current privilege level of the processor. The computing device may load a secure enclave using secure enclave support of the processor. The secure enclave may load an unsandbox and a sandboxed application in a user privilege level of the processor. Other embodiments are described and claimed.
US11681791B2

A human challenge can be presented in an augmented reality user interface. A user can use a camera of a smart device to capture a video stream of the user's surroundings, and the smart device can superimpose a representation of an object on the image or video stream being captured by the smart device. The smart device can display in the user interface the image or video stream and the object superimposed thereon. The user will be prompted to perform a task with respect to one or more of these augmented reality objects displayed in the user interface. If the user properly performs the task, e.g., selects the correct augmented reality objects, the application will validate the user as a person.
US11681779B1

Disclosed are a notification service server and an operating method thereof. The present invention presents a notification service server capable of providing an access notification service to harmful sites and an operating method thereof to support a manager to prevent a client terminal from accessing a harmful site.
US11681773B2

Provided is an apparatus comprising a processor and one or more computer readable mediums collectively including instructions that, when executed by the processor, cause the processor to: acquire a candidate for a solution of an optimization problem for optimizing a third objective function based on a first objective function and a second objective function; obtain, as another candidate for the solution of the optimization problem, a solution that optimizes the second objective function under a constraint corresponding to a value of the first objective function for the acquired candidate; and select the solution of the optimization problem from among the plurality of candidates for the solution of the optimization problem. Also provided as the first aspect are a method and non-transitory computer readable storage medium.
US11681772B2

Methods, systems, and media enabling a progressive web application (PWA) across a web domain are provided. The PWA may be enabled by web applications among a plurality of web applications executing respective portions of the PWA functionality via linking a root level web page to a manifest. The manifest may contain metadata describing a PWA architecture across the web domain. Enabling the PWA may further include executing, by a root service worker, one or more scripts configured to enable registration by one or more component service workers according the manifest To enable the PWA, applications among a plurality of web applications, and registering, by the one or more component service workers, the web applications among the plurality of web applications.
US11681770B2

In one general embodiment, a computer program product for determining whether to process a uniform resource locator (URL) comprises a computer readable storage medium having program instructions embodied therewith, wherein the computer readable storage medium is not a transitory signal per se, and where the program instructions are executable by a processor to cause the processor to perform a method comprising selecting, by the processor, a portion of a hash table, identifying, by the processor, a plurality of uniform resource locators (URLs) stored within the selected portion of the hash table, and for each of the plurality of identified URLs, individually determining, by the processor, whether to process the identified URL, based on data associated with the identified URL.
US11681769B2

A system for preparing and delivering digital information, particularly digital newspaper editions, to mobile application users. The system includes mobile applications (apps) for both mobile phone and tablet devices, with content display and interactivity of each app optimized for device type. The system also includes a suite of back-office software modules which allow writers and editors to prepare stories, images and other content for delivery to the apps. One such module is a story creator, which includes an interface to a content management system allowing plain text stories and images to be imported, formatted and made interactive for delivery to the apps. The story creator module also includes interfaces to providers of data such as obituaries, classified ads and weather, and functionality for publishing daily editions of the digital newspaper using the imported content. Other features of the system include breaking news alerts, paywall integration, and interfaces to social media.
US11681764B2

A system and method for determining social media trending activity of content on the internet is disclosed. The method may include establishing source(s) of internet content, detecting measurements of social media activity for the content in the sources, aggregating the measurements, storing the aggregated measurements in a database over a range of time, calculating a rate of change of the aggregated measurements over the range of time, and comparing the calculated rate of change with the aggregated measurement to obtain a trending value for the content.
US11681763B2

Popopmomom and Kiddoflock apps using AI bots lets the family member to share memories and life experiences with other family members in most easiest and in a more secure way. AI BOT automatically builds the biography once all the questions are answered by the Popopmomom user.
US11681758B2

Processing user queries using a bot program by executing a bot program, wherein executing the bot program further comprises: processing output data of an application program; detecting status messages in the output data; generating bot queries related to the status messages; providing the bot queries to a user, in response to the providing of the bot queries to the user, receiving a user query from the user, wherein the user query is based at least in part on the bot queries, determining one or more solutions to the user query using a knowledge base, and applying a selected solution of the solutions.
US11681749B2

Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing at least one program and a method for ranking videos. The program and method include storing, in a database, a plurality of videos; obtaining, for a first of the plurality of videos, first data representing a first interaction performed by a creator of the first video in association with the first video; and obtaining, for the first video, second data representing a second interaction performed by a consumer of the first video in association with the first video. A score is computed for the first video based on the first and second data and the first video is ranked relative to a remaining subset of the plurality of videos by comparing the computed score for the first video with respective scores of videos in the remaining subset of the plurality of videos.
US11681740B2

In various implementations, streams are sent and received by a computing device engaged in an authoring session with respect to an electronic document. The computing device stores the streams in multiple container files associated with an instance of the electronic document open on the computing device. The device maintains an indices file to reflect a presence of the streams in the container files, such that fast access can be provided to the streams at a later time. The indices file comprises multiple probabilistic data structures corresponding to the container files that each indicate on a probabilistic basis whether a given stream is present in a corresponding one of the container files. The computing device uses the indices file to retrieve the streams from the container files.
US11681737B2

The present disclosure relates to a retrieval method including: generating a graph representing a set of users, items, and queries; generating clusters from the media items; generating embeddings for each cluster from embeddings of the items within the corresponding cluster; generating augmented query embeddings for each cluster from the embedding of the corresponding cluster and query embeddings of the queries; inputting the cluster embeddings and the augmented query embeddings to a layer of a graph convolutional network (GCN) to determine user embeddings of the users; inputting the embedding of the given user and a query embedding of the given query to a layer of the GCN to determine a user-specific query embedding; generating a score for each of the items based on the item embeddings and the user-specific query embedding; and presenting the items having the score exceeding a threshold.
US11681736B2

A system and method for tagging a region within a frame of a distributed video file to permit easier retrievability of the region of interest.
US11681731B2

Disclosed herein are embodiments of systems, methods, and products comprising a data power server for secure storage and retrieval of trade data. The server receives a request from a user to review or confirm one or more trade documents via a webserver. The server communicates with a connector grid server to retrieve the user's accessible documents. The connector grid server determines the electronic file IDs that are accessible to the user based on the accessibility policy. The server instructs a digital library server to download the electronic files containing the requested trade data. The digital library server retrieves and downloads the electronic files based on the file IDs. The webserver renders a GUI displaying the electronic files on an electronic client device operated by the user. Upon receiving the confirmation response from the user, the server instructs the digital library server to update the trade status.
US11681728B2

An event display method and an event display device are provided. The method includes: acquiring types of events; setting colors for the events based on the types of the events; grouping the events based on starting times and ending times of the respective events; and displaying the events based on the grouping and colors of the events. According to the embodiments, the event type, event distribution and event duration can be intuitively displayed, the user can quickly screen out valid events and quickly acquire valid information of the events, thereby quickly positioning a fault and determining a cause for the fault.
US11681714B2

A method for a multi-channel search includes receiving a specific post selection submitted in a first channel and query text associated with the specific post in the first channel, where the query text includes one or more words for performing a query evaluation. The method receives a query location which includes a plurality of channels for performing the query evaluation. Responsive to extracting one or more ranking factors from the specific post selection, the method performs the query evaluation at the query location to collect a plurality of potential matching posts based on the one or more ranking factors. The method reorders the plurality of potential matches according to a plurality of determined scores for the plurality of potential matches. The method displays two-dimensional search results based on a timeline and channel relevancy, where the plurality of channels is ordered according to channel relevancy compared to the first channel.
US11681711B2

An automated data entry system comprising target database servers for storing target database(s), a processing server configured to execute a client-application and configured to store a plurality of data objects including a document schema and a target database schema corresponding to the target database(s), and a client terminal connected to the processing server, configured to: generate a first graphical interface for connection to a target database, and to execute a second graphical interface for connection to the client-application. The processing server may also receive an electronic data file representing an unprocessed document, to associate the unprocessed document with a document schema and extract a data variable based on the document schema, and to generate a database operation comprising the data variable configured according to a target database schema. The client terminal is configured to receive the database operation and execute the database operation against a target database.
US11681710B2

Security Information and Event Management tools, log management tools, log analysis tools, and other event data management tools are enhanced. Enhancements harvest entity extraction rules from queries, query results, and other examples involving the extraction of field values from large amounts of data, and help perform entity extraction efficiently. Entity extraction operations locate IP addresses, usernames, and other field values that are embedded in logs or data streams, for example, and populate object properties with extracted values. Previously used extraction rules are applied in new contexts with different users, different data sources, or both. An entity extraction rules database serves as a model that contains rules specifying parsing mechanisms. Parsing mechanisms may include regular expressions, separation character definitions, and may process particular file formats or object notation formats or markup language formats. A recommender suggests extraction rules to users, based on frequency, machine learning classifications, correctness certainty, or other considerations.
US11681708B2

A query directed at a source table organized into a set of batch units is received. The query comprises a regular expression search pattern. The regular expression search pattern is converted to a pruning index predicate comprising a set of substring literals extracted from the regular expression search pattern. A set of N-grams is generated based on the set of substring literals extracted from the regular expression search pattern. A pruning index associated with the source table is accessed. The pruning index indexes distinct N-grams in each column of the source table. A subset of batch units to scan for data matching the query are identified based on the pruning index and the set of N-grams. The query is processed by scanning the subset of batch units.
US11681702B2

Disclosed herein are system, method, and computer tangible medium embodiments for generating a relational database model from a model view that provides an estimate for generating query plan for a query on the model view, according to an embodiment. A join model of a model view set on one or more database tables is received. At least one index conversion of the join model is performed, where the index conversion converts at least one index in the join model into at least one leaf node in a relational model tree. At least one join conversion of the join model is performed where the at least one join conversion generates a node in the relational model tree that joins a first and second leaf nodes in the relational model tree. A requested parameter conversion is performed, where the requested parameter conversion includes an attribute or key figure requested by a query.
US11681669B2

Method and system for correlating multiple device entries within a domain is disclosed. The method may include receiving a first correlation key comprising a set of device properties associated with a first device from a first plugin. The method may further include comparing the first correlation key with each of a plurality of second correlation keys stored in a device database. The method may further include determining whether a second correlation key from the plurality of second correlation keys in the device database corresponds to the first device, based on the comparing. The method may further include selectively correlating the first device with a second device from the plurality of second devices mapped to the second correlation key in the device database, based on the determining.
US11681666B2

Systems and methods for a bouncing replication protocol are described herein. The system can include a replication cluster including a plurality of servers and a master controller that can receive a first request to replicate a first transaction and execute a batching process to replicate the first transaction. The batching process can include selecting a first server for replication of the first transaction, determining that a pending acknowledgement from the selected first server has not been identified, adding the first transaction to a first batch for the first server, and sending the first batch including only the first transaction. The master controller can receive a second request to replicate a second transaction, execute the batching process with the master controller to replicate the second transaction, which executing of the batching process includes adding the second transaction to a second batch including a plurality of transactions, receive an acknowledgement indicative of completion of replication, and send the second batch upon receipt of the acknowledgement indicative of completion of replication.
US11681661B2

Hybrid synchronization using a shadow component includes detecting a first component of a plurality of mirrored components of a distributed data object becoming unavailable. The mirrored components include a delta component (a special shadow component) and a regular mirror (shadow) component. The delta component indicates a shorter history of changes to data blocks of a log-structured file system (LFS) than is indicated by the regular mirror component. During the unavailability of the first component, at least one write I/O is committed by the delta component. The commit is tracked by the delta component in a first tracking bitmap associated with the delta component. Based at least on detecting the first component becoming available, the first component is synchronized with data from the delta component, based at least on changed data blocks indicated in the first tracking bitmap.
US11681658B2

A computer implemented method of reducing data elements in a data file includes: receiving a data file including one or more primary data elements; storing the data file in a memory coupled to the processor; generating, from at least one of the one or more primary data elements, a plurality of supplemental data elements; determining whether any of the plurality of supplemental data elements and any of the primary data elements offset each other; and upon determining that at least one of the plurality of supplemental data elements and at least one of the primary data elements offset each other, deleting, from the data file, at least one of the offset supplemental data elements or primary data elements.
US11681657B2

A method, computer program product, and computer system for organizing a plurality of log records into a plurality of buckets, wherein each bucket is associated with a range of a plurality of ranges within a backing store. A bucket of the plurality of buckets from which a portion of the log records of the plurality of log records are to be flushed may be selected. The portion of the log records may be organized into parallel flush jobs. The portion of the log records may be flushed to the backing store in parallel.
US11681652B2

Embodiments of the present disclosure provide methods, electronic devices and computer program products for accessing data. A method comprises receiving, at a first device, a file system operation request for accessing target data, the target data being stored at a second device after being pre-processed, and the first device providing a file system interface for data stored at the second device; forwarding the file system operation request to the second device, such that the target data is restored at the second device; receiving the restored target data from the second device; and providing the target data as a response to the file system operation request. Embodiments of the present disclosure allow users to access backup data stored after being pre-processed through normal file system operations and can achieve high data access performance.
US11681647B2

An electronic apparatus and a hot-swappable storage device thereof are provided. The hot-swappable storage device includes a carrier, a connector, a controller, and a wireless communication interface. The carrier is configured to carry a plurality of storage components. The connector is configured to be electronically connected to a host end for performing a data transfer operation. The controller detects a connection status between the connector and the host end. The wireless communication interface decides whether to perform the data transfer operation according to the connection status.
US11681646B1

A server rack has server sleds, each including a motherboard upon which is mounted: a memory module, a cache, at least one CPU connected to the cache, a memory controller connected to the cache and the memory module, an I/O hub, and a fabric interface (FIC) having a memory bridge and optical transceivers, where this memory bridge is connected to the I/O hub through this motherboard. The rack also has a memory sled disaggregated from the server sleds and that includes: a motherboard upon which is mounted: memory modules and a FIC having a memory bridge, a memory controller and optical transceivers, wherein this memory controller is connected to these memory modules through this motherboard, and wherein this memory bridge connects the memory controller to the optical transceivers. The rack has a photonic cross-connect switch interconnected by optical fiber cables to the optical transceivers of the server and memory sleds.
US11681630B2

A device for processing commands to manage non-volatile memory includes a controller configured to obtain address information from a command, read, based on the address information, an entry of a metadata table, and determine, based on the entry of the metadata table, whether a metadata page corresponding to the address information is being processed by the controller. In response to determining that the metadata page corresponding to the address information is being processed, the controller determines a processing status of the metadata page, among a plurality of processing statuses, based on the entry of the metadata table and processes the command according to the processing status of the first metadata page. In response to determining that the metadata page corresponding to first address information is not being processed, the controller reads the metadata page from the non-volatile memory based on the entry of the metadata table.
US11681628B2

A first cache of a first IOA is detected storing an amount of data that satisfies a memory shortage threshold. A request for extra memory for the first IOA is transmitted. The request is sent in response to detecting that the first cache stores the amount of data that satisfies the memory shortage threshold. The request is transmitted to a plurality of IOAs of a computer system. A second cache of a second IOA is detected storing an amount of data that satisfies a memory dissemination threshold. Memory of the second cache is allocated to the first cache. The memory is allocated in response to the request and the amount of data in the second cache satisfying the memory dissemination threshold.
US11681613B2

Various examples are directed to systems and methods for managing a memory device. Processing logic may identify a set of retired blocks at the memory device that were retired during use of the memory device. The processing logic may modify a first table entry referencing the first block to indicate that the first block is not retired. The processing logic may also modify a second table entry referencing the second block to indicate that the second block is not retired. The processing logic may also recreate a logical-to-physical table entry for a first page of at the first block, the logical-to-physical table entry associating a logical address with the first page.
US11681611B2

Various systems and methods for computer memory overcommitment management are described herein. A system for computer memory management includes a memory device to store data and a mapping table; and a memory overcommitment circuitry to: receive a signal to move data in a first block from a memory reduction area in the memory device to a non-memory reduction area in the memory device, the memory reduction area to store data using a memory reduction technique, and the non-memory reduction area to store data without any memory reduction techniques; allocate a second block in the non-memory reduction area; copy the data in the first block to the second block; and update the mapping table to revise a pointer to point to the second block, the mapping table used to store pointers to memory device in the memory reduction area and the non-memory reduction area.
US11681603B2

An illustrative resolution is generated using a computer for a reported operational issue while using a computer system. A learning model is developed using the computer to facilitate resolving an operational error of a computer system. The learning model can include generating an error report, based on tracking user inputs into a computer system and a plurality of state transitions of the computer system, respectively, when the operational error is not resolved by the user inputs. An error screenshot for each operational step associated with the user inputs is generated. A state transition is cross referenced to a corresponding operational step, and to a best practice in a user's manual, respectively. A deviation of an operational step from a best practice in the user's manual, respectively, is generated. An error screenshot is marked illustratively to show the deviation from the best practice in comparison to the operational step.
US11681599B2

A storage device includes at least one non-volatile memory device, a first temperature sensor and a second temperature sensor arranged adjacent to the at least one non-volatile memory device, and a controller controlling an operation performance level of the at least one non-volatile memory device based on a plurality of performance tables, a first temperature detected by the first temperature sensor, and a second temperature detected by the second temperature sensor. Each performance table includes a plurality of entries, and each entry includes information regarding the operation performance level of the at least one non-volatile memory device. Each performance table corresponds to a result of a calculation regarding the first temperature and the second temperature.
US11681592B2

Obtaining a consistent set of snapshots of a group of storage volumes includes obtaining a plurality of snapshots, each of the snapshots being for one of the volumes, determining if there are any specific write operations to at least one volume that occurred after obtaining a first one of the snapshots and before obtaining a last of the snapshots, if there are any specific write operations, discarding the plurality of snapshots, and, if there are no specific write operations, designating the plurality of snapshots as the consistent set of snapshots. Obtaining a consistent set of snapshots may include repeatedly obtaining a plurality of snapshots and determining if there are specific write operations until either a particular condition is met or there are no specific write operations determined. The particular condition may be exceeding a predetermined number of iterations or a predetermined time limit.
US11681591B2

Disclosed herein are systems and method for restoring a clean backup after a malware attack. In one aspect, a method forms a list of files that are of a plurality of designated file types that can be infected by malicious software. The method performs one or more snapshots of the files according to a predetermined schedule over a predetermined period of time and performs one or more backups. The method determines that a malware attack is being carried out on the computing device and generates a list of dangerous objects that spread the malware attack. The method compares the list of dangerous objects with the one or more snapshots to determine when the malware attack occurred. The method identifies a clean backup that was created most recently before the malware attack as compared to other backups and recovers data for the computing device from the clean backup.
US11681590B2

Example apparatus and methods process virtual machine image level backups that may include files that are compressed and files that are not compressed. Example apparatus and methods may produce virtual machine image level backups by selectively compressing some files associated with the image while leaving other files in their uncompressed state. Example apparatus and methods may selectively recover a file or even an entire disk image from an image level backup that may include both compressed files and files that are not compressed. The file recovery or image recovery may be performed at the file level by accessing files in the image and selectively decompressing files that are compressed in the image while passing through files that are not compressed in the image. Different files in a single image may be compressed or decompressed using different techniques.
US11681581B1

Effective use of cyclic redundancy check (CRC) signatures is achieved where each sector of a flash management unit (FMU) has a distinct CRC signature. The CRC signatures are XORed together to create a total CRC signature for the FMU. When a host device updates a single sector of the FMU, the CRC signature for the updated single sector can be changed by removing the old CRC signature corresponding to the single sector and replacing the old CRC signature with a new CRC signature corresponding to the updated single sector. The old CRC signature is XORed from the total CRC signature and then the new CRC signature is XORed with the remaining CRC signatures to create a new total CRC signature. In so doing, data integrity is ensured.
US11681566B2

Techniques for load balancing and fault tolerant service are described. An apparatus may comprise load balancing and fault tolerant component operative to execute a load balancing and fault tolerant service in a distributed data system. The load balancing and fault tolerant service distributes a load of a task to a first node in a cluster of nodes using a routing table. The load balancing and fault tolerant service stores information to indicate the first node from the cluster of nodes is assigned to perform the task. The load balancing and fault tolerant service detects a failure condition for the first node. The load balancing and fault tolerant service moves the task to a second node from the cluster of nodes to perform the task for the first node upon occurrence of the failure condition.
US11681564B2

A heterogeneous computing-based task processing method, includes: breaking down an artificial intelligent analysis task into one stage or multiple stages of sub-tasks, and completing, by one or more analysis function unit services corresponding to the one stage or multiple stages of sub-tasks, the artificial intelligent analysis task by means of a hierarchical data flow, wherein different stages of sub-tasks have different types, one type of sub-tasks corresponds to one analysis function unit service, and each analysis function unit service uniformly schedules a plurality of heterogeneous units to execute a corresponding sub-task. The disclosure also provides a heterogeneous computing-based software and hardware framework system and a heterogeneous computing-based task processing device.
US11681561B2

A computer-implemented method and system for receiving, at a first computing device, an application programming interface (API) request from a second computing device, wherein the API request includes at least a first request field and a second request field, evaluating at least the first request field to determine a first complexity measure, assigning a first field score to at least the first request field based on the first complexity measure, evaluating at least the second request field to determine a second complexity measure, assigning a second field score to at least the second request field based on the second complexity measure, and combining the first field score and the second field score to generate a total field score for the API request for use in an API request complexity model for constraining a processing of the received API request from the second computing device.
US11681559B2

Described herein is a system for identifying controls not aligned with updated compliance data. The system may scrub external data sources for updated compliance data. The system may detect and extract the updated compliance data from the external data sources. The system may identify and correlate controls of compliance applications currently using compliance data which has now been updated. The system determines whether a control exists to cover the updated compliance data. In the event, a control does not exist or an existing control does not cover the updated compliance data, a requirement may be generated for generating a new control or modifying an existing control for the updated compliance data.
US11681544B2

Disclosed are aspects of interference-aware virtual machine assignment for systems that include graphics processing units (GPUs) that are virtual GPU (vGPU) enabled. In some examples, an interference function is used to predict interference for assignment of a workload to a graphics processing unit (GPU). The interference function outputs a predicted interference to place the workload on the GPU. The workload is assigned to the GPU based on a comparison of the predicted interference to a plurality of predicted interferences for the workload on various GPUs.
US11681543B2

A hypervisor virtual server system, including a plurality of virtual servers, a plurality of virtual disks that are read from and written to by the plurality of virtual servers, a physical disk, an I/O backend coupled with the physical disk and in communication with the plurality of virtual disks, which reads from and writes to the physical disk, a tapping driver in communication with the plurality of virtual servers, which intercepts I/O requests made by any one of said plurality of virtual servers to any one of said plurality of virtual disks, and a virtual data services appliance, in communication with the tapping driver, which receives the intercepted I/O write requests from the tapping driver, and that provides data services based thereon.
US11681535B2

A method for linking a plurality of virtualized application packages for execution on a computer system is described. A runtime executable of a primary virtualized application package is launched. A secondary virtualized application package to be merged with the primary virtualized application package is identified. In one embodiment, application settings and file data for the first and second virtualized application packages are merged into a single data structure. An execution layer is created by starting execution of one of the application files associated with the primary virtualized application package. Requests from the execution layer to the operating system for configuration settings and contents of application files of either the primary virtualized application package or secondary virtualized application package and providing requested configuration settings are satisfied using configuration settings and file information from both the primary and secondary virtualized application packages.
US11681534B2

An embedded multiprocessor system is provided that includes a multiprocessor system on a chip (SOC), a memory coupled to the multiprocessor SOC, the memory storing application software partitioned into an initial boot stage and at least one additional boot stage, and a secondary boot loader configured to boot load the initial boot stage on at least one processor of the multiprocessor SOC, wherein the initial boot stage begins executing and flow of data from the initial boot stage to the at least one additional boot stage is disabled, wherein the application software is configured to boot load a second boot stage of the at least one additional boot stage on at least one other processor of the multiprocessor SOC and to enable flow of data between the initial boot stage and the second boot stage.
US11681530B2

Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described. In one embodiment, a processor includes a decode circuit to decode a single instruction into a decoded single instruction, the single instruction including at least one first field that identifies eight 32-bit state elements A, B, C, D, E, F, G, and H for a round according to a SM3 hashing standard and at least one second field that identifies an input message; and an execution circuit to execute the decoded single instruction to: rotate state element C left by 9 bits to form a rotated state element C, rotate state element D left by 9 bits to form a rotated state element D, rotate state element G left by 19 bits to form a rotated state element G, rotate state element H left by 19 bits to form a rotated state element H, perform two rounds according to the SM3 hashing standard on the input message and state element A, state element B, rotated state element C, rotated state element D, state element E, state element F, rotated state element G, and rotated state element H to generate an updated state element A, an updated state element B, an updated state element E, and an updated state element F, and store the updated state element A, the updated state element B, the updated state element E, and the updated state element F into a location specified by the single instruction.
US11681527B2

An electronic device includes a memory, a processor, and functional hardware. The memory includes a queue. The processor is configured to write a processing instruction into a target area of the queue. The functional hardware is configured to read the processing instruction from the target area and reserve the target area. The functional hardware generates a completion message according to the processing instruction, and writes the completion message into the target area after the processing instruction is executed. The completion message corresponds to the processing instruction.
US11681520B2

Systems, methods, and computer programming products for loading and upgrading software using DLL files injected into a running target program process by a DLL manager of an injection program. Background services of the injection program allocate virtual memory for the code and data within the memory addresses dedicated to the target program process and injects the code and data by writing the code and data of the DLL manager to the virtual memory. A remote thread created within the target program process, controlled by the injection program, executes the DLL manager code, allowing the DLL manager to load and unload DLL files within the target program process. During runtime of the target program process the software can be upgraded, without rebooting the OS executing the target program process, by instructing the DLL manager to unload the DLL file(s), and load and/or re-load updated DLL file(s) within the target program process.
US11681517B2

A server responds to a request to perform a first automation task to process a work item from the plurality of work items, on a first computing device that is separate and independent from the server. The server receives a request from the first computing device to download the first automation task and queries a distribution information file to identify one or more other computing devices that have a copy of the first automation task. The server provides to the first computing device, an identifier for each of one or more other computing devices that has a copy of the first automation task. If the distribution information file does not contain an identification of any other device that has a copy of the first automation task, then the server processor causes the first automation task to be retrieved and to be provided to the first computing device.
US11681510B2

Embodiments are disclosed for a method. The method includes identifying a prefix updated by a searcher of a machine learning model. The machine learning model is configured to generate source code in a programming language. The method also includes determining whether the prefix violates a semantic correctness property of the programming language. Additionally, the method includes instructing the searcher, in response to the determination, to prune the prefix from a set of prefixes under consideration by the searcher.
US11681507B2

A method includes displaying an application page at a client system, the application page including a context menu container object that is not visibly displayed as part of the application page. During the display of the application page, the context menu container object holds a current set of context menu options and is responsive to a prescribed input to display the context menu as having the current set of context menu options. Further, during display of the application page, the context menu container object consumes events, evaluates logic to determine context menu options to display based on the first event, updates the current set of context menu options and displays the context menu as having the current set of context menu options.
US11681504B1

A computer system enables users to create applications (such as web-based applications) easily by writing textual configuration files, which are automatically processed by the computer system to create a specific web-based application based on the configuration files. In particular, the computer system creates a data store layer, an application layer, and a user interface (UI) layer based on the configuration files. Users who do not have programming experience may write the configuration files. As a result, embodiments of the present invention enable non-programmers to create web-based applications easily and semi-automatically.
US11681503B2

A method, system, and computer program product for implementing machine learning visual code and action generation is provided. The method includes receiving from a plurality of hardware and software sources, digital description data associated with visual presentations and an action for execution. A resulting code-based class for each portion of the digital description data is generated with respect to the visual presentation. Self learning software code is executed and a type of visual presentation is selected with respect to associated visual features and the code-based class. Additionally, a visual presentation is selected and an action is executed resulting in hardware and software of a server hardware device being operationally modified. The visual presentation is presented to a user.
US11681495B2

Embodiments described herein provide for smart configuration of audio settings for a playback device. According to an embodiment, while a playback device is a part of a first zone group that includes the playback device and at least one first playback device, the playback device applies a first audio setting. The embodiment also includes the playback device joining a second zone group that includes the playback device and at least one second playback device. The embodiment further includes the playback device applying a second audio setting based on an audio content profile corresponding to the second zone group.
US11681479B2

An image forming apparatus includes a sensor configured to detect an original, a nonvolatile storage that includes a semiconductor area, a setting unit configured to execute a setting for dividing the semiconductor area into a plurality of areas, and a controller configured to execute Trim processing on the divided areas in response to passing of a predetermined time period while the image forming apparatus is in a standby state. The controller is configured to stop the Trim processing based on a detection of the original detected by the sensor while the Trim processing is executed.
US11681477B1

A processor of a printing apparatus obtains and maintains the media type of print media located in a media storage component of the printing apparatus. The processor also accesses a reference file containing different printing speed limits for different media types. The reference file can be maintained in an electronic storage component of the printing apparatus. The processor uses the reference file to determine an appropriate printing speed limit for a printing engine of the printing apparatus that corresponds to the media type of the print media in the media storage component. Further, a user interface of the printing apparatus can display an overspeed indicator, and/or the processor can stop the printing from occurring, based on a job-set printing speed of the printing engine being above the printing speed limit.
US11681474B2

A portion of a memory management operation associated with a first current level that satisfies a condition pertaining to a threshold current level and a second current level that satisfies the condition pertaining to the threshold current level is identified. Mask data associated with the portion of the memory management operation is identified. Based on the mask data, a current management action is performed during execution of a requested memory management operation received from a host system.
US11681469B2

The disclosed embodiments are related to storing critical data in a memory device such as Flash memory device. In one embodiment, a method performed by a controller of a memory device comprises receiving a critical operation from a host processor, the critical operation accessing a memory array; retrieving a temperature value of the memory array from a temperature sensor; and conditionally processing the critical operation based on the temperature value.
US11681466B2

Example storage systems, storage devices, and methods provide proactive management of storage operations to, for example, beneficially minimize bottlenecking, latency, and other issues. An example system has a storage pool with a first storage device and a second storage device, and a processor configured to generate a storage request including a storage command, include a command processing time constraint in the storage request, send the storage request to the first storage device, and receive, from the first storage device, a proactive response including an estimation for an execution of the storage command by the first storage device based on the command processing time constraint. The processor may then select a fallback mechanism for executing the storage command based on the proactive response.
US11681457B2

According to some embodiments, for a memory device including a base die and a stack of memory dies including a plurality of memory dies stacked on the base die, the base die including a plurality of first input/output (i/o) terminals that are command/address and data terminals and a plurality of second i/o terminals that are direct access terminals, a method includes receiving at the plurality of first i/o terminals a command/address, a clock signal, and data; first transmitting the command/address, clock signal, and data received by the plurality of first i/o terminals from the base die to the stack of memory dies; and second transmitting at least part of one or more of the command/address, clock signal, and data received by a set of the plurality of first i/o terminals through a circuit of the base die to the plurality of second i/o terminals.
US11681455B2

A smart network interface card in an information handling system monitors a local host memory associated with a computer resource for an update to a memory page in the local host memory. After the update to the memory page, the smart network interface card copies the memory page to its memory. The smart network interface card sets a watchdog timer to detect a failure in an the information handling system that hosts the computer resource and if the failure is detected, then the smart network interface card migrates the computer resource from its to another information handling system.
US11681443B1

A data storage system includes a head node and mass storage devices. The head node is configured to store volume data and flush volume data to the mass storage devices. Additionally, the head node is configured to determine a quantity of data partitions and/or parity partitions to store for a chunk of volume data being flushed to the mass storage devices in order to satisfy a durability guarantee. For chunks of data for which complete copies are also stored in an additional data storage system, the head node is configured to reduce the quantity of data partitions and/or parity partitions stored such that required storage space is reduced while still ensuring that the durability guarantee is satisfied.
US11681438B2

A system can determine to produce a storage device for a user identity indicative of a user. The system can determine a number of extra disks to include with the storage device as part of the production, the extra disks enabling further storage capacity for the storage device beyond a specified storage capacity, the determining of the number of extra disks being based on data from a group of data, the group of data comprising first cost data representative of a first cost associated with including the second number of extra disks, probability data representative of a probability that the further storage capacity beyond the specified storage capacity will be requested during a defined time period after the production, and second cost data representative of a second cost associated with installing the second number of extra disks after the storage device has been delivered to the user site.
US11681429B2

An image editing user interface, displayed by a computer system, for editing a sequence of images (e.g., an enhanced digital image), includes an affordance for turning on, or off, animated playback of the sequence of images, while retaining the sequence of images. While animated playback is turned off, a representative image from the sequence of images is displayed.
US11681422B2

In one aspect, a method provides a display device. The method senses the presence of the user or scene change within the field of view of the system's image sensor with a built-in image signal processor. The method automatically and concurrently powers on the image sensor. The method lights one or more lights around the display device in response to sense the presence of the user or scene change. The method captures one or more frames of images of a user or scene change with the image sensor. Each frame includes an M by N array of pixel data. The M by N array of pixel data comprises a data structure consisting of a collection of pixel elements enumerated as pixel P11 to pixel Pm1. The method stores the M by N array of pixel data as a frame of data written into a frame buffer memory of the display device.
US11681420B2

Methods and systems for presenting transportation options that utilize different modalities are provided. In one embodiment, a method is provided that includes receiving a location of a mobile device. A map may then be generated on the mobile device that depicts an area surrounding the location of the mobile device. An information value of the map may be determined and a first position of a panel may be determined based on the information value. The map and the panel may be displayed, with the panel overlaying at least a portion of the map in the first position.
US11681403B2

A detecting device includes a plurality of drive electrodes extending in a first direction and arrayed in a second direction, a detection electrode facing the drive electrodes in a direction orthogonal to the first direction and the second direction, a drive circuit configured to supply a drive signal to the drive electrodes, and a detector configured to detect proximity of an object to a detection region provided with the detection electrode based on an output from the detection electrode generated according to capacitance generated between the drive electrodes and the detection electrode due to the drive signal.
US11681398B2

The present invention concerns a control system (1) for a micro-motor for dental or surgical use comprising a control box (10) provided with an adjustment knob (2), mounted in a way rotatable about a rotational axis (A-A). The adjustment knob (2) is made up of a control support (20) integral with an encoder (3) integrated in the said box (10), and a sterilizable button (21) coupled in a removable way to the said control support (20).
US11681396B2

Examples of the present disclosure relate to a device, method, and system for optical input diodes. A liquid crystal display (LCD) backlight device may include a processor and a color filter of a pixel including at least one of a red filter, a green filter, or a blue filter. The LCD backlight device may also include a diode to emit light through the color filter in response to being driven by the processor. The diode may generate a voltage in response to light passing through the color filter and arriving on the diode, where an image value may be calculated as a function of the voltage generated and a color filter value of the color filter.
US11681381B2

An active stylus includes an elongate housing having a tip end and a secondary end, opposite the tip end. An inductive charging coil is mounted within the elongate housing, between the tip end and the secondary end. A magnet configured to magnetically hold the inductive charging coil in a charging position and orientation relative to an inductive charger is moveably mounted within the elongate housing between the tip end and the inductive charging coil.
US11681380B2

This application is directed to a capacitive sense array including a two-dimensional array of capacitive sense elements. Each capacitive sense element is formed by a respective intersection of (i) a respective row electrode in a first electrode layer and (ii) a respective column electrode in a second electrode layer. Each column of the capacitive sense elements includes two or more interdigitated column electrodes. Each row electrode forms two or more rows of capacitive sense elements at intersections with the column electrodes.
US11681377B2

A keyboard (110) includes a base board (116), keys (112), pitfalls (120) and a mode control mechanism (118). The keys (112) include cups (1124), and the mode control mechanism (118) may switch the keyboard (110) especially the key cups (1124) between different modes. In case that the keyboard (110) is not in use, these cups (1124) can be received in the pitfalls (120) to reduce the profile of the keyboard (110). In case that the keyboard (110) is to be used, the keys (112) may be raised up and arranged on the base board (116) in order to enable long keystroke and provide good typing experience.
US11681371B2

An eye tracking system comprising a controller configured to receive a reference image of an eye of a user and a current image of the eye of the user. The controller is also configured to determine a difference between the reference image and the current image to define a differential image. The differential image has a two dimensional pixel array of pixel locations that are arranged in a plurality of rows and columns. Each pixel location has a differential intensity value. The controller is further configured to calculate a plurality of row values by combining the differential intensity values in corresponding rows of the differential image and to determine eyelid data based on the plurality of row values.
US11681370B2

A handheld controller is suitable for controlling a virtual reality system. The handheld controller has a pointer direction corresponding to the virtual reality system. The handheld controller includes a holding portion, a knob, and a positioning module. The holding portion is suitable to be held by a hand of a user. The knob is pivotally connected to the holding portion on a rotation axis. The rotation axis is coaxial with or parallel to the pointer direction. The positioning module is connected to the holding portion and is configured to provide a position of the holding portion in a three-dimensional space. In addition, a control method is also provided here.
US11681368B2

An eye tracking system includes at least two cameras configured to register eye images of at least one eye. The system obtains eye images from at least one camera in a subset of the at least two cameras, determines a first pupil parameter based on a first eye image, and determines a second pupil parameter based on a second eye image. The system compares the first and second pupil parameters to obtain a test parameter and checks the test parameter against at least one operation criterion. Responsive to the checking, the system assigns a respective operation state to at least one camera in the subset. The operation state involves one of (A) operating the camera at a high frame rate, (B) operating the camera at a reduced frame rate being lower than high frame rate, (C) the camera being in a standby mode or (D) the camera being powered off.
US11681362B2

Described herein are methods and display systems for enhanced eye tracking for display systems, such as augmented or virtual reality display systems. The display systems may include: a light source configured to output light and a moveable diffractive grating configured to reflect light from the light source, the reflected light forming a light pattern on the eye of the user; a plurality of light detectors to detect light reflected from the eye; and one or more processors. The display system changes the orientation of the diffractive grating, such that the light pattern reflected from the diffractive grating is scanned along an axis across the eye. Light intensity patterns are obtained via the light detectors, with a light intensity pattern representing a light detector signal obtained by detecting light reflected off of the eye as the light pattern is scanned across the eye. Due to differences in how light reflects off of different parts of the eye, different eye poses provide different light intensity patterns and the eye pose is determined based on detected light intensity pattern(s).
US11681350B2

The present disclosure relates to a display device, a luminance control method thereof, and a mobile terminal using the same. The display device includes a display panel in which a pixel array including at least a first pixel region and a second pixel region are disposed; a touch sensor disposed on the pixel array; a display panel driver configured to write pixel data of an input image to pixels in the first pixel region and the second pixel region; a touch sensor driver configured to drive the touch sensor and detect a touch input on the pixel array to generate touch coordinate data; and a luminance control device configured to lower the luminance of one of the first and second pixel regions in at least some gray scales when the touch input is detected on the pixel array.
US11681345B2

A powered device electrical data modeling and intelligence system is used to monitor electrical data of powered devices to determine in-use activity thereof. A number of network-enabled electric plugs are deployed in a region, for example, within certain areas of a floor of a building or within certain floors of a building. Each of the network-enabled electric plugs is configured to deliver electricity from an electricity source to one or more powered devices located in the region. A server runs a web application used to monitor electrical data for the region based on electricity drawn by each of the one or more powered devices. The web application computes usage metrics for the powered devices by modeling electrical data for the powered devices into clusters representative of device operational states. The web application may then determine an operational state of a powered device according to the usage metrics.
US11681337B2

A method of manufacturing a chassis of an HIS includes manufacturing a chassis having a base panel with an upper chassis surface. The method further includes attaching at least one resilient component to the upper chassis surface and that upwardly presents an adhesive surface to fixedly engage and to provide vibration damping for a storage drive that is inserted on the adhesive surface during assembly of the IHS.
US11681334B2

The described technology provides a hinge device including a band including a first band end coupled by a slidable rotatable coupling to a first panel and a second band end coupled by a rotatable coupling to a part of a central support section and a different band including a first different band end coupled by a different slidable rotatable coupling to a second panel and a second different band end coupled by a different rotatable coupling to a different part of the central support section, wherein the central support section is configured to rotate around a virtual pivot axis parallel to each of the first panel and the second panel and located outside a surface plane of each of the first panel and the second panel.
US11681330B2

The present disclosure relates to a supporting member for a display device, a display device including the same, and a manufacturing method of a supporting member for a display device. The supporting member for the display device according to an embodiment includes: a first region and a second region, and a third region positioned between the first region and the second region and made of a non-metal material. The supporting member includes a plurality of patterns positioned in the third region and adjacent to one another along a first direction and a second direction perpendicular to the first direction, where each of the plurality of patterns extends along the second direction.
US11681310B2

An arc detection and intervention system for a solar energy system. One or more arc detectors are strategically located among strings of solar panels. In conjunction with local management units (LMUs), arcs can be isolated and affected panels disconnected from the solar energy system.
US11681306B2

A fluid distribution apparatus that can serve as a fluid metering device that is operable on a single platform by building automation systems. The building automation system may be controllable by a single software system or network accessible locally on site or remotely off site. The fluid distribution apparatus can operate independently or coupled with multiple like apparatuses for system operation. It is a high turndown, self-balancing system which allows for continuous commissioning with built-in fault diagnostic systems and that may be used as a supply system, exhaust system, or a combination thereof. The fluid distribution apparatus includes fluid metering devices that operate progressively based on unique actuation mechanisms and/or algorithms that allow for precise flow control and feedback to self-balance and commission the system.
US11681305B2

In one embodiment, a fluid transfer component for transferring thermal energy comprises a film comprising a polymer with a thickness less than 5 millimeters, an input side constructed to receive fluid that flows from the input side to an active region of the film, more than 20 fluid channels defined by interior surfaces within the film, each fluid channel separated spatially in at least 1 row in a thickness direction of the film, the more than 20 fluid channels have a channel density across the active region greater than 5 fluid channels per centimeter, wherein the thermal energy is transferred to or from an environment and the fluid in the active region. The film may be an extruded microcapillary film or interior surfaces may comprise a surface modified to produce a surface relief profile. The active region may cool or warm the environment, which may comprise an individual.
US11681299B2

A system and method for collecting and processing sensor data for facilitating and/or enabling autonomous, semi-autonomous, and remote operation of a vehicle, including: collecting surroundings at one or more sensors, and determining properties of the surroundings of the vehicle and/or the behavior of the vehicle based on the surroundings data at a computing system.
US11681294B2

A computer-implemented method for prediction of a roadwork zone on at least a second road segment is provided. The method comprises retrieving at least one of map data or first sensor data for at least a first road segment. The method also comprises retrieving ground truth data for at least the first road segment, the ground truth data indicating a true presence or a true absence of a roadwork zone on the at least first road segment. The method further comprises receiving second sensor data associated with the at least second road segment. The method further comprises generating roadwork zone data of the roadwork zone on the at least second road segment, based on the at least one of map data or the first sensor data, the ground truth data, and the second sensor data.
US11681293B2

Utility services related to executing services requiring trips of various lengths, and short-distance assistance to customers. Utility services can be delivered by semi-autonomous and autonomous vehicles on various types of routes, and can be delivered economically. A network of utility vehicles provide the utility services, and can include a commonly-shared dispatch system.
US11681286B2

A remote movement system of the invention comprises an operation terminal and a vehicle electronic control unit. The operation terminal includes a touch sensing portion which senses a finger of a user touching the touch sensing portion and a terminal electronic control unit configured to transmit a control execution command for requesting an execution of a remote movement control to cause a vehicle to move to a target position when movement of the user's finger touching the touch sensing portion satisfies a predetermined touch interaction condition. The vehicle electronic control unit is provided in the vehicle and configured to execute the remote movement control in response to receiving the control execution command from the terminal electronic control unit. The predetermined touch interaction condition does not include a condition that the user's finger moves, touching the touch sensing portion along a predetermined specific path.
US11681284B2

The present disclosure relates to computer-implemented methods, software, and systems for predicting failure event occurrence for a machine asset. Run-to-failure sequences of time series data that include an occurrence of a failure event for the machine asset are received. One or more candidate cut-off values are determined based on iterative evaluation of a plurality of potential cut-off points. A candidate cut-off value is identified as substantially corresponding to a local peak point for calculated distances between relative frequency distributions of positive and negative sub-sequences. A failure prediction model is iteratively trained to iteratively extract sets of relevant features to determine a prediction horizon for an occurrence of the failure event for the machine asset. A candidate cut-off value associated with a model of highest quality from a set of failure prediction models determined during the iterations is selected to determine the prediction horizon for the machine asset.
US11681282B2

Systems and methods are provided for identifying relationships between defects. The system may obtain defect items and associated information. Defect items may be compared to one another based on their attributes to determine how related they are. According to the comparisons, defect items may be grouped together into issue items for further analysis by a user. The system may further update a defect comparison model according to user interaction with defect items.
US11681269B2

Systems, methods, and new file formats are provided for printing 3D microstructures. In some implementations, a new file format is provided that defines 3D objects by a wireframe model expressed as a collection of wires. Because wires and their parameters are defined within the new file format, objects may be processed more efficiently and quickly to support 3D rendering operations. Such methods may be used to print new articles, such as eyelashes, bushes, swabs and other novel items.
US11681265B2

Disclosed is a generating facility management device capable of automatically calculating and determining inspection intervals of generating facilities using a system. In an example embodiment, the generating facility management device calculates inspection intervals of unit devices constituting each of the generating facilities using a time code index, a stressor index and a degradation mechanism index.
US11681257B2

An image projector arranged to project an image onto a display plane. The image projector comprises a processing engine, a display device, an optical element and a light source. The processing engine outputs a computer-generated diffractive pattern comprising a hologram of an image for projection and a lens function corresponding to a lens having a first optical power. The display device is arranged to display the computer-generated diffractive pattern. The optical element is disposed between the display device to the display plane. The optical element has second optical power. The light source is arranged to provide off-axis illumination of the display device in order to spatially-modulated light in accordance with the hologram and lens function. The lens function of the computer-generated diffractive pattern and the optical element collectively perform a hologram transform of the hologram such that a reconstruction of the image is formed on the display plane.
US11681256B2

An image forming apparatus forms an image on a recording material and includes an apparatus body, a first process cartridge including a first photosensitive member and a first developing roller to supply first toner to the first photosensitive member, with the first process cartridge being detachably attached to the apparatus body, and a toner cartridge to accommodate the first toner and detachably attached to the apparatus body independently from the first process cartridge. A second process cartridge includes a second photosensitive member and a second developing roller to supply second toner to the second photosensitive member, with the second process cartridge being detachably attached to the apparatus body and configured not to be replenished with the second toner in a state where the second process cartridge is attached to the apparatus body.
US11681246B2

An image forming apparatus includes: an annular transfer belt to which an image is transferred; a transfer roller that transfers an image to a recording medium when the recording medium passes through a transfer area formed between the transfer roller and the transfer belt; a drive mechanism that causes the transfer roller to rotate; and a speed adjustment mechanism that adjusts a rotational speed of the transfer roller achieved by the drive mechanism in units of a cycle of the transfer roller, and switches between a first adjustment pattern and a second adjustment pattern to execute switched adjustment pattern in a cycle including a state in which the transfer roller transports the recording medium, the first adjustment pattern for adjusting the rotational speed of the transfer roller, the second adjustment pattern for adjusting the rotational speed of the transfer roller with a pattern different from the first adjustment pattern.
US11681243B2

A sealing assembly according to one example embodiment includes a housing and an imaging component positioned on the housing. A seal has opposed first and second edges extending along a longitudinal dimension of the seal. A lateral dimension of the seal is perpendicular to the longitudinal dimension and extends in a direction from the first edge to the second edge. The seal is attached to the housing along the first edge and contacts the imaging component along the second edge. Upon attachment to the housing, the seal is elastically deformed from an unassembled state in which the second edge has a first profile that varies in the lateral dimension along the longitudinal dimension to an assembled state in which the second edge is deformed relative to the first profile to a second profile having less variation in the lateral dimension along the longitudinal dimension than the first profile.
US11681237B2

The present invention provides a lithography apparatus for performing a process of transferring a pattern of an original to each of shot regions two-dimensionally arrayed on a substrate, including a stage that moves while holding one of the substrate and the original, a measurement unit configured to measure, when performing the process, a positional shift amount between a mark provided on the original and a mark provided in each of the shot regions, and a control unit configured to control the process for the shot region so that after the process is performed successively for a plurality of first shot regions included in a first row, the process is performed successively for a plurality of second shot regions included in a second row adjacent to the first row.
US11681236B2

In situ dynamic protection of an optical element surface against degradation includes disposing the optical element in an interior of an optical assembly for the FUV/VUV wavelength range and supplying at least one volatile fluorine-containing compound (A, B) to the interior for dynamic deposition of a fluorine-containing protective layer on the surface. The protective layer (7) is deposited on the surface layer by layer via a molecular layer deposition process. The compound includes a fluorine-containing reactant (A) supplied to the interior in a pulsed manner. A further reactant (B) is supplied to the interior also in a pulsed manner. An associated optical assembly includes an interior in which a surface is disposed, and at least one metering apparatus (123) that supplies a reactant to the interior. The metering apparatus provides a pulsed supply of the compound as a reactant (A, B) for layer by layer molecular layer deposition.
US11681232B2

The present disclosure provides an exhaust system for discharging from semiconductor manufacturing equipment a hazardous gas. The exhaust system includes: a main exhaust pipe having a top surface and a bottom surface; a first branch pipe including an upstream end coupled to a source of a gas mixture containing the hazardous gas and a downstream end connected to the main exhaust pipe through the top surface; a second branch pipe including a downstream end connected to the main exhaust pipe through the bottom surface; and a detector configured to detect presence of the hazardous gas in the second branch pipe.
US11681223B2

A photocurable composition for forming coating film having flattening properties on a substrate, with high fillability into patterns and capability of forming a coating film that is free from thermal shrinkage, which contains at least one compound that contains a photodegradable nitrogen-containing and/or sulfur-containing structure, a hydrocarbon structure, and a solvent. A compound which contains at least one photodegradable structure in one molecule. A compound which contains the photodegradable structures, and the hydrocarbon structure in one molecule, or a combination of compounds which contain the structures in separate molecules. The hydrocarbon structure is a saturated or unsaturated, linear, branched or cyclic hydrocarbon group having a carbon atom number of 1 to 40. The nitrogen-containing structure contains a reactive nitrogen-containing functional group or reactive carbon-containing functional group produced by irradiation with ultraviolet light; and the sulfur-containing structure contains an organic sulfur radical or carbon radical produced by irradiation with ultraviolet light.
US11681222B2

An object of the present invention is to provide a novel fluorine-containing polymer, a radiation-sensitive resin composition for liquid immersion lithography which contains the fluorine-containing polymer, which leads to a pattern having an excellent shape and excellent depth of focus, wherein the amount of an eluted component in a liquid for liquid immersion lithography such as water that comes in contact with the resist during exposure in liquid immersion lithography is little, and which provides a larger receding contact angle between the resist film and the liquid for liquid immersion lithography such as water, and a method for purifying the fluorine-containing polymer. The present resin composition comprises a novel fluorine-containing polymer (A) containing repeating units represented by the general formulae (1) and (2) and having Mw of 1,000-50,000, a resin (B) having an acid-unstable group, a radiation-sensitive acid generator (C), a nitrogen-containing compound (D) and a solvent (E).
US11681215B2

A method for forming a photomask includes receiving a mask substrate including a protecting layer and a shielding layer formed thereon, removing portions of the shielding layer to form a patterned shielding layer, and providing a BSE detector to monitor the removing of the portions of the shielding layer. When a difference in BSE intensities obtained from the BSE detector is greater than approximately 30%, the removing of the portions of the shielding layer is stopped. The BSE intensity in following etching loops becomes stable.
US11681209B1

The disclosed structured light projector may include (1) a light source having a light-emitting side that emits light, (2) a solid optical spacer element having a first side securely coupled to the light-emitting side of the light source, and (3) a diffractive optical element (DOE) stack including one or more DOEs, where the DOE stack includes (a) a light-receiving side securely coupled to a second side of the solid optical spacer element opposite the first side, and (b) a light-emitting side opposite the light-receiving side that emits structured light in response to the light received from the light-emitting side of the light source via the solid optical spacer element. Various other devices and methods are also disclosed.
US11681208B2

The present invention relates to a projector comprising: a housing; a projection part for projecting an image; a projection lens module for expanding and projecting, on an outside screen, the image projected from the projection part; and a position adjustment part for controlling the positions of a first direction and a second direction of the projection lens module. The position adjustment part comprises: a first fixed bracket fixed to the housing and comprising an opening part through which a projection lens passes; a first moving bracket positioned on one surface of the fixed bracket and enclosing the circumference of the projection lens; a second moving bracket positioned on one surface of the first moving bracket and enclosing the circumference of the projection lens; a screw coupled to the first moving bracket in the first direction; a first dial exposed to the outer side by being coupled to the end part of the screw; a second dial positioned in a ring-shape on the circumference of the first dial; and a gear module for moving the second moving bracket in the second direction when the second dial rotates.
US11681207B2

Systems and methods to reduce the appearance of a seam in an image reflected onto a mirror array from a screen is provided. The systems and methods may include a light source to emit light into a seam between a pair of mirrors of the mirror array; a camera for taking a picture of the image displayed on the screen and yielding image data from the picture; and a control system in communication with the light source and the camera. The control system may be operable to cause the light source to emit light of a first color into a first portion of the seam and to emit light of a second color into a second portion of the seam based on the image data, thereby providing colored light in the seam to substantially match colors in the image reflected onto pair of mirrors adjacent to the seam.
US11681204B2

A webcam, a privacy shutter mechanism, and method of electrically activating the privacy mechanism are described. The privacy shutter is part of a webcam and includes privacy shutter mechanism chassis; an electrically activated coil mechanism mounted on privacy shutter mechanism chassis; a locking mechanism mounted on the electrically activated coil mechanism; a shutter plane with a shutter that locks with the locking mechanism, wherein the electrically activated coil mechanism moves the shutter plane in place to open or close the shutter; a fixture having a shutter opening attached to the privacy shutter mechanism chassis; and a shutter locking mechanism that is electrically activated to lock or unlock when the shutter is close or open.
US11681186B2

According to one embodiment, a display device includes a first substrate, a second substrate, and a connection member. The first substrate includes a pad portion. The second substrate includes a transparent conductive film located on an outer surface. The connection member electrically connects the pad portion and the transparent conductive film. The pad portion includes a second metal layer, a first organic insulating film having a first through hole penetrating to the second metal layer, a third metal layer being in contact with the second metal layer in the first through hole, and a second organic insulating film covering an end portion of the third metal layer and having a second through hole penetrating to the third metal layer.
US11681179B2

Provided are a polarizing plate and a display device comprising the same, the polarizing plate comprising: a polarizing film; a polarizing film protection film arranged on at least one surface of the polarizing film; an adhesive layer interposed between the polarizing film and the polarizing film protection film; and a printing layer impregnated in the adhesive layer and formed on at least part of the edge of the adhesive layer, wherein a curve ensuring portion is formed on at least one surface of the printing layer.
US11681178B2

A liquid crystal display panel includes an array substrate and a color filter substrate which are arranged opposite to each other, and a liquid crystal layer. The color filter substrate includes a second substrate, a black matrix, a color resist layer, and photo spacers arranged on a common electrode. The photo spacers are arranged directly under the black matrix. The photo spacer includes a support spacer arranged on the common electrode and a buffer spacer arranged on the support spacer.
US11681170B2

An electrical driver can be used to provide electrical drive signals to a first and second electrically controllable optical privacy glazing structures. A first electrical drive signal can be applied to the first privacy glazing structure and a second electrical drive signal can be applied to the second privacy glazing structure. Applying the first and second electrical drive signal can comprise temporally staggering delivery of the first and second electrical drive signals such that a peak power draw and/or a peak current draw from the first privacy glazing structure is temporally offset from a peak power draw and/or a peak current draw from the second privacy glazing structure. Staggering can include delaying the application of one electrical drive signal relative to the other, phase shifting one electrical drive signal relative to the other, or a combination thereof.
US11681164B2

An electronic contact lens contains electrical components connected by an electrical interconnect. The electrical interconnect has a flat body, with electrical conductors running length-wise along the body. The flat body is oriented perpendicular rather than parallel to the inner and outer surfaces of the contact lens to reduce a visible profile of the interconnect, reducing the amount of light blocked from entering the eye. The body has a curvature shaped to conform to the curvature of the contact lens. As examples, the interconnect may be connected with an electrical component using a tab perpendicular to the flat body of the interconnect, or by forming an edge connection with electrical contacts of the component located along an edge of the component, or through one or more exposed vias formed on the component.
US11681136B2

A microscope control method for operating a microscope, includes: capturing an item of acoustic, graphically represented and/or electronically coded voice information; comparing the voice information with stored reference commands and determining a voice command on the basis of a predetermined degree of correspondence between at least one section of the voice information and a reference command; selecting that reference command to which the voice command corresponds at least to a predetermined degree; generating at least one control command suitable for operating the microscope, wherein the control command is either an invariable control command assigned to the selected reference command or the control command is generated on the basis of a rule assigned to the reference command for forming a generated control command, and controlling the microscope by means of the assigned or generated control command. Also, a microscope is designed to carry out the microscope control method.
US11681132B2

An embodiment of a phase mask includes a light blocking layer disposed on a substrate, where the light blocking layer has a number of optically transmissive regions each configured as a first pattern. The first pattern includes two segments that have different phase configurations from each other, and the light blocking layer includes at least three angular orientations of the first pattern.
US11681131B2

A multi-color LED illumination device and a lens, comprising a cylindrical opening extending into the lens from a light entry region at which one or more LEDs are configured. A concave spherical surface extends across an entirety of a light exit region of the lens, and a TIR outer surface shaped as a CPC extends between the light entry region and the light exit region. There are various diffusion elements placed on sidewall and upper planar surfaces of the cylindrical opening, as well as on the exit surface of the lens. Lunes can also be configured on the sidewall surfaces of the cylindrical opening. The combination of lunes, diffusion elements, and the overall configuration of the lens provides improved color mixing and output brightness using three interactions in a first portion of light and two interactions in a second portion of light. The interactions include two refractions, either with or without an intermediate reflection.
US11681130B2

According to at least one embodiment, a lens mirror array includes a plurality of optical elements. An optical element of the plurality of optical elements includes an incident surface on which light is incident, an emitting surface configured to emit the light incident through the incident surface, at least one reflecting surface reflecting the light incident through the incident surface toward the emitting surface, and a light shielding portion configured to block the light. The incident surface includes an effective surface configured to pass effective light emitted from the emitting surface and a directional surface configured to direct unnecessary light to the light shielding portion.
US11681126B2

An optical imaging system includes a plurality of lenses disposed along an optical axis, and a reflection member disposed to be closer to an object than all of the plurality of lenses and having a reflection surface configured to change a path of light. The plurality of lenses are spaced apart from each other by preset distances along the optical axis, and the condition 0.8
US11681120B2

A moving mechanism for holding a lens is provided, including a carrier having an accommodating space, a coil, a sensing object, a base, at least one magnetic member, and a position detector, wherein the lens is disposed in the accommodating space. The coil and the sensing object are disposed on the carrier, and the coil surrounds the accommodating space. At least a portion of the coil is disposed between the sensing object and the accommodating space. The magnetic member and the position detector are disposed on the base, and the position detector is adjacent to the sensing object. When a current flows through the coil, the carrier moves relative to the base.
US11681113B2

A head mounted display including a first optical system, a second optical system, a first display, a second display, a first driver and a first adjusting system is provided. The first display is assembled to an object side of the first optical system. The second display is assembled to an object side of the second optical system. The first adjusting system is connected to the first driver, the first optical system, the first display and the second display. The first driver drives the first adjusting system to adjust a distance between the first display and the second display in a first mode. The first driver drives the first adjusting system to adjust a distance between the first display and the first optical system in a second mode.
US11681111B2

The present disclosure describes embodiments of a connector and an optical module, pertaining to the technical field of optoelectronic devices. The connector includes a substrate provided with a through-hole passing through the substrate from a first board surface to a second board surface thereof. The second board surface faces opposite from the first board surface. The first board surface is provided with a first groove and a second groove, and the first groove and the second groove respectively are configured to adapt to different optical fiber splices.
US11681110B2

Apparatus for monitoring the output of an optical system. The apparatus comprises first and second fibre optic sections, a reflective coating, and a detector. The first fibre optic section has a first cladding and a first core, and is configured to receive light from the optical system at one end and has at the other end a first angled, polished face. The second fibre optic section has a second cladding and a second core, and has at one end a second angled, polished face. The first and second fibre optic sections are arranged such that the first and second angled, polished faces are substantially parallel and adjacent and the first and second cores are substantially aligned. The reflective coating is applied to the first or second angled, polished face, and is configured to reflect a portion of light transmitted through the first core. The detector is arranged to receive the reflected light.
US11681109B2

One or more cables are axially, laterally, and/or rotationally secured to an anchor member. A plug connector can be assembled to or around the anchor member. The anchor member also can be used to handle the cable prior to assembling the plug connector. A connectorization system for assembling plug connectors includes multiple types/sizes of cables; optionally types/sizes of plug bodies; and the anchor member sized and shaped to connect a selected one of any of the cables with any of the plug bodies of the connectorization system.
US11681084B2

A polarization-based generator of duality modulated electromagnetic radiation, and a related method, by which the duality ratio of the energy-based irradiance and wave-based intensity may be selectively altered. A linearly polarized coherent radiation beam is incident on a polarizer configuration. Relative angular alignment of the beam's polarization and the polarizer configuration selectively provides output beams ranging from totally energy-depleted radiation to significantly energy-enriched radiation.
US11681068B2

An x-ray imaging apparatus includes an x-ray source module configured to output source x-rays, a pencil-beam-forming module having input and output ports, and a module engagement interface that enables a user to select aligned and non-aligned configurations of the source and pencil-beam-forming modules. In the aligned configuration, the pencil-beam-forming module is aligned with the source module to receive source x-rays at the input port and to output a scanning pencil beam through the output port toward a target. In the non-aligned configuration, the pencil-beam-forming module is not aligned with the x-ray source module to receive the source x-rays nor to output the pencil beam, but instead enables the source x-rays to form a stationary, wide-area beam directed toward the target. Example embodiments can be handheld, can enable both backscatter imaging and high-resolution transmission imaging using the same apparatus, and can be employed in finding and disarming explosive devices.
US11681064B2

Disclosed are methods, systems, and computer-readable medium to perform operations including: receiving seismic data acquired by at least one receiver of a geologic survey system configured to perform a geologic survey of a subterranean formation, wherein the seismic data is associated with reflected acoustic signals generated by at least one source of the geologic survey system; calculating a ground force signal by stacking the acoustic signals generated by the least one source; calculating, using the ground force signal, a time and depth variant quality factor (Q) of the subterranean formation; and compensating, based on the time and depth variant Q, attenuation in the seismic data.
US11681062B2

A system, a method and an autonomous network for vibration monitoring, the system comprising a master station preset for recording vibrations at a master trigger threshold; a secondary station, the secondary station and the master station being time synchronized, a server in communication with the master and secondary stations; wherein, the master station is configured to transmit a master trig time to the server and to start recording vibrations when the master trigger threshold is exceeded; the server is configured to store the master trig time; the secondary station is configured to detect the master trig time stored by the server, and upon detecting the master trig time, to record vibrations; and wherein the master and secondary stations are configured to transmit respective recorded vibrations to the server and the server is configured to classify the recorded vibrations in relation to a preset seismic threshold.
US11681056B2

An X ray device, including an array substrate, a scintillator layer, a first adhesion layer, a function film, and a second adhesion layer, is provided. The scintillator layer is disposed on the array substrate. The first adhesion layer is disposed between the scintillator layer and the array substrate. The function film is disposed on the array substrate. The second adhesion layer is disposed between the function film and the array substrate. The function film covers the scintillator layer.
US11681055B1

A radiation detector includes a photodetector and a scintillator coupled thereto. The scintillator is formed of a scintillator material comprising an organic glass scintillator (OGS) material and at least one of a polymer additive or a plasticizer additive. The scintillator emits light when radiation is received at the scintillator, and the light is received by the photodetector. The radiation detector can further include a frame that has an interior cavity that holds the scintillator in position with respect to the photodetector, such that the light emitted by the scintillator is transmitted to the photodetector. The scintillator can be formed by casting amorphous scintillator material in the interior cavity of the frame. The frame can then be coupled to the photodetector to form the radiation detector.
US11681054B2

A position-signal processing method for flat panel gamma imaging probe includes a modeling phase and a use phase. In the modeling phase, a weight direction for an imaging detector is defined, position centers and weight ratios of the imaging detector in the weight direction are utilized to obtain a distribution graph of the weight ratios to the position centers, and curve fitting is performed upon the distribution graph to obtain a position estimation curve. In the use phase, the position estimation curve is utilized to derive a position estimation value of a probe trigger event in a 2D crystal diagram, a position value of the probe in the 2D crystal diagram with respect to the position estimation value of the probe trigger event is obtained, and a crystal code is located in a crystal code look-up table for the position value of the probe in the 2D crystal diagram.
US11681053B1

Disclosed herein are methods, systems, and devices for monitoring cumulative radiation. In one embodiment, a device includes a photodiode; an integrating capacitor electrically coupled with the photodiode; a voltage discharge switch electrically coupled with the integrating capacitor; and amplifier circuitry electrically coupled with the photodiode and the integrating capacitor. The amplifier circuitry is configured to maintain a substantially zero bias voltage between an anode and a cathode of the photodiode monitoring the cumulative radiation. The integrating capacitor is configured to provide a delta voltage representative of radiation received since the beginning of a charge cycle of the integrating capacitor.
US11681049B2

Provided is a technique capable of moving a mobile body to an appropriate position and eliminating the mobile body. This mobile body control system is provided with: a false signal generation unit that generates a false signal for calculating a position different from the actual position of the mobile body on the basis of signal code information which the mobile body has received to calculate the position thereof; and a false signal transmission unit that transmits the generated false signal into a prescribed region.
US11681048B2

A LIDAR unit includes a housing defining a cavity. The LIDAR unit further include a plurality of emitters disposed on a circuit board within the cavity. Each of the emitters emits a laser beam along a transmit path. The LIDAR system further includes a first telecentric lens assembly positioned within the cavity and along the transmit path such that the laser beam emitted from each of the plurality of emitters passes through the first telecentric lens assembly. The LIDAR further includes a second telecentric lens assembly positioned within the cavity and along a receive path such that a plurality of reflected laser beams entering the cavity pass through the second telecentric lens assembly. The first telecentric lens assembly and the second telecentric lens assembly each include a field flattening lens and at least one other lens.
US11681047B2

A system uses data captured by vehicle-mounted sensors to generate a view of a ground surface. The system does this by receiving digital image frames and associating a location and pose of the vehicle that captured the image with each digital image frame. The system will access a three dimensional (3D) ground surface estimation model of the ground surface, select a region of interest (ROI) of the ground surface, and select a vehicle pose. The system will identify digital image frames that are associated with the pose and also with a location that corresponds to the ROI. The system will generate a visual representation of the ground surface in the ROI by projecting ground data for the ROI from the ground surface estimation model to normalized 2D images that are created from the digital image frames. The system will save the visual representation to a two-dimensional grid.
US11681046B2

Techniques for training a machine learned (ML) model to determine depth data based on image data are discussed herein. Training can use stereo image data and depth data (e.g., lidar data). A first (e.g., left) image can be input to a ML model, which can output predicted disparity and/or depth data. The predicted disparity data can be used with second image data (e.g., a right image) to reconstruct the first image. Differences between the first and reconstructed images can be used to determine a loss. Losses may include pixel, smoothing, structural similarity, and/or consistency losses. Further, differences between the depth data and the predicted depth data and/or differences between the predicted disparity data and the predicted depth data can be determined, and the ML model can be trained based on the various losses. Thus, the techniques can use self-supervised training and supervised training to train a ML model.
US11681045B2

A system for three-dimensional hyperspectral imaging includes an illumination source configured to illuminate a target object; a dispersive element configured to spectrally separate light received from the target object into different colors; and a light detection and ranging focal plane array (FPA) configured to receive the light from the dispersive element, configured to acquire spatial information regarding the target object in one dimension in the plane of the FPA, configured to acquire spectral information in a second dimension in the plane of the FPA, wherein the second dimension is perpendicular to the first dimension, and configured to obtain information regarding the distance from the FPA to the target object by obtaining times of flight of at least two wavelengths, thereby imaging the target object in three dimensions and acquiring spectral information on at least one 3D point.
US11681037B2

A vehicle lamp includes a lamp chamber, an automatic operation marker lamp unit, and a sensor device. The lamp chamber includes a lamp body and an outer lens, and the automatic operation marker lamp unit and the sensor device are integrated in the lamp chamber. The automatic operation marker lamp unit informs surroundings that a vehicle is being driven automatically, and a sensor device detects information around the vehicle.
US11681034B2

A method of transmitting signals from a first node having multiple transceivers to a second node is disclosed. The method comprises receiving a message from the second node at the first node, wherein the message is received by each of a plurality of transceivers of the first node; and transmitting by each of the plurality of transceivers a respective data frame to the second node in response to the message; wherein each transceiver initiates the transmission of its respective data frame a predetermined time period after receipt of the message by the transceiver; and wherein the transmissions of the data frames from the plurality of transceivers overlap. The data frames may form part of a two-way ranging exchange.
US11681032B2

Described herein are systems, methods, and non-transitory computer readable media for triggering a sensor operation of a second sensor (e.g., a camera) based on a predicted time of alignment with a first sensor (e.g., a LiDAR), where operation of the second sensor is simulated to determine the predicted time of alignment. In this manner, the sensor data captured by the two sensors is ensured to be substantially synchronized with respect to the physical environment being sensed. This sensor data synchronization based on predicted alignment of the sensors solves the technical problem of lack of sensor coordination and sensor data synchronization that would otherwise result from the latency associated with communication between sensors and a centralized controller and/or between sensors themselves.
US11681029B2

A time delay of arrival (TDOA) between a time that a light pulse was emitted to a time that a pulse reflected off an object was received at a light sensor may be determined for saturated signals by using an edge of the saturated signal, rather than a peak of the signal, for the TDOA calculation. The edge of the saturated signal may be accurately estimated by fitting a first polynomial curve to data points of the saturated signal, defining an intermediate magnitude threshold based on the polynomial curve, fitting a second polynomial curve to data points near an intersection of the first polynomial curve and the intermediate threshold, and identifying an intersection of the second polynomial curve and the intermediate threshold as the rising edge of the saturated signal.
US11681013B2

A radar system and a method for a radar system are described. In accordance with one exemplary embodiment, the method includes generating a local oscillator signal in a first radar chip, generating a frequency-divided signal from the local oscillator signal by means of a frequency divider arranged in the first radar chip, transmitting the frequency-divided signal to a second radar chip, and transmitting the local oscillator signal to the second radar chip. The local oscillator signal received in the second radar chip is fed to an output channel of the second radar chip, which generates an output signal on the basis thereof. The method further includes generating—on the basis of the output signal of the output channel and the frequency-divided signal received by the second radar chip—a signal indicating a phase angle of the output signal relative to the received frequency-divided signal.
US11681008B2

Systems and methods for virtually coupled resonators to determine an incidence angle of an acoustic wave are described herein. In one example, a system includes a processor and first and second transducers in communication with the processor. The first transducer produces a first signal in response to detecting an acoustic wave, while the second transducer produces a second signal in response to detecting the acoustic wave. The system may also include a memory in communication with the processor and having machine-readable instructions that cause the processor to modify the first signal and the second signal using a virtual resonator mapping function to generate a modified first signal and a modified second signal. The virtual resonator mapping function changes the first signal and the second signal to be representative of signals produced by transducers located within a hypothetical chamber of a hypothetical resonator.
US11681005B2

Disclosed embodiments include vehicle locating systems and vehicles locatable by vehicle locating systems. An illustrative vehicle locating system includes a first Bluetooth Low Energy (BLE) beacon having a first location associated therewith and configured to receive a first radio frequency signal from a vehicle and coded with vehicle identification information. The first BLE beacon may be further configured to calculate a first proximity of the vehicle to the first BLE beacon and send to a server a first proximity signal indicative of the first proximity. A second BLE beacon has a second location associated therewith and is configured to receive a second radio frequency signal from the vehicle and coded with the vehicle identification information. The second BLE beacon may be further configured to calculate a second proximity of the vehicle to the second BLE beacon and send to the server a second proximity signal representative of the second proximity.
US11681000B2

Techniques for generating magnetic resonance (MR) images of a subject from MR data obtained by a magnetic resonance imaging (MRI) system, the techniques including: obtaining input MR data obtained by imaging the subject using the MRI system; generating a plurality of transformed input MR data instances by applying a respective first plurality of transformations to the input MR data; generating a plurality of MR images from the plurality of transformed input MR data instances and the input MR data using a non-linear MR image reconstruction technique; generating an ensembled MR image from the plurality of MR images at least in part by: applying a second plurality of transformations to the plurality of MR images to obtain a plurality of transformed MR images; and combining the plurality of transformed MR images to obtain the ensembled MR image; and outputting the ensembled MR image.
US11680997B2

A cooling system of a magnetic resonance apparatus is disclosed. In the cooling system, a first cooling device and a second cooling device are used to realize a secondary step of cooling of a circulating fluid without energy consumption, thereby reducing the operating energy consumption of the cooling system. In addition, a magnetic resonance apparatus comprising the cooling system is further provided.
US11680994B2

The present invention relates to a detection device for detecting a position of a conductor, a wire processing equipment, and a method for detecting a position of a conductor in wire processing. The detection device has: a bracket; and a plurality of conductive probes provided on the bracket and spaced from each other. The conductive probes have a detection position, and the detection device is configured to determine whether the detected conductor is at a predetermined position by detecting whether the conductive probes at the detection position are electrically connected through the conductor; when at least two conductive probes are electrically connected with each other through the detected conductor, the detected conductor is determined in the predetermined position; when no two conductive probes are electrically connected with each other through the detected conductor, the detected conductor is determined not in the predetermined position. The detection device for detecting the position of the conductor, the wire processing equipment and the method for detecting the position of the conductor in the wire processing of the invention can automatically detect whether the conductor is in the designated position, which provides a basis for further automatic processing of the wire.
US11680990B2

A system and method of estimating the state of health of an all-solid-state battery are provided to detect the amount of hydrogen sulfide that is generated in all-solid-state battery cells and using the amount as a factor for estimating the state of health of the battery. The method of estimating a state of health (SOH) of an all-solid-state battery includes detecting whether hydrogen sulfide is generated in each cell of the all-solid-state battery, and estimating the state of health of the all-solid-state battery corresponding to an amount or an increase rate of generated hydrogen sulfide based on data prepared in advance.
US11680981B2

The disclosure provides a novel method and apparatus for inputting addresses to devices to select the device TAP for access. Further, the disclosure provides a novel method and apparatus for inputting addresses for selecting device TAPs and for inputting commands for commanding circuitry within the device. The inputting of addresses or the inputting of addresses and commands is initiated by a control bit input on TDI that is recognized during the Run Test/Idle, Pause-DR or Pause-IR TAP states.
US11680980B2

A semiconductor burn-in oven includes a housing including a burn-in chamber and an opening to the burn-in chamber surrounded by a front face, a heating device, testing circuitry, a door and a sealing mechanism. The door has an open position, in which the burn-in chamber is accessible through the opening, and a closed position, in which the door covers the opening. The sealing mechanism is configured to form a seal around the opening between an interior side of the door and the front face when the door is in the closed position. The sealing mechanism includes at least one sealing member having a recessed position, in which a gap extends between the front face and the interior side of the door, and a sealing position, in which the at least one sealing member closes the gap and forms the seal.
US11680974B2

A method for monitoring polarization quality of a piezoelectric film is described. In this method, a detection step is performed on a piezoelectric film by using a detection device with a non-contact method during a polarization process of the piezoelectric film, to obtain a static electricity information or a transmittance information. A determination step is performed by using the static electricity information or the transmittance information to determine a polarization degree of the piezoelectric film.
US11680971B2

A method of performing a measurement of a device under test by using an antenna array. The method includes: providing an antenna array that includes several antenna elements; providing a device under test configured to communicate over-the-air; locating the device under test at a first test location, thereby establishing a first relative distance between the device under test and the antenna array; performing a first measurement over-the-air when the first relative distance is provided between the device under test and the antenna array, thereby obtaining first measurement results; moving the antenna array and/or the device under test, thereby establishing a second relative distance between the device under test and the antenna array; and performing a second measurement over-the-air when the second relative distance is provided between the device under test and the antenna array, thereby obtaining second measurement results, wherein a quiet zone is established, in which the device under test is located, and wherein the size of the quiet zone is derived from a combination of at least two transfer functions associated with the first measurement results and the second measurement results. Further, a measurement system is described.
US11680970B2

Orientation and position sensing methods and devices are disclosed. The described methods and devices are based on implementing magneto-electric-quasi-static fields for position and orientation sensing in lossy-dielectric, conducting, or metallic non-line-of-sight environments, where obstructions or occlusions or nearby objects exists that are lossy in nature and that typically perturb radio or electromagnetic wave signaling. Detailed experimental results highlighting the performance of the disclosed methods are also presented.
US11680966B2

A power calculation apparatus includes a power measurement unit configured to measure alternating-current electric power input to a converter unit to obtain measured power, power consumption estimation units configured to estimate power consumption on motor axes of corresponding motors, respectively, using parameters concerning the motors, to obtain estimated power for each motor axis, and a power consumption calculation unit configured to distribute the measured power obtained by measurement according to a ratio in accordance with the estimated power obtained by estimation to calculate power consumption for each motor axis.
US11680964B2

According to one embodiment, a current detecting circuit includes: a normally-ON type first switching element that includes a drain, a source, and a gate; a normally-OFF type second switching element including a drain that is connected to the source of the first switching element, a source that is connected to the gate of the first switching element, and a gate; and a differential amplification circuit that outputs a voltage according to a voltage between the drain and the source of the second switching element.
US11680955B2

A fluid diverting module includes a multi-position fluid diverting device comprising three-dimensional movable flow-paths with minimal tortuosity in the movable portion (the rotor) of the fluid diverting device. In some embodiments, the device is also equipped with a filtration module that is capable of filtering solid particulates from fluidic samples. The invention relates to an area of non-disruptive sampling from various sample sources including ones containing solids. The fluid diverting device maintains fluid communication between the sample source and a pressure creating device in all positions of the fluid diverting device, thus conserving the pressure inside the sample source during sampling. The sampling operation is controlled from a controller, which is equipped with a software for manual or intelligent control.
US11680954B2

An automatic assaying system having a multiplex pipette cartridge section in which pipette cartridges are docked. At least one pipette cartridge has a different pipetting characteristic from another corresponding pipette cartridge, the different pipetting characteristic being selectable from a number of different pipetting characteristics. A multiplexing work item holder has an array of work item holder docks that dock corresponding work item holders selectable from pipette trays and pipette tip set racks that define the selectable different pipetting characteristic. One or more of the work item holder docks are indexed to selectably multiplex both the different interchangeable pipette trays and the at least one pipette set rack. A carrier moves the pipette cartridge or a work item holder carriage and a controller selects the at least one pipette tip set rack corresponding to a work item holder dock so as to effect automatic selection of the different pipetting characteristic.
US11680953B2

The cell transfer device includes a head group including a plurality of heads to which tips are attached and which move along a first direction; a head unit in which the head group is installed and which moves in a second direction and in a third direction; and a plurality of drive motors which are mounted on the head unit and which generate driving force to cause the head to move along the first direction. The plurality of drive motors are separately arranged on one side and the other side in the third direction with the head group provided therebetween. The head group includes a first head and a second head. The first head is driven by the drive motor arranged on the one side in the third direction, and the second head is driven by the drive motor arranged on the other side in the third direction.
US11680946B1

The present invention relates to methods of conducting cholinesterase inhibition assays. In one instance, the assays can be configured to determine the presence of inactivated and activated cholinesterases. Also described herein are microfluidic devices and systems for conducting such assays.
US11680945B2

A test element for an assay includes: a cartridge having a housing which includes a priming pad capable of containing a liquid fluid, a wash port having an opening in the housing, and an opening for directly or indirectly applying a sample; and an assay device positioned within the cartridge in fluid communication with the wash port containing an analytical reagent.
US11680941B2

This disclosure provides a new phagocytosis assay to test the function of RPE cells and photoreceptor progenitors using a pH sensitive fluorescent label.
US11680939B2

Described systems and methods allow the detection and quantitation of a target analyte such as a toxin, drug, pesticide, etc. Some embodiments use a sensor comprising photo-sensitive cells, e.g., cells genetically modified to express an opsin. A light source such as an LED is used to optically stimulate the sensor cells, triggering changes in a measurable quantity such as the polarization of the cell membrane. Some embodiments use electrical impedance measurements to monitor the cell's recovery from the state induced by the optical stimulation. The recovery process is affected by the presence of certain bio-active compounds, which allows detection and quantitation of such compounds.
US11680935B2

Systems, methods, and non-transitory computer-readable media for continuously monitoring residential air quality and providing a trend based analysis regarding various air pollutants are presented herein. The system comprises an air quality monitor located in a residential house, wherein the air quality monitor is configured to measure the level of an air pollutant. The system also includes a server that is communicatively coupled to the air quality monitor, wherein the server is configured to generate a unique environmental fingerprint associated with the residential house.
US11680934B2

A gas sensor assembly includes a housing; an inlet assembly configured to carry a gaseous composition having a volatile organic compound into the housing; and an outlet assembly configured to carry the gaseous composition from the housing. The gas sensor assembly also includes an ultraviolet light source disposed within the housing and a gas sensor disposed within the housing and configured to sense an amount of the volatile organic compound.
US11680931B2

The invention provides methods for quantifying a non-ionic surfactant in a composition comprising a polypeptide and the non-ionic surfactant, where the quantification exhibits reduced interference between the non-ionic surfactant and the polypeptide. Also provided are methods where the composition further includes N-acetyl tryptophan, and the quantification exhibits reduced interference between the non-ionic surfactant, the polypeptide, and N-acetyl tryptophan.
US11680926B2

A gas sensor includes a sensor element including an element body, a first electrode, a second electrode, and a heater; a voltage acquisition section that acquires a voltage between the first electrode and the second electrode; a heater power supply; an external common lead that serves as both at least part of an electric circuit used to acquire the voltage by providing electrical continuity between the first electrode and the voltage acquisition section and at least part of an electric circuit used to supply an electric power from the heater power supply to the heater and that is disposed outside the sensor element; and a correction section that derives a value of a voltage drop in the external common lead in accordance with a heater current and that corrects the voltage acquired by the voltage acquisition section in accordance with the derived value of the voltage drop.
US11680911B2

A marking region image is obtained by cutting out the part corresponding to a marking region from an article image obtained by imaging an article to be inspected. Then, whether or not the marking is properly provided is determined by performing a character recognition of a marking part for a marking region image. Further, an image of an article having no marking and no defect is stored as a reference image, whereas a marking periphery image obtained by removing the image of the marking part from the marking region image is compared to the reference image. By that comparison, whether or not any defect is included in the marking peripheral part of the marking region except the marking part is determined.
US11680910B2

A handheld device for making 3D topography measurements of surface discontinuities in high performance structures, such as aerostructures (e.g., aluminum fuselages). Lights illuminate the discontinuity from multiple angles, and a camera captures images of the discontinuity. A thickness sensor generates thickness data regarding a thickness of the base material and the top protective coating. A position sensor generates position data regarding a location of the discontinuity on the structure. A processor generates geometry data regarding a geometry of the discontinuity based on the images, performs an analysis of the geometry, thickness, and position data, and communicates a result of the analysis on a display. A conforming membrane and/or a gel and an opaque lubricant may be applied over and conform to the discontinuity in order to make more uniform a reflectivity difference and a color difference between the discontinuity and an adjacent portion of the structure.
US11680908B2

A waveguide sensor system is provided. The system includes a light source and a waveguide formed from a light transmitting material. Light from the light source enters the waveguide at an input area and travels within the waveguide by total internal reflection to an analyte area and light to be analyzed travels within the waveguide from the analyte area by total internal reflection to an output area. An optical sensor is coupled to the output area and is configured to interact with the light to be analyzed. The system includes a plurality of pores located along the outer surface within the analyte area and formed in the light transmitting material of the waveguide, and the pores are configured to enhance light interaction with the analyte within the analyte area. The pores and analyte area may be protected and/or enhanced with a hydrophobic layer overlaying the pores.
US11680906B2

An example sensor includes a flow cell, a detection device, and a controller. The flow cell includes a passivation layer having opposed surfaces and a reaction site at a first of the opposed surfaces. The flow cell also includes a lid operatively connected to the passivation layer to partially define a flow channel between the lid and the reaction site. The detection device is in contact with a second of the opposed surfaces of the passivation layer, and includes an embedded metal layer that is electrically isolated from other detection circuitry of the detection device. The controller is to ground the embedded metal layer.
US11680905B2

A biological analysis system can include an excitation module and an emission module. The excitation module can include a collimator element for receiving excitation light from the excitation light source and transmitting collimated excitation light in a first direction, and a plurality of excitation mirrors arrayed along the excitation light path, each excitation mirror disposed at an acute angle relative to the first direction and configured to reflect collimated excitation light along a second direction. The emission module can be positioned to receive excitation light transmitted along the second direction and can include a sample block comprising a plurality of sample receptacles positioned to receive a beam of collimated excitation light, and a plurality of photodetectors configured to receive emission light transmitted from a respective sample receptacle in a direction transverse to the second direction of the excitation light path.
US11680891B2

The present invention relates to a device for detecting corrosion of a metal part comprising a housing which is a hollow cylinder comprising a proximal end located proximate to the metal part upon installation of the device, and a distal end located away from the metal part upon installation of the device, a display having at least a part which is located inside the housing, a spring located inside the housing in a compressed manner, pushing the display outwardly and a sensor located in a manner that associates the housing with the display, comprising a corroded portion located outside the housing. According to this invention, the corroded portion of the sensor has a diameter in a range of 0.6 to 1.5 mm. Further, the present invention relates to a method for detecting corrosion of a metal part comprising installing the device according to this invention to the metal part. This invention provides advantages that the design of the sensor allows accuracy in the detection of the metal part corrosion, the design of the display gives a reliable operation, e.g. the display will not be interrupted when the sensor is broken, the installation of the device to the metal part can be performed conveniently and quickly in multi-directions, and it is possible and convenient to detach/re-attach the device from the installation in case the inspector needs to inspect the physical aspects of the device.
US11680889B2

Aspects of the disclosure include methods for generating angularly deflected laser beams for irradiating a sample in a flow stream. Methods according to certain embodiments include generating a first set of angularly deflected laser beams and a second set of angularly deflected laser beams, propagating the first set of angularly deflected laser beams along a different optical path from the second set of angularly deflected laser beams, combining the first set of angularly deflected laser beams with the second set of angularly deflected laser beams and directing the combined sets of laser beams onto a sample in a flow stream and detecting light from the sample. Systems having a laser, an acousto-optic device and an optical adjustment component configured to generate a first set of angularly deflected laser beams and a second set of angularly deflected laser beams are also described.
US11680887B1

A method for determining a rock property includes positioning a core sample in a core sample assembly that is enclosed in a pressurized container with a flow inlet, a flow outlet, and a pressurized fluid inlet fluidly coupled to a pressurized fluid reservoir that includes a pressurized fluid pump; sequentially performing at least three test operations on the core sample; at each of the at least three test operations, measuring an inlet pressure at the flow inlet, measuring an outlet pressure at the flow outlet, and measuring a confining pressure within the pressurized container; and determining a permeability of the core sample based at least in part on at least one of the measured inlet pressures, at least one of the measured outlet pressures, and at least one of the measured confining pressures.
US11680881B2

A portable soil body in-situ shear test device includes: an active force system arranged externally, a passive shear system and an electromagnetic loading system arranged internally, and a ring knife system arranged at a bottom. Compared with the conventional in-situ soil shear strength test device and test method, the present invention is convenient to install and carry as well as simple to operate, and has strong applicability. The present invention is suitable for layered soils with large cross-plate shear test errors, and for soils with different consolidation degrees at various sites and various terrains. A test method adopting the device can simulate the shear strength of the soil mass under different overburden loads without disturbing the mechanical properties of the in-situ soil mass, which has high promotion value in the test of in-situ soil shear strength.
US11680880B2

A tensile testing machine comprising a test specimen whose elongation is to be measured along a tensile axis, slide plates, an intermediate plate, and first and second parallel guide rods, which freely guide the slide plates axially past them.
US11680876B2

Systems and methods for analyzing an analyte extracted from a sample using an adsorbent material.
US11680873B2

Sampling of food products and/or surfaces can be efficiently carried out by providing an apparatus comprising a bag construction incorporating a sample collection material secured to an inside surface of the bag. The bag is of a size large enough to permit inversion of the bag to expose the sample collection material for collection of samples from surfaces, followed by re-inversion to enclose the sample collection material. Methods for sampling food products and/or surfaces for detection of pathogens, microbial contaminants and/or constituents in products or on surfaces are additionally contemplated.
US11680872B2

A stator angle is determined to correct a value measured by a wheel force transducer. A mounting bracket is rigidly attached to a vehicle and supports a housing within which a rotary encoder is mounted. A stator rod retainer is aligned with a rotational axis of the rotary encoder and has a through-bore extending perpendicular to the rotational axis. The stator rod retainer rotates relative to a stationary portion of the rotary encoder using at least one bearing, and the stator rod retainer supports a first end of a stator rod for substantially free movement through the through-bore. A controller determines, when the second end of the stator rod is fixedly attached to an encoder stator attached to a wheel, a stator angle of the stator rod used for adjusting at least one value associated with the wheel that is measured using the encoder stator.
US11680863B2

A method for reducing hysteresis error and high frequency noise error of capacitive tactile sensors includes the following steps: step 1: calibration, specifically including positive stroke calibration to form n positive stroke curves and negative stroke calibration to form n negative stroke curves; step 2: averaging, specifically including positive stroke averaging to form an average positive stroke curve, negative stroke averaging to form an average negative stroke curve, and comprehensive averaging to form a comprehensive stroke curve; step 3: fitting modeling, to obtain a positive stroke fitting function, a negative stroke fitting function, and a comprehensive fitting function; step 4: measurement; step 5: noise filtering; step 6: stroke direction discrimination; and step 7: resolving, to obtain the force at the current time by using a corresponding fitting function based on the stroke direction discrimination result.
US11680861B2

Provided is a tire information acquisition device. A sensor unit substrate on which a sensor for acquiring tire information and a power supply unit for supplying electric power to the sensor are disposed is provided, and a heat-insulating material is disposed at at least a periphery of the power supply unit.
US11680856B2

A controller configured for detecting a disturbance using a comparison of outputs of at least two sensors and for determining a pressure from the outputs of the at least two sensors. A ratio of the measurement sensitivity and the disturbance sensitivity should be different for the at least two sensors. A method for monitoring disturbances of a sensor assembly includes comparing the outputs of the at least two sensors. The controller and related method provide, while requiring only two sensors, a redundant system that is also able to detect excessive disturbances on a sensor assembly.
US11680855B2

An attached member includes: a strip-shaped peelable member being in film form; and a tab being in plate form. An adhesive surface of a deep body thermometer and the tab are attached respectively to regions being part of first and second main surfaces of the peelable member and corresponding to about halves of the peelable member on first and second end sides. With the peelable member being folded substantially along the midsection between first and second ends, the order of layers, from closest to the adhesive surface, is the peelable member, the tab, a double-sided tape, and the peelable member. The thickness of the tab is equal to or greater than twice the minimum bending radius at which the peelable member is elastically deformable. The tab extends in a folding direction of the peelable member and beyond an outer edge of the peelable member.
US11680847B2

A digital scale includes a weighing platform, a plurality of weight sensors, and a central processing unit. Each of the weight sensors includes a first sensing mechanism and a second sensing mechanism. The first sensing mechanism includes a first elastic member, and a first movement detection device arranged to transform a movement of the first elastic member to a first electrical signal. The second sensing mechanism includes, a second elastic member and a second movement detection device arranged to transform a movement of the second elastic member to a second electrical signal. When an external load greater than a predetermined threshold is applied on the weighing platform, the first elastic member is arranged to be driven to move and in turn pushes the second elastic member to move. A measurement of the external load is obtained by combining and the first electrical signal and the second electrical signal.
US11680845B2

A person support apparatus, such as a bed, stretcher, recliner, cot, or the like, includes a frame, a plurality of load cells, a support surface supported by the load cells, a detection circuit, and a controller. The controller determines if any of the load cells are in an error state based upon information from the detection circuit. If the load cells include memory having calibration data stored therein, the controller communicates with the memory and uses the calibration data to determine an amount of weight supported on the surface. The detection circuit may include one or more Wheatstone bridges wherein the controller monitors voltages between midpoints of the Wheatstone bridges. The load cells may include an activation lead that is monitored by the detection circuit and a sensor lead that is used by the controller to determine an amount of weight supported on the patient support apparatus.
US11680844B2

A display rack comprises shelves and a base. Each shelf comprises a sensor mat comprising a lattice of load sensors. The base is configured for measuring a total weight, which includes weights of any objects positioned on the shelves. The system is configured for determining object addition or removal event data based on in time corresponding changes of: total weight measured at the base; and binary load status of multiple load sensors of a sensor mat of the display rack. A binary load status of a load sensor indicates whether the load sensor at least in part supports an object or not. The event data comprises: an object weight based on said change of total weight measured at the base; and an object support shape and an object location both based on said change of binary load status of multiple load sensors of said sensor mat of the display rack.
US11680823B2

A mobile robotic device has a motion sensor assembly configured to provide data for deriving a navigation solution for the mobile robotic device. The mobile robotic device temperature is determined for at least two different epochs so that an accumulated heading error of the navigation solution can be estimated based on the determined temperature at the at least two different epochs. A calibration procedure is then performed for at least one sensor of the motion sensor assembly when the estimated accumulated heading error is outside a desired range.
US11680821B2

A map information system includes a map database including map information; and a driving assist level determination device. The map information is associated with an evaluation value indicating a certainty of the map information for each location in an absolute coordinate system. Information indicating that the intervention operation is performed is included in driving environment information indicating a driving environment of a vehicle. The driving assist level determination device is configured to acquire, based on the driving environment information, intervention operation information indicating an intervention operation location where the intervention operation is performed, acquire, based on the map information, the evaluation value for each point or section in a target range, and determine, based on the evaluation value and the intervention operation location, an allowable level for each point or section within the target range.
US11680818B2

A system and a method for updating and sharing crossroad dynamic map data are disclosed. The method includes steps of receiving a detection information outputted from an on-vehicle detecting device, wherein the detection information includes a host-vehicle absolute coordinate, a host-vehicle course, a host-vehicle speed, a relative speed between an object and the host vehicle, and an initial relative coordinate between the object and the host vehicle; respectively performing matching procedures to the host-vehicle absolute coordinate and the initial relative coordinate by respectively adding estimated coordinate shifts to obtain a matched host-vehicle absolute coordinate and a matched relative coordinate; performing a coordinate rotation transformation to the matched relative coordinate to obtain a matched transformed coordinate; merging the matched host-vehicle absolute coordinate and the matched transformed coordinate into crossroad-section map data to form crossroad dynamic map data; and sharing the crossroad dynamic map data.
US11680815B2

In some implementations, a computing device can provide a map application providing a representation of a physical structure of venues (e.g., shopping centers, airports) identified by the application. In addition, the application can provide a unique venue directory, providing an easy and visual mechanism to search for categories of points of interest (e.g., clothes, food, restrooms) or specific items within the venue. Search results can be presented on a map of a floor within the venue as well as a listing providing all search results located within the venue.
US11680813B2

A method for measuring an inter-vehicle distance includes acquiring a driving image photographed by a photographing device of a first vehicle which is being driven; detecting a second vehicle from the acquired driving image; detecting first feature points of a second vehicle region in a first frame corresponding to a frame in which the second frame is detected before a frame in which the second vehicle is not detected among a plurality of frames constituting the driving image, when the second vehicle is not detected from the driving image; detecting second feature points in a second frame corresponding to a current frame by tracking the detected first feature points; calculating a feature point change value between the first feature points and the second feature points; and calculating an inter-vehicle distance from the photographing device of the first vehicle to the second vehicle based on the calculated feature point change value.
US11680801B2

Systems and methods are provided for navigating a host vehicle. In an embodiment, a processing device may be configured to receive a captured image acquired by a camera onboard the host vehicle; provide the captured image to an analysis module configured to generate an output including an indicator of a contact position of the occluded pedestrian with the ground surface, the analysis module including a trained model trained based a plurality of training images having been modified to occlude a region where a training pedestrian contacts a training ground surface; receive from the analysis module the generated output, including the indicator of the contact position of the occluded pedestrian with the ground surface; and cause at least one navigational action by the host vehicle based on the indicator of the contact position of the occluded pedestrian with the ground surface.
US11680800B2

According to one embodiment, a sensor includes a sensor part including first and second sensor elements, and a circuit part. The first sensor element includes a first supporter, a first movable part capable of vibrating, first and second electrodes. The first electrode outputs a first signal corresponding to a vibration of the first movable part. The second electrode outputs a second signal corresponding to the vibration of the first movable part. The second sensor element includes a second supporter, a second movable part capable of vibrating, third and fourth electrodes. The third electrode outputs a third signal corresponding to a vibration of the second movable part. The fourth electrode outputs a fourth signal corresponding to the vibration of the second movable part. The circuit part includes a calculator. The calculator outputs a differential operation result between first and second processing signals.
US11680794B2

Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
US11680784B2

A tool, such as a tape measure, including a spring-based retraction system is shown. The tape measure includes a fluid-based retraction speed controller. The speed controller may be formed from a rotor/stator arrangement. The rotor is coupled to the reel and the stator is coupled to the housing opposing the rotor. The rotor converts some rotational energy from tape reel into movement of a fluid (e.g., movement of air, movement of oil, etc. through friction) which acts to slow or limit the retraction/rotational speed of the reel as the retraction spring expands driving the reel during tape blade retraction.
US11680782B2

Systems for automatedly delivering explosives with variable densities are disclosed herein. Methods of automatedly delivering explosives with variable densities are disclosed herein. Methods of determining an emulsion explosive density profile are disclosed herein.
US11680776B2

Rail interface systems and methods of mounting accessories to a firearm therewith. The rail interface systems are configured to be installed on a firearm equipped with a first firearm accessory mounted to the firearm with at least one mounting assembly. The rail interface system includes a rail interface configured to couple with a second firearm accessory, and rail fasteners configured to secure the rail interface to the mounting assembly of the first firearm accessory.
US11680774B2

An apparatus, device, or method may detect or track aim direction or motion of a firearm and display information indicative of such aim direction or motion. Sequence of bullet strikes on a real or virtual target by multiple gunshots may be determined. A method may comprise detecting one or more gunshots of the firearm discharging live ammunition, measuring or determining aim directions or motions of the firearm before, during, and/or after the one or more gunshots, recording these measurements or determinations, and generating output for displaying images on a display.
US11680767B2

A multi-stroke lever action crossbow has two sets of cocking hooks. The first cocking hooks are disposed on cocking links slidingly coupled to a crossbow body. The second cocking hooks are retractable. The second cocking hooks are disposed on a cocking arm, which is pivotally attached to a cocking lever. A retractable handover latch operatively engages the cocking arm. During the first stroke of the cocking lever, the first cocking hooks draw the bowstring past the handover latch, where the bowstring is retained in a partially drawn position. During the second stroke of the cocking lever, the second cocking hooks draw the bowstring past a trigger latch, where the bowstring is retained in a fully drawn position. When the cocking lever returns to its initial closed position, the second cocking hooks and the handover latch are retracted into the crossbow body.
US11680763B2

A magazine assembly for a firearm and a related method are disclosed. The assembly has a magazine housing defining a track, and a follower assembly. The magazine housing is configured to constrain a cartridge as the cartridge is moved within the magazine assembly such that majority of a proximal surface area of the cartridge does not contact the magazine housing, and a distal tip of the cartridge does not contact the magazine housing.
US11680761B2

Provided is a hinged firearm receiver configured to operate with an AR-pattern Bolt carrier group, buffer, buffer spring, and buffer tube. The firearm upper receiver has an integral hinge that connects to a rear receiver body and provides an AR-pattern firearm the ability to have a folding stock to reduce length for storage or transportation purposes.
US11680750B1

The system and method for a green integrated electric power plant mounted on rooftops, includes platform on which installed low body and upper body with gap. There are no rotatable parts for generating electric power except the propeller of generator which is affected by three air flows. The generator with propeller placed inside of upper body vertically. Low body has inside tube and spirals. Also low body has a few windows. Each window supplied by tangential plate for creating confined vortex. Thus one wind flow acting through low body directly on propeller, second air flow move warm air flow from source of warm air such as laundry or boiler room of building through conduit, inner tube and multiple Venturi tubes also act as a propeller. Third wind air flow moves perpendicular to vertical axes of generator and goes through gap between low body and upper body directly on propeller.
US11680747B2

In a process for the combined production of a) a hydrogen-enriched gas and a carbon monoxide-enriched gas and/or b) a mixture of hydrogen and carbon monoxide by cryogenic distillation and scrubbing, a still liquor is extracted from a scrubbing column and sent to a stripping column, a still liquor is extracted from the stripping column and sent to a separating column for carbon monoxide and methane and a cooling fluid is used at a pressure greater than that of the head of the separating column for cooling at least one fluid extracted at an intermediate level from the scrubbing column.
US11680742B2

A refrigerator may include a body formed with a storage space and a cooling module accommodating space; a cooling module disposed in the cooling module accommodating space and having a heat absorption part and a heat radiating part; a drawer supporter disposed inside the storage space; and a drawer supported by the drawer supporter, and the drawer supporter is formed with an inner passage through which cold air flowing from the heat absorption part passes, and the drawer supporter is formed with a plurality of cold air discharge ports through which cold air of the inner passage is discharged in an opposite direction. Therefore, it is possible to maximize the depth of the storage space in the front-rear direction while minimizing the number of parts, and cool the entire storage space evenly.
US11680734B2

A Cornelius keg refrigerated storage, transport, and contents dispensing device holds the keg in the interior of a container equipped with provision for transporting the container, cooling the keg using refrigerated contact along the effective height of the keg, insulating the keg to maintain temperature, and storing the equipment for dispensing the keg contents.
US11680723B2

A system and method for controlling the air temperature of a building using a control plan based on a target time. The system includes a controller which may be connected to a number of indoor and outdoor heating ventilation and air-conditioning units. The system may include a thermostat. The system may also operate without a thermostat. The method includes determining a control plan to reach a desired temperature in a target time. The method also includes updating the plan by comparing the actual time to reach the desired temperature with the target time.
US11680721B2

A system and method for controlling indoor climate of a building. The system includes one or more equipment of a heating ventilation and air-conditioning (HVAC) system, a thermostat configured to wirelessly transmit operational data and a controller communicatively coupled to the one or more equipment and the thermostat. The controller includes a communication module configured to exchange the operational data with the thermostat and an equipment interface configured to communicate control signals to the one or more equipment to control operation of the one or more equipment. The controller is configured to receive the operational data wirelessly transmitted from the thermostat using the communication module, determine based on the operational data a control plan to operate the one or more equipment of the HVAC system, and operate the one or more equipment of the HVAC system based on the control plan.
US11680720B2

A method for providing personalized comfort to occupants of an environmentally conditioned space includes sensing a pre-adjustment pressure within a variable air volume diffuser, remotely adjusting a position an individually-adjustable directional outlet of the variable air volume diffuser, sensing a post-adjustment pressure within the variable air volume diffuser, and modifying the airflow through the variable air volume diffuser such that the post-adjustment pressure is equal to the pre-adjustment pressure. The variable air volume diffuser includes individually-adjustable directional outlets and a controller configured to regulate air pressure within the variable air volume diffuser when an individually adjustable directional outlet is adjusted. A user device in operative communication with the variable air volume diffuser includes a user interface to remotely adjust an adjustable directional outlet of the variable air volume diffuser to provide personalized comfort for the user. In embodiments, the variable air volume diffuser responds to spoken commands.
US11680719B1

An exhaust fan includes a generally square housing, adjustable-height supports, and attachments for a variety of air ducts. The air ducts are each designed to provide a sufficient air seal to effectively enable the exhaust fan to evacuate dust and debris from a wide variety of standard doors or windows, either on the ground floor or an elevated floor.
US11680718B2

A base of a humidifier includes a housing, an air outlet assembly, and a first partition. The housing includes a receiving chamber, a first air inlet, and a second air inlet. The air outlet assembly is disposed in the receiving chamber and includes a fan, a temperature and humidity sensor, and an aroma component. The first partition is disposed in the receiving chamber and configured to spatially separate the temperature and humidity sensor from the fan and the aroma component. The fan is configured to introduce a first airflow from the first air inlet to pass through the temperature and humidity sensor, and reach the fan; introduce a second airflow flow from the second air inlet to pass through the aroma component without passing through the temperature and humidity sensor, and reach the fan; and discharge the first second airflow out of the receiving chamber through the air outlet.
US11680715B1

The technology disclosed is a two stage Indirect/Direct Evaporative Cooling (IDEC) cycle whose novel closed loop topology compels system convergence to a stable operating state, wherein air cooling takes place mostly in the indirect stage. The direct stage then serves principally as a water chiller for that process.
US11680703B1

An installation structure of a ceiling fan and an upper illuminating lamp includes a first mounting unit that is disposed on one of a connecting portion of a ceiling fan body and a lamp unit and a second mounting unit that is disposed on the other one of the connecting portion and the lamp unit. The second mounting unit corresponds to the first mounting unit. The first mounting unit and the second mounting unit are connected to each other so that the lamp unit and the ceiling fan body are coupled together, so as to complete the assembly quickly.
US11680689B2

A lighting device includes a flexible housing, at least two light emitting elements, and at least one mounting member. The flexible housing extends along a length direction of the lighting device and has an inner surface configured to reflect light. The at least two light emitting elements are arranged along the length direction of the lighting device and are mounted to the flexible housing. The at least one mounting member is an integral component of the flexible housing and extends continuously along the length direction of the lighting device. The at least one mounting member includes a base section and a sequence of mounting sections. At least two of the mounting sections are separated from each other by a recess. The sequence of mounting sections extends from the base section of the at least one mounting member.
US11680687B2

An example embodiment of a backlit lamp comprises a housing, a forward facing directional light source and a rear facing directional light source. The housing may comprise a bowl portion comprising a first joining end and a forward emitting end; and a neck portion comprising a second joining end. The bowl and neck portions are joined at the first and second joining ends. The forward facing directional light source is mounted within the housing and configured to emit light in the direction of the forward emitting end. The rear facing directional light source is mounted within the housing and configured to emit light in an opposite direction from the light emitted by the forward facing directional light source. In an example embodiment, the forward facing and rear facing directional light source comprise light emitting diodes (LEDs).
US11680684B2

Various embodiments are generally directed to a casing connected to a top cap structure that consists of an adapter flange extending to an adapter barrel that is configured to fit wholly within the casing. The adapter barrel can be separated from the casing by an annulus that is filled to a predetermined annulus pressure while an internal chamber defined by the adapter barrel contains a gas having a small molecular size at a storage pressure that is greater than the predetermined annulus pressure.
US11680683B2

A high-pressure tank comprises a liner, a strengthening layer including a first helical layer and a first hoop layer each including a carbon fiber, and a protective layer including a second helical layer and a second hoop layer each including a glass fiber, in this order. The high-pressure tank is provided with a stress-generating portion, a reinforcement layer includes a first area α overlapping the stress-generating portion in a stacking direction and a second area β that is an area except for the first area, and a one-round portion including a final crossing portion at an end of winding of the glass fiber constituting the second hoop layer overlaps the second area in the stacking direction.
US11680671B2

A system for transporting corrosive or erosive fluids having a flow conduit or flow equipment with a flow bore. One or more inserts (50) are disposed within the flow bore of the flow conduit or flow equipment. The insert(s) (50) include an internal structure (52) and an erosion or corrosion resistant coating (54) disposed around the internal structure. The insert(s) (50) is/are disposed inside the flow bore and provide erosion and/or corrosion resistance.
US11680668B2

A coupling device configured to couple first and second pipes, which comprises a first part coupled to the first pipe and which has a first contact surface, a second part coupled to the second pipe, separate from the first part, and which has a second contact surface configured to collaborate with the first contact surface, at least one clamp comprising at least one clamping jaw comprising a groove, configured to collaborate with the first and second parts, which has a cross section such that a concentric tightening of the clamp causes the first and second contact surfaces to be kept pressed against one another. Thus, the coupling device makes it possible to obtain a ball joint type connection between the first and second pipes.
US11680664B1

A heat shrink tubing is provided exhibiting various desirable properties, which generally comprises at least one fluorinated polymeric resin. The tubing can exhibit desirable physical properties such as heat shrink capability, high expansion/recovery ratio, low longitudinal shrinkage, low temperature recovery, and an average wall thickness of less than about 0.003 inches.
US11680659B2

An electrically driven actuator for opening and closing a valve comprises: an electric motor (1); a movable plate (8), to which a valve body is connected; a conversion mechanism (3) configured to convert a rotational motion of the electric motor (1) to a linear motion; a first biasing member (11) configured to bias the movable plate (8) toward a first direction; and a second biasing member (12) configured to bias the conversion mechanism (3) toward a second direction. The valve body is to be opened when a part of the conversion mechanism (3) linearly moves to move the movable plate (8) toward the second direction, and is to be closed when the first biasing member (11) biases the movable plate (8) toward the first direction. The conversion mechanism (3) is configured to be displaced relative to the movable plate (8) in a state in which the valve body is closed.
US11680657B2

A waterproof cover includes an operation unit for pressing a manual button of a solenoid valve main body. The operation unit includes a flexible cap, a pin guide interposed between the cap and the solenoid valve main body, and an operation pin that is inserted in guide hole of the pin guide so as to be displaced freely. The cap includes a flexible pressing portion for a pressing operation. One end of the operation pin is in contact with or close to the pressing portion, and the other end of the operation pin is in contact with the manual button.
US11680652B2

A valve device is configured to adjust an opening degree of a flow path for fluid, and includes an axial member, a valve body, and a biasing member. The axial member is configured to be fixed to the flow path. The valve body is rotatable about the axial member, and is configured to be rotated in a closing direction in which the opening degree is reduced, and to be rotated, by the use of a fluid flowing down through the flow path, in an opening direction in which the opening degree is increased. The biasing member is provided to the axial member inside the flow path, and is configured to bias the valve body to rotate in the closing direction.
US11680649B2

An example spool includes a shaft varying in diameter along a length of the shaft, and a plurality of annular lands formed on the shaft and spaced-apart by respective reduced diameter annular neck portions. The plurality of annular lands comprise at least one annular metering land, and wherein the at least one annular metering land comprises: one or more sine notches formed as a portion of a sine wave, and one or more additional notches having a different shape from the one or more sine notches.
US11680647B2

A valve for controlling a fluid flow comprises: (a) a valve body having an internal cavity; (b) a valve stem receivable within the internal cavity; the valve stem having a control portion configured and a tail portion; the control portion having a first diameter thereof; (c) a deformable valve seat carried by the control portion in a coaxial conformal manner; and (d) a ring mountable within the internal cavity. The control portion has a circumferentially arranged area adjacent to the tail portion. The circumferentially arranged area is of a second diameter smaller than the first diameter. The ring is mountable between a nut and the valve seat such that the nut when secured to the valve body presses onto the valve seat such that the valve seat is deformed within a space between the circumferentially arranged area defined by the second diameter and fills the space in a sealed manner.
US11680638B2

The present invention provides a shift control method implemented in a vehicle equipped with an automatic transmission for controlling an input shaft rotation speed to a target input shaft rotation speed during a shift. The method includes setting of a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift, and setting of a corrected target input shaft rotation speed as the target input shaft rotation speed when the shift is a downshift without a requirement for a driving force of the vehicle, The corrected target input shaft rotation speed is obtained by decreasingly correcting the basic target synchronization rotation speed. Further, a decreasing correction amount of the basic target synchronization rotation speed is set so as to become larger as a deceleration of the vehicle becomes larger.
US11680635B2

Embodiments of the present disclosure describe a drive pulley for a continuously variable transmission including a stationary sheave with a stationary shaft, a movable sheave axially movable relative to the stationary sheave and in contact with the stationary shaft; a spider in contact with at least the moveable sheave and stationary shaft; a spring member, biasing the movable sheave axially away from the stationary sheave; at least one centrifugal actuator including an arm pivotally connected to one of the movable sheave and the spider, the arm pivoting away from the one of the movable sheave and the spider as a speed of rotation of the drive pulley increases, the arm pushing against another one of the movable sheave and the spider as the arm pivots away from the one of the movable sheave and the spider, thereby moving the movable sheave axially toward the stationary sheave, the at least one centrifugal actuator being disposed radially outward of the stationary sheave shaft; and a torque transfer assembly operatively connected to at least one of the spider and the movable sheave, the torque transfer assembly transferring torque between the spider and the movable sheave, the torque transfer assembly including, a torque bearing assembly and at least one roller assembly, positioned on a helixed torque pin, the torque pin connected to the spider; wherein as the roller assembly wears, the at least one roller assembly tracks along a helixed path of the torque pin in a distal direction from the bearing assembly.
US11680621B2

Example aspects of a sliding disc assembly for a dual spring valve, and a method of operating a dual spring valve are disclosed. The sliding disc assembly can comprise a shaft defining a first end and a second end; a disc mounted on the shaft between the first end and the second end, the disc defining an upper disc surface, a lower disc surface, and an annular base surface; a first spring mounted on the shaft between the lower disc surface and the first end of the shaft; and a second spring mounted on the shaft between the upper disc surface and the second end of the shaft, wherein the first spring defines a spring force that is different from a spring force of the second spring.
US11680615B2

The invention relates to a disc brake comprising a brake caliper (1), which engages over a brake disc that can rotate on an axis (A) and brake linings (2, 3) arranged on both sides thereof in a lining groove (6), comprising a hold-down arrangement (8) formed by a rigid hold-down piece (7) and a leaf spring (9) and leading transversely over the brake linings (2, 3), wherein the hold-down piece (7) has a central section (7b) forming the majority of its total length and leading over the lining groove (6), and two end sections (7a, 7c), wherein the hold-down piece is supported against the brake linings (2, 3) towards the disc brake axis (A), and wherein said hold-down piece extends at least partially into a slot (14) of the brake caliper (1) with the first end section (7a) thereof, and wherein the leaf spring (9) extends in the longitudinal direction of the hold-down piece (7) and is spring-elastically supported against the outer side of the hold-down piece (7) facing away from the brake linings (2, 3). In order to more simply configure the fixing of the elements of the hold-down arrangement in terms of assembly and production, without thereby weakening the fixture, the first end section (7a) of the hold-down piece (7) is angled in relation to the central section (7b).
US11680612B2

This clutch control device includes an engine (13), a transmission (21), a clutch device (26) configured to connect and disconnect motive power transmission between the engine (13) and the transmission (21), a clutch actuator (50) configured to drive the clutch device (26) and change a clutch capacity, a control parameter sensor (58) configured to detect a control parameter of the clutch capacity and a control unit (60) configured to calculate a control target value (TP) of the control parameter. The control unit (60) causes the clutch device (26) to perform a stroke in a connection direction until an actual measurement value of the control parameter reaches the control target value (TP). The control unit (60) corrects the control target value (TP) in accordance with at least one of a rotational speed (NE) of the engine (13) and a difference between the target value and the actual measurement value of the control parameter in a stroke process (K3) of causing the clutch device (26) to perform the stroke in the connection direction.
US11680611B2

A pedaled drivetrain includes a drive mechanism, a wheel, a freewheel hub, and a locking mechanism. The wheel has a rotational axis. The freewheel hub connects the drive mechanism to the wheel, and the freewheel hub transmits torque from the drive mechanism to the wheel in a first rotational direction around the rotational axis. The locking mechanism has a locked state and an unlocked state. The locked state rotationally fixes a component of the drive mechanism to the wheel relative to the rotational axis.
US11680602B2

Disclosed is a device including a compliant mechanism including: a first monolithic flexible element, having first and second ends defining a first longitudinal direction, arranged such that it is able to be subjected to an elastic deformation involving a relative movement between its first and second ends; and at least a second monolithic flexible element, having first and second ends defining a second longitudinal direction distinct from the first longitudinal direction, arranged such that it is able to be subjected to an elastic deformation involving a relative movement between its first and second ends. At least one of the first and second monolithic flexible elements includes at least one opening located between its first and second ends and defining a passage for a portion of the other monolithic flexible element such that the first and second monolithic flexible elements are interlocked.
US11680601B1

A hinge includes a base frame unit and a rotating unit. The base frame unit includes a base seat having two rotating recesses and a transmitting recess, and two interfering plates respectively disposed in the rotating recesses. The rotating unit includes two rotating members respectively and rotatably disposed in the rotating recesses, and a bevel gear member disposed in the transmitting recess. Each rotating member frictionally interferes with the respective interfering plate, and has a bevel gear portion meshing with the bevel gear member. A torque generated as a result of rotation of one rotating member is transmitted through the bevel gear member to rotate the other rotating member relative to the base seat so as to make stable synchronous rotation of the rotating members.
US11680599B2

In one aspect, a lock nut is provided that includes a washer, a threaded body, and an actuator that are distinct from one another. The washer is configured to form a non-rotatable connection with a vehicle spindle. The threaded body has threads to engage threads of the vehicle spindle. The actuator has a rotary drive structure and is configured to be turned in a tightening direction to cause turning of the threaded body in the tightening direction relative to the washer. The lock nut includes a lock operably coupled to the actuator and configured to inhibit turning of the threaded body in a loosening direction relative to the washer. The actuator is configured to be turned relative to the threaded body in the loosening direction to disengage the lock and permit turning of the threaded body in the loosening direction relative to the washer.
US11680595B2

A locking rail for locking of a first and a second panel horizontally. The panels each include an essentially vertical panel surface and an essentially horizontal edge surface. The locking rail includes a first and a second locking device which are configured to engage the edge surface of the first and the second panel, respectively, and an interconnecting extension which extends between said first and second locking device. The first and second locking device each includes a first locking tongue which extends essentially perpendicular to the interconnecting extension. The first locking tongue of the first locking device is configured for locking of the first panel in a first horizontal direction and the first locking tongue of the second locking device is configured for locking of the second panel in the first horizontal direction. The locking rail includes a first locking part which extends essentially perpendicular to the interconnecting extension.
US11680574B2

A blower includes a housing, a fan, a motor, and a speed regulator assembly including a switch for controlling the motor operation, a control member, and an actuating member both enabled to control the switch. The actuating member can move between an off state and an on state. The actuating member can move to a predefined limit position. The rotational speed of the motor corresponding to the predefined limit position is a predefined rotational speed. When the actuating member is in the off state, the motor stops running. When the actuating member is in the on state, the motor rotates. The control member has at least a first control state and a second control state. In the second control state, the motor runs at a maximum rotational speed. In the first control state, the motor runs at an intermediate speed lower than the maximum rotational speed.
US11680569B2

This disclosure describes electrically powered fluid (liquid) pumps having an electric motor or actuator attached to a power source with a power sensor configured to measure the power draw of the motor while the pump is operating.
US11680562B2

A pump system (120) has a central pump unit (110), with which at least one hook-up unit (130). The least one hook-up unit (130) is from a group of a plurality of hook-up units (130) that can be combined in modular form for setting an operating point of a pump (10) that forms the pump unit (110). A method uses such a hook-up unit (130) in a pump system (120) for setting an operating point of the pump unit (110) thereof. A medical device is provided with such a pump unit (110) or with such a pump unit (110) and at least one hook-up unit (130) combined with the pump unit (110).
US11680556B2

Embodiments of the present disclosure include a retrofit auxiliary nacelle yaw position control system that enables advanced nacelle yaw position control of a wind turbine by comparing a desired nacelle yaw position signal with the actual nacelle yaw position and generating a virtual relative wind direction signal that is provided to the existing turbine control unit. This method and system enable implementation of wake steering, collective yaw optimization and dynamic yaw optimization of a collection of wind turbines referred to as a wind plant. Modification of the existing turbine control unit is not required, greatly simplifying the implementation process of advanced yaw control strategies on existing wind plants.
US11680555B2

A jointed rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of blade segments has at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending lengthwise that structurally connects with the internal support structure of the second blade segment via a receiving section. The rotor blade further includes one or more pin joints positioned on at least one of internal support structures of the first blade segment or the second blade segment. Thus, at least one of internal support structures of the first blade segment or the second blade segment includes varying material combinations along a span of the rotor blade at locations of the one or more pin joints so as to reinforce the one or more pin joints.
US11680549B2

A fluid injection system can include a main flow line, a primary flow line connected to the main flow line, a primary flow valve disposed on the primary flow line and configured to selectively allow injectant flow to the primary flow line, a secondary flow line connected to the main flow line, and a secondary flow valve disposed on the secondary flow line and configured to selectively allow injectant flow to the secondary flow line. The system can include a primary purge branch in fluid communication with the primary flow line and connected to a purge gas line, a primary purge valve disposed in the primary purge branch between the primary flow line and the purge gas line, a secondary purge branch in fluid communication with the secondary flow line, and a secondary purge valve disposed between the purge gas line and both of the primary purge branch and the secondary purge branch.
US11680547B2

A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
US11680540B2

A piston for an internal combustion engine may include a piston crown, a piston body, and a ring portion. The piston body may have a radially outermost piston outer surface, which may emanate from the piston crown and extend axially and in a circumferential direction. The ring portion may be disposed axially spaced apart from the piston crown. The ring portion may extend axially and in the circumferential direction. The ring portion may include a ring carrier with a ring groove configured to receive a piston ring. The ring portion may further include a radially outer ring portion outer surface that extends in the circumferential direction. The ring portion outer surface may be disposed radially to an inside relative to the piston outer surface. The piston outer surface may extend elliptically in the circumferential direction. The ring portion outer surface may extend rotation-symmetrically in the circumferential direction.
US11680537B2

The present invention addresses the problem of providing a cylinder liner or a cylinder bore, which can reduce not only friction on a sliding surface but also oil consumption. In a piston sliding direction of the cylinder bore, grooves of a second sliding region positioned on the side of crankcase have a higher groove area ratio at a depth of 0.3 μm than grooves of a first sliding region positioned on the side of combustion chamber, and the groove area ratio is in a specific range, whereby friction and oil consumption can be reduced.
US11680536B2

Disclosed is a method for managing a piston pump using a computer of a vehicle, the pump including a guide, a piston slidably mounted in the guide, and a solenoid, suitable for moving the piston, the method including, as long as the fuel pressure in the compression chamber of the pump is below a predetermined pressure threshold, a step of the computer controlling the solenoid in order to move the piston to its high position, and a step of the computer detecting that the predetermined pressure threshold has been exceeded when the current value, measured after a predetermined period, is greater than or equal to a predetermined reference value so that the computer ceases to control the solenoid.
US11680528B2

A torch igniter for a combustor of a gas turbine engine includes an igniter body and an igniter head. The igniter body is disposed within a high-pressure case of a gas turbine engine and extends primarily along a first axis, and includes an annular wall and an outlet wall. The annular wall surrounds the first axis and defines a radial extent of a combustion chamber therewithin. The outlet wall is disposed at a downstream end of the annular wall, defines a downstream extent of the combustion chamber, and includes an outlet fluidly communicating between the combustion chamber and an interior of the combustor. The igniter head is removably attached to the igniter body at an upstream end of the annular wall, wherein the igniter head defines an upstream extent of the combustion chamber, and includes an ignition source and a fuel injector.
US11680515B1

An air cooling system for a vehicle engine includes an air intake configured to receive intake air for delivery to the engine, a first coolant loop thermally coupled to the air intake to provide cooling to the intake air, and a pump for circulating coolant through the first coolant loop. A second coolant loop is thermally coupled to the air intake to provide further cooling to the intake air, and undergoes a vapor compression cycle. A compressor circulates coolant through the second coolant loop. The first and second coolant loops are separate loops using a common condenser. A passive variable charge enabler assembly is configured to remove coolant circulating in the system when the compressor is on.
US11680509B2

Disclosed is a method for diagnosing a first exhaust treatment component for treatment of an exhaust gas stream comprising means for oxidizing nitric oxide into nitrogen dioxide. A first reduction catalytic converter is arranged upstream said means for oxidizing nitric oxide into nitrogen dioxide, and a second reduction catalytic converter is arranged downstream said means. A reagent is for reduction of nitrogen oxides in said first catalytic converter, and a first sensor measures an occurrence of nitrogen oxide downstream said means but upstream said second reduction catalytic converter. The method comprises: causing a supply of reagent upstream said first reduction catalytic converter to an extent exceeding the extent to which reagent is consumed by the first reduction catalytic converter, determining a first measure of the occurrence of reagent downstream said means for oxidizing, and diagnosing said means for oxidizing nitric oxide into nitrogen dioxide based on said first measure.
US11680498B2

An electromechanical camshaft phaser (3) comprises a setting gear (4) and an electric motor (5), which is controlled by means of an electric-motor control unit (6). Data concerning the operation of the electric motor (5) including position changes of its motor shaft are transferred via a data bus (8) from the electric-motor control unit (6) to an engine control unit (7) of the internal combustion engine (1) comprising the camshaft phaser (3). In addition, recurring time signals are transferred from the electric-motor control unit (6) to the engine control unit (7) via a separate line (9), by which harder real-time requirements are met than by the data bus (8). The time signals are used to generate a time difference signal in the engine control unit (7) by comparison with the data received by the engine control unit (7), which time difference signal is fed back to the electric-motor control unit (6) via the data bus (8) and is used there to synchronize the electric-motor control unit (6) with the engine control unit (7).
US11680496B2

A method for extracting and storing, respectively, energy in the form of concentration gradients wherein a process of extracting energy comprising the steps of feeding stored gaseous working medium into a working volume (2), compressing the working medium in the working volume (2), spraying a dilute solution into the working volume (2) before or during compression, increasing the temperature of the working medium fed in the working volume (2) by compression, evaporating the dilute solution with the working medium of increased temperature, removing heat from the working medium by the evaporating solution, keeping the heat extracted from the working medium in the form of latent heat of the vapor in the working volume (2), further increasing the temperature of the working medium until the partial pressure of the vapor in it approaches the vapor pressure of a solution of higher concentration at a corresponding temperature, spraying a solution of higher concentration of a vapor pressure of up to 60% of the vapor pressure of the dilute solution into the working medium of an expanding and high solvent vapor content, condensing the vapor in the working volume (2) onto solution droplets of the atomized solution and thereby heating the solution droplets, transferring the heat energy of the heated solution droplets to the working medium through contact surfaces of the solution and the working medium, feeding the heat previously conveyed to the dilute solution vapor during the compression back into the working medium plus as much heat as the condensation heat of the warmer vapor to the solution of higher concentration exceeds the heat of evaporation of the dilute solution, using the heat thus fed for performing work by the expansion of the working medium, obtaining the work performed by the working medium, removing the working medium and the solution from the working volume (2) after the gaseous working medium of low relative humidity is getting into a state near to its initial state, separating the working medium and the solution and returning the working medium to a container (7) for working medium and returning the slightly diluted solution of higher concentration to one of a container (11) for solution of higher concentrations and an additional intermediate container (24). The invention also relates to an apparatus for implementing the method. The invention can be used in all fields, where electric or mechanical energy should be stored for later use, but especially for leveling out the production and consumption differences on electrical power grids.
US11680480B2

Provided are embodiments for hydrocarbon reservoir development that include the following: identifying proposed well locations within a reservoir boundary, for each location, developing a well plan by: (a) identifying layers of the reservoir located below the proposed location; (b) iteratively assessing the layers (from deepest to shallowest) to identify a deepest “suitable” layer that is not dry, congested, or unsuitable for gas production; and (c) performing the following for the identified layer and the location: (i) determining a borehole configuration for the location; (ii) determining a completion type for the location; and (iii) determining a stimulation treatment for the location, where a well plan for the location (e.g., for use in developing the reservoir) is generated that specifies some or all of a well location, the target layer, a borehole configuration, a completion type, and a stimulation treatment that corresponds to those determined for the proposed well location.
US11680471B2

A production tubing is disposed in a wellbore. Hydrocarbons entrapped in a subterranean zone enter the wellbore. Multiple valves are disposed in the production tubing at respective multiple tubing locations. The multiple valves divide the production tubing into multiple stages. A presence of hydrocarbons in a first stage terminating at a first valve is determined and gas is injected into the first stage causing the hydrocarbons in the first stage to flow uphole through the first valve into a second stage uphole of the first stage. It is determined that the second stage is filled with the hydrocarbons and injection of the gas into the first stage is ceased. Multiple side chambers are disposed in the respective multiple stages. Determining the presence of hydrocarbons in the first stage incudes detecting a fluidic level of the hydrocarbons inside the first side chamber.
US11680459B1

A system includes an integrated liner hanger assembly that includes a liner hanger, a packer, and a cement retainer sub. The cement retainer sub includes a plurality of fluid passageways connecting a central bore of the liner hanger assembly to an annular volume downhole of the packer and uphole of the liner hanger. A running tool is configured to axially translate a sliding sleeve of the cement sub from a closed position to an open position in which flow if permitted through the passageways, and from the open position to a closed-and-locked position. In some embodiments, the system is configured such that running the assembly into the wellbore, actuating the liner hanger, actuating the packer assembly, translating the sliding sleeve from the closed and open position and from the open position to the closed-and-locked position, are completed in a single trip.
US11680452B2

A system for disassembling a drill assembly including a drill bit and one or more columns interlinked with each other. The system includes a first clamping mechanism adapted to engage one of the drill bit or a first column, and a second clamping mechanism adapted to engage a second column disposed successively to the drill bit or the first column. The second clamping mechanism is turned relative to the first clamping mechanism to at least partially delink the second column from the first column or the drill bit. The system further includes a first actuator adapted to move one of the first clamping mechanism or the second clamping mechanism relative to the other to define a gap therebetween to reveal an interface between the second column and the drill bit or the first column for delinking the second column relative to the drill bit or the first column.
US11680442B2

Described is a pallet including a base having a length extending between a first end and a second end opposite the first end and a width transverse to the length; and a cage removably coupled to the base.
US11680433B2

A hinge including: a first leaf assembly accommodating a portion of a first panel having a first cut-out section, the first leaf assembly including a first insert component which is tight fittingly receivable within the first cut-out section; a second leaf assembly, hingedly coupled to the first leaf assembly, for accommodating a portion of a second panel having a second cut-out section; a spring operatively coupled to the first and second leaf assemblies to bias the hinge to move from an open position to a closed position; and a dampener to dampen movement of the hinge from the open position to the closed position, wherein said longitudinal dampener axis is disposed between and substantially parallel with planes defined by respective opposing faces of the first panel.
US11680427B2

An anti-theft merchandise hook that includes a top wire connected to a housing portion at one end of the top wire, and to a mounting portion, used to mount the anti-theft merchandise hook to a stationary surface, at another end of the top wire opposite the one end. A bottom wire is attached to the mounting portion and extends from the mounting portion toward the housing portion. The bottom wire is configured to hold retail merchandise. A moveable hanger is at least partially disposed within the housing portion. The hanger is configured to move linearly between a closed position in which the hanger abuts the bottom wire, and an open position in which the hanger is spaced some distance from the bottom wire.
US11680418B2

The present disclosure relates to a common tower configured to be erected adjacent a building structure into construction. The tower comprises spaced apart columns, made of vertically aligned column hollow sections, spacedly and substantially vertically positioned adjacent the building structure, and vertically spaced apart flooring structures releasably and slidably supported by the spaced apart columns using a plurality of sliders. Each flooring structure is being capable of vertical displacement when supported by the spaced apart columns. The tower further comprises an anchoring system adapted to securely engage with the building structure to maintain the spaced apart columns substantially upright, as well as protection structures adapted to surround the flooring structures. A safe and easy erection of the tower using a common tower assembly is described.
US11680401B2

Precast wall systems and methods for constructing a high-rise building using the precast wall system is disclosed. In one embodiment, the system includes a plurality of interconnected precast panels, each having a top end plate, a bottom end plate, a plurality of vertical bars disposed between the end plates and a cementitious material encasing the vertical bars and defining a plurality of sides of the respective panel. A first of the precast panels has a first column member half defining a right side of the first panel, a second of the precast panels has a second column member half defining a left side of the second panel such that, when the right side of the first precast panel and the left side of the second precast panel are disposed horizontally adjacent to each other, the first column member half and the second column member half collectively form a column member.
US11680398B2

A space frame is provided having a first set of nodes located along a first surface and a second set of nodes located along a second surface, and a unitary cell. The second surface non-intersecting the first surface. The unitary cell comprises at least four continuous web elements and extending in three dimensions. The unitary cell spans at least two nodes of the first set of nodes and at least two nodes of the second set of nodes.
Patent Agency Ranking