Provided herein are devices, systems, and methods for providing respiratory therapy to a patient using a nasal cannula comprising a cannula body, first and second inlet tubes, and a nasal prong for the delivery of a flow of breathing gas to the patient. Configured with the cannula is a nebulizer having an aerosol generator positioned to emit aerosolized medicament along a longitudinal axis of the nasal prong. A flow director is configured to direct the flow of breathing gas into the nasal prong such that the breathing gas flows along the longitudinal axis, such that the flow of aerosolized medicament is contained within the flow of breathing gas as it moves along the longitudinal axis of the nasal prong for delivery to the patient.
Dressings, systems, and methods for treating a tissue site with negative pressure are described. The dressing includes a manifold having a first surface and a second surface opposite the first surface, a first layer adjacent to the first surface, and a second layer adjacent to the second surface. The first layer and the second layer each are formed from a polymer film. A plurality of fluid restrictions are formed in the polymer film adjacent to at least the first surface. A first plurality of bonds is formed between the first layer and the second layer. The first plurality of bonds define separable sections of the manifold. A second plurality of bonds is formed between the first layer and the second layer. The second plurality of bonds define a plurality of openings.
A wound dressing for pressure gradient wound therapy. The wound dressing includes a dressing body and an adhesive layer. The adhesive layer provides an adhesive region for providing a seal between the wound dressing and the periphery of a wound site, in use. Sensors are provided associated with the adhesive region, the sensors being configured to monitor one or more conditions indicative of a hermeticity of the seal between the wound dressing and the periphery of the wound site.
A blood purification device includes a porous molded body containing an inorganic ion-adsorbing material and is characterized by the following: the concentrations of Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Ag, Cd, Sn, Cs, La, Pr, Sm, Gd, Tb, Ta, Au, Tl, Co, In, and Bi are each 0.1 ppb or less and the concentrations of Ba, Nd, Pb, And Ce are each 1 ppb or less in a physiological saline solution for injection both three months and six months after said physiological saline solution for injection is sealed in the blood purification device; and the number of fine particles having a size of 10 μm or more is 25 or less and the number of fine particles having a size of 25 μm or more is 3 or less in 1 mL of the physiological saline solution for injection.
In accordance with some aspects, the present disclosure is directed to medical compositions that comprises (a) a first hydrophilic polymer functionalized with a plurality of first functional groups and (b) a second hydrophilic polymer functionalized with a plurality of second functional groups, wherein the first and second functional groups are selected to react and form covalent bonds upon a change in conditions such that the first and second hydrophilic polymers crosslink with one another. In other aspects the present disclosure is directed to kits that comprise such medical compositions and to medical procedures that utilize such medical compositions.
This invention provides solid substrates for promoting cell or tissue growth or restored function, which solid substrate is characterized by a specific fluid uptake capacity value of at least 75%, which specific fluid uptake capacity value is determined by establishing a spontaneous fluid uptake value divided by a total fluid uptake value. This invention also provides solid substrates for promoting cell or tissue growth or restored function, which solid substrate is characterized by having a contact angle value of less than 60 degrees, when in contact with a fluid. This invention also provides solid substrates for promoting cell or tissue growth or restored function, which said substrate is characterized by a substantial surface roughness (Ra) as measured by scanning electron microscopy or atomic force microscopy. The invention also provides for processes for selection of an optimized coral-based solid substrate for promoting cell or tissue growth or restored function and applications of the same.
Methods, systems, and apparatuses involving disinfecting light subcomponents are provided. An example system comprises a substrate with one or more light emitters disposed on the substrate. The one or more light emitters may be configured to inactivate microorganisms on a surface by emitting light. The light may comprise a proportion of spectral energy of the light, measured in a 380 nanometers (nm) to 420 nm wavelength range, greater than 50%. The light may comprise a full width half max (FWHM) emission spectrum of less than 20 nm and centered at a wavelength of approximately 405 nm to concentrate a spectral energy of the light and minimize energy associated with wavelengths that bleed into an ultraviolet wavelength range. The light may comprise an irradiance at the surface sufficient to initiate inactivation of microorganisms on the surface.
Disclosed herein are novel pharmaceutical formulations of a neurokinin-1 (NK-1) receptor antagonist suitable for parenteral administration including intravenous administration. Also included are formulations including both the NK-1 receptor antagonist and dexamethasone sodium phosphate. The pharmaceutical formulations are stable oil-in-water emulsions for non-oral treatment of emesis and are particularly useful for treatment of subjects undergoing highly emetogenic cancer chemotherapy.
Particles, compositions, and methods that aid particle transport in mucus are provided. The compositions and methods may include, in some embodiments, modifying the surface coatings of particles including pharmaceutical agents that have a low water/aqueous solubility. In some embodiments, a surface coating includes a synthetic polymer having pendant hydroxyl groups on the backbone of the polymer, such as poly(vinyl alcohol) (PVA). Such compositions and methods can be used to achieve efficient transport of particles of pharmaceutical agents though mucus barriers in the body for a wide spectrum of applications, including drug delivery, imaging, and diagnostic applications. In certain embodiments, a pharmaceutical composition including such particles is well-suited for administration routes involving the particles passing through a mucosal barrier.
In an embodiment, a moisturizing composition includes a silk solution, wherein the silk solution comprises about 1% to about 10% (w/v) of pure silk fibroin-based protein fragments that are substantially devoid of sericin; hyaluronic acid; an oil or butter; and a pH adjusting agent.
Provided are skincare compositions that include a bactericide, one or more surfactants, water, and optionally saturated fatty acid. The composition may include a bactericide, surfactants (e.g., anionic and/or zwitterionic), saturated fatty acid, and no more than about 50 wt % water. Alternatively, the composition may include a bactericide, surfactants (e.g., anionic and/or nonionic), and at least about 50 wt % water. Commonly, the skincare compositions may include benzoyl peroxide and goat milk. The compositions may be used for various applications including cleaning the skin and as a shaving cream.
Gel compositions including at least one copolymer of vinylpyrrolidone and acrylic acid, at least one film forming agent, and at least one coloring agent, and methods of applying such compositions to keratinous materials, are provided.
The present disclosure provides T-cell modulatory multimeric polypeptides that comprise an immunomodulatory polypeptide and that comprise an epitope-presenting Wilms tumor peptide. A T-cell modulatory multimeric polypeptide is useful for modulating the activity of a T cell, and for modulating an immune response in an individual.
This disclosure relates to methods for improving the therapeutic index of a chemotherapeutic drug in the treatment of patients afflicted with cancer, including, for example, reducing chemotherapy-related toxicity (e.g., liver toxicity).
The invention relates to a protein for use in diagnosing and treating primary or secondary sclerosing diseases, a fusion protein, and nucleotide sequence and a vector, and to a pharmaceutical composition for use in diagnosing and treating primary or secondary sclerosing diseases.
The invention provides a combination treatment for ischemia conditions in or otherwise affecting the CNS, such as stroke. The treatment involves administration of a PSD-95 inhibitor and performing reperfusion therapy (e.g., by administration of tPA). Administering a PSD-95 inhibitor in combination with reperfusion therapy increases the efficacy of the reperfusion therapy and/or slows the decline in efficacy of reperfusion therapy with time after onset of ischemia thus extending the window in which reperfusion therapy can be administered.
Described are means, methods, and compositions useful for treatment of multiple sclerosis through the utilization of fibroblasts and/or derivatives thereof to concurrently stimulate regenerative processes while inducing a protolerogenic immune modulatory program. In certain embodiments, fibroblasts are selected for the concurrent properties of immune modulation and regeneration by enrichment for CD73 expressing fibroblasts. In particular embodiments, stimulation of regeneration implies activation of endogenous neural progenitor cells. In some embodiments, stimulation of regeneration implies induction of remyelination. The utilization of fibroblasts as a superior source for immune modulation, prevention of immune mediated pathology, and activation of T regulatory cells is provided within the context of multiple sclerosis.
The instant disclosure is directed to a vaginal care composition that restores pH balance, and thereby reduces vaginal dryness, irritation, dyspareunia, post-coital bleeding, infections, vaginal and pelvic pain and increases vaginal lubrication. In some embodiments, the vaginal care composition comprises stem cell-derived exosomes (e.g., mesenchymal stem cell (MSC)-derived exosomes), an antioxidant and a pH buffer. Another aspect of the disclosure is directed to methods for improving vaginal health by administering the vaginal care composition of the instant disclosure.
The present invention provides a method of treating depression disease in a treatment resistant patient comprising administering to a mucosal membrane of a patient an effective amount of a pharmaceutically acceptable composition comprising an effective amount of ketamine or dextromethorphan, wherein the mucosal administration of the ketamine or dextromethorphan containing composition allows for the mucosal absorption of the composition eliminating the digestive tract of the patient for effecting a rapid acting antidepressant treatment of the treatment resistant patient. This method includes administering the composition to a patient's mucosal membrane of a respiratory tract, a genitourinary tract, an oral tract, or rectal tract of the patient. A pharmaceutically acceptable composition comprising ketamine or dextromethorphan and a vehicle is disclosed. A biomarker for identifying a depressive disease is set forth.
Certain embodiments are directed to methods and compositions for treating or preventing seizures in a subject using a therapeutic agent comprising one or more Transient Receptor Potential-Canonical 4/5 channel antagonists sufficient to regulate excitability of neurons in the brain of a subject.
For the prevention of parasite infestation of animals, an isoxazoline can be administered by drinking water route. However the inventors have found that when the drinking water is sanitized, for instance by using hypochlorite, the isoxazoline becomes degraded. Surprisingly, the isoxazoline can be protected from degradation by the use of a vitamin E. A pharmaceutical composition can now be prepared containing a concentrated solution of the isoxazoline in a solvent and co-solvent, with vitamin E. The composition can be diluted in drinking water, even when sanitized, to prepare medicated drinking water for animals. This way an anti-parasitic treatment can be mass-administered, leading to a highly effective reduction of the parasite infestation of an animal, and its surroundings.
The present invention concerns the use of compounds and compositions for the treatment or prevention of Flavivirus infections, such as dengue virus infections and Zika virus infections. Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as dengue virus and Zika virus infection, by administering a compound or composition of the invention, to a subject in need thereof; methods for inhibiting Flavivirus infections, such as dengue virus and Zika virus infections, in a cell in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits useful for treating or preventing Flavivirus infections, such as dengue virus and Zika virus infections.
The subject invention provides arsinothricin (AST) or salts thereof, and compositions comprising AST or a salt thereof for use as multi-stage antimalarials. The subject invention also provides methods for treating, inhibiting and/or preventing malaria infection and transmission by using AST or salts thereof, or compositions comprising AST or a salt thereof. Advantageously, AST or a salt thereof inhibits glutamine synthetase (GS) of malaria pathogens without exhibiting cytotoxicity to human host.
Methods of treating or ameliorating multiple sclerosis by the dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus or a pharmaceutically acceptable salt and/or a solvate, in particular a hydrate, thereof or a solvate, in particular a hydrate, of a pharmaceutically acceptable salt thereof, by administering to a human patient a therapeutically effective amount of the DHODH inhibitor, more specifically a daily dose of about 10 mg to about 45 mg.
The invention is directed to an aqueous extract of Eruca sativa (arugula) leaves that has antimicrobial activity on Gram-positive bacteria and mycoplasmas. The extract may be purified away from solid or insoluble components, standardized based on the weight of its non-aqueous or solid content, assayed for antimicrobial activity, and provided in an aseptic or sterile form for pharmaceutical use. It may be used to kill or inhibit the growth of microorganisms such as Gram positive bacteria, promote wound healing, or as prophylaxis against host colonization or infection by a microorganism.
An apparatus for delivering a metered stream of saliva solution includes a delivery tube for drawing a saliva solution from a solution source; a pumping and metering device connected to the delivery tube for pumping saliva solution from the solution source through the delivery tube and delivering the solution to a user mouth, the delivery tube having a delivery tube upstream segment for extending from the solution source to the device, and a delivery tube downstream segment extending from the device to a delivery tube free end for placement in a user mouth; and a mouthpiece mounted to the delivery tube free end for engaging and securely retaining the delivery tube free end within a user mouth until released.
A container for personal health compositions with melatonin. The container has a polyester and a colorant composition with at least two dyes and a pigment. The container can filter out the wavelengths of visible light that contribute to the photodegradation of melatonin during storage in normal factory or home light conditions.
A system for physical rehabilitation is disclosed. The system comprises a plurality of motors configured to be coupled to a ceiling, and a plurality of cable portions. Each cable portion is connected at a first end to a motor, among the plurality of motors, and connected at a second end to a connector element for attaching to a patient. The system also comprises a controller in operative communication with the plurality of motors to move the connector element in relation to a staircase. The controller is configured to adjust one or both of position and speed of the connector element based on tracked kinematics of the patient as the patient moves along the staircase.
An improved walker includes an adjustable frame with angled portions that provide an ergonomic interface and enhanced stability for a user. The front of the walker includes a wishbone front support frame. Rather than incorporating multiple front legs extending from the top of the walker to the floor, the wishbone front support frame provides clearance on either side of a center front column. This clearance allows users to position, or maneuver, the walker close to adjacent objects. The handrail portions of the walker are pitched at a downward angle running in a direction from the rear to the front of the walker. This pitch moves the operating position of the user close to the front of walker providing a safe and stable operating position.
A system for providing multimodal stimulation to a user includes a tactile device including a set of tactile actuators. Additionally, the system can include and/or interface with a user device, a remote computing system, and/or any other devices. A method for multimodal stimulation functions to provide therapy to a user for tinnitus or other conditions, and includes any or all of: receiving a set of inputs; determining a set of outputs; providing the set of outputs to a user; and adjusting any or all of the set of outputs.
A personal assistive device is an apparatus that enables the user to safely self-reposition with little or no help from other users. The apparatus includes a floor base, an upright support, a bracing handle, and a shelf. The floor base serves to secure the upright support to the floor to provide balance to the upright support and to prevent the upright support from moving while the user is holding onto the apparatus. The upright support is an elongated structure long enough to position the bracing handle at a height where the user can easily reach the bracing handle. The bracing handle serves as a secure object the user can grab onto to prevent the user from falling while the user is repositioning using the apparatus. The shelf serves to retain various items close to the user while the user is resting on a fixture.
A swing arm assembly for a foldable wheelchair consisting of a camber tube and adapters is disclosed. The adapters mount to the frame of the wheelchair and receive the ends of the camber tube. One end of the camber tube is pinned into an adapter such that it pivots. The other end is pinned in an adapter using a quick release pin. The camber tube improves the stability of the foldable wheelchair. When desired to fold the wheelchair, the quick release pin is removed and the camber tube is rotated approximately 90 degrees, thereby allowing the wheelchair to fold. The adapters may be mounted to the wheelchair frame or to stub axles if used. The swing arm assembly adds substantial stiffness and stability to a folding wheelchair.
The present disclosure relates generally to small-gauge instrumentation for surgical procedures, and more specifically, to vitreoretinal instruments for retinal repair and reattachment procedures, as well as associated methods of use. Certain embodiments of the present disclosure provide a curved or articulating probe configured to provide illumination, fluid aspiration, and endophotocoagulation. Accordingly, the probe enables aspiration of subretinal fluid that re-accumulates after initial drainage and during endophotocoagulation without the need to exchange surgical instruments or insert an additional instrument into the intraocular space. Furthermore, the combined functionalities of the probe enable a surgeon to simultaneously perform scleral depression with the surgeon's other hand while aspirating fluid and/or performing retinal endophotocoagulation.
In some embodiments, a system and/or method may include an external spinal brace system. The system may include a plurality of support mechanisms including at least first and second support mechanisms. The first support mechanism may be coupled, during use, to the second support mechanism such that the first and second support mechanisms are inhibited from decoupling. In some embodiments, the system may include a coupling system. The coupling system may couple the plurality of support mechanisms to a subject such that the plurality of support mechanisms are positioned, during use, along at least a portion of the subject's spine. In some embodiments, the external brace system applies a posterior distraction force to the subject.
A method of implanting a prosthetic implant includes advancing a prosthetic implant into a patient's vasculature with a delivery apparatus, the delivery apparatus comprising a catheter and a control lead, the catheter including a lumen extending therethrough, the control lead extending through the lumen of the catheter, the prosthetic implant comprising an implant body, a seal extending radially outwardly from the implant body, and a locking bar coupled to the implant body and releasably coupled to the control lead, the locking bar radially offset relative to the central longitudinal axis of the implant body. The method further includes rotating the control lead of the delivery apparatus in a first direction relative to the catheter such that the locking bar rotates in the first direction relative to the implant body and the implant body expands radially from a first radially compressed state to a first radially expanded state.
Pedicle-based intradiscal fixation devices, systems, instruments, and methods thereof. An implant for stabilizing an inferior vertebra and a superior vertebra may include a first member and a second member moveably connected to the first member. The implant may have a first, initial insertion orientation and a second, final implantation orientation different from the first, initial insertion orientation. The first member may be configured to be inserted through a pedicle of the inferior vertebra and the second member may be configured to engage bone of the superior vertebra in the second, final implantation orientation.
Described herein are systems and methods from delivering prosthetic devices, such as prosthetic heart valves, through the body and into the heart for implantation therein. The prosthetic devices delivered with the delivery systems disclosed herein are, for example, radially expandable from a radially compressed state mounted on the delivery system to a radially expanded state for implantation using an inflatable balloon of the delivery system. Exemplary delivery routes through the body and into the heart include transfemoral routes, transapical routes, and transaortic routes, among others.
An inferior vena cava filter (340) for use in the inferior vena cava (4) to capture thrombus (8) passing through the inferior vena cava (4) towards the heart and lungs to prevent pulmonary embolism comprises a proximal support hoop (302), a distal support hoop (312) and a plurality of support struts (303) extending between the proximal support hoop (302) and the distal support hoop (312). The filter (340) also comprises a plurality of capture arms (121) which are movable from a capturing configuration to an open configuration. The capture arms (121) are biased towards the open configuration. A biodegradable suture holds the capture arms (121) in the capturing configuration.
A package has an outer enclosure enclosing absorbent units and being at least partially non-opaque, wherein said outer enclosure has a thickness which is less than 70 μm, and wherein the outer enclosure is at least partly of a first predetermined colour and the absorbent units are at least partly of a second predetermined colour as viewed through the outer enclosure. The absorbent units have at least one lightly coloured or light grey area and the outer enclosure has a dominant area covering a substantial part of the area of the outer enclosure and having a lightness value above 75, and the colour difference between the dominant area and the lightly coloured or light grey area as seen through the outer enclosure is chosen so that the absorbent units are generally not visible through the outer enclosure.
Provided herein is a system and method for coupling a wearable therapy system to a dressing and detaching the wearable therapy system from the dressing. One aspect provides a system including a drape with a switchable adhesive layer and a therapy system adhered to the drape via the switchable adhesive layer. The therapy system includes one or more radiation sources that can emit radiation wavelengths (e.g., light or electromagnetic waves) to impinge upon the adhesive and deactivate the adhesive when it is desired to remove the therapy system from the drape.
Methods and apparatus for stabilizing a bite fork in a patient's mouth. The apparatus may include an elastically deformable bite fork stabilizer. The elastically deformable bite fork stabilizer may include an elastically deformable layer, an adhesive layer on one side of the elastically deformable layer, and a removable layer adhered to the adhesive layer.
Provided is an ultrasound bronchoscope capable of preventing a non-coaxial cable from being disconnected and improving a degree of freedom of wirings.
An ultrasound bronchoscope includes a distal end part having an ultrasound transducer array, a bending part that is coupled to a proximal end of the distal end part and is bendable in two directions, a flexible part that is coupled to a proximal end of the bending part, a cable that is inserted into the flexible part and the bending part, and a flexible substrate that electrically connects a plurality of ultrasound transducers and the cable, and is disposed over the distal end part, the bending part, and a part of the flexible part. The cable includes a plurality of non-coaxial cables, each non-coaxial cable includes a plurality of signal wires, the distal end part has a structure for regulating a rotation direction of the flexible substrate, such that the flexible substrate is bendable in the same two directions as the bending part, and a plurality of first electrical bonded portions where a plurality of signal wires and a plurality of electrode pads of the flexible substrate are electrically bonded are positioned in a region of the flexible part.
Systems and methods for providing guidance to an operator of an ultrasound device that comprises an ultrasound probe housing that contains a plurality of probes. In embodiments, images of inside a body of a patient generated in accordance with reflected ultrasonic waves from the probes are received, the images are processed to identify a needle that has been inserted into the body of the patient, and a notification to the operator is generated based on one or more of a distance or direction of the needle relative to a location of an anatomical part also identified by processing of the images, a distance or direction of the needle relative to an internal target body location also identified by processing of the images, or a distance or direction of the needle relative to a desired path of the needle also identified by processing of the images.
A sublingual microcirculation detection device and a sublingual microcirculation detection system are provided. The sublingual microcirculation detection device includes a base, a first side wall structure, a second side wall structure, an ultrasonic probe, a saliva brush, a plurality of near-infrared lamps, a camera, a main controller on a side surface of the base, and a probe handle fixed to a top surface of the base. The first and second side wall structures are fixed to a bottom surface of the base. The ultrasonic probe is arranged on the first side wall structure, and the saliva brush is arranged on the second side wall structure. The plurality of near-infrared lamps and the camera are arranged on the bottom surface of the base; and the main controller is electrically connected to the plurality of near-infrared lamps, the camera, and the ultrasonic probe.
A system for monitoring free flap patency includes transmit and receive transducers structured to be coupled to a blood vessel, and a plurality of circuitry modules structured to insonify a blood flow volume within the blood vessel and receive a scattered signal from the receive transducer, extract a baseband Doppler blood flow signal, VBASEBAND, from the scattered signal, extract a plurality of features from VBASEBAND, and classify the plurality of features and generate a binary signal based on the classification of the plurality of features, wherein the binary signal will have a first state responsive to the classification of the plurality of features indicating that a flow rate within the blood vessel is less than a predetermined level and a second state responsive to the classification of the plurality of features indicating the flow rate within the blood vessel is greater than or equal to the predetermined level.
The radiation detector includes a sensor substrate and a reinforcing substrate. In the s sensor substrate, a plurality of pixels for accumulating electric charges generated in response to radiation is formed in a pixel region of a first surface of a flexible base material. The reinforcing substrate is provided on at least one of the first surface side of the base material or a second surface side opposite to the first surface, includes the foamed body layer, and reinforces the stiffness of the base material.
The disclosure relates to a method and a system for determining a carbohydrate intake event from glucose monitoring data indicative of a glucose level in a system having a data processing device provided with one or more processors. The method comprises steps of: receiving a glucose monitoring value by the data processing device, the glucose monitoring value indicating a glucose level sampled from a person in a bodily fluid in a glucose level measurement; receiving, by the data processing device, insulin bolus administration data indicating an insulin bolus of an insulin bolus administration; determining, by the data processing device, from an analysis of the glucose monitoring value, a carbohydrate intake event if one of the following is detected: the glucose monitoring value indicates a glucose level below a first threshold glucose level; and the glucose monitoring value indicates an elevated glucose level above a second threshold glucose level, and the insulin bolus indicated by the insulin bolus administration data is exceeding a corrective insulin bolus suitable for compensating for the elevated glucose level; and generating, by the data processing device, carbohydrate intake event data indicating the determined carbohydrate intake event. Further, a non-transitory computer readable medium is provided.
An apparatus for classifying stress includes an electrocardiogram (ECG) measurement module configured to measure an ECG signal in a first state, an idle state, and an ECG signal in a second state in which noise, having various magnitudes, is generated, a feature point extraction module configured to extract a feature point of each of the measured ECG signal in the first state and the measured ECG signal in the second state, and a clustering module configured to perform K-means clustering on the ECG signals in the first and second states based on the extracted feature points to classify stress.
A medical image processing method performed by a computer, for measuring the spatial location of a point on the surface of a patient's body including: acquiring at least two two-dimensional image datasets, wherein each two-dimensional image dataset represents a two-dimensional image of at least a part of the surface which comprises the point, and wherein the two-dimensional images are taken from different and known viewing directions; determining the pixels in the two-dimensional image datasets which show the point on the surface of the body; and calculating the spatial location of the point from the locations of the determined pixels in the two-dimensional image datasets and the viewing directions of the two-dimensional images; wherein the two-dimensional images are thermographic images.
A tissue property sensing system includes a sensing assembly that is movable along a drive screw and includes an outer shaft, an anvil, a center drive, a piston, and a tension spring. The piston includes a distal arm having a distal portion and a head that extends from the distal portion. The piston is movable within the outer shaft to move the head in relation to the anvil between an open configuration and a closed configuration, wherein in the closed configuration, the head of the piston and the anvil are positioned to clamp and occlude flow of blood within tissue. The tension spring is coupled to the center drive and to the piston to urge the piston towards the center drive and to urge the head of the piston towards the anvil.
A method and apparatus to non-invasively measure instantaneous blood pressure using pulse wave velocity are disclosed. A measurement component is affixed to a patient proximate to a blood vessel. One or more sensors, such as an ultrasound sensor, is included in the measurement component. The measurement component substantially simultaneously measures the pulse wave velocity of the vessel and the instantaneous blood velocity within the vessel. The measurement component computes the instantaneous blood pressure of the vessel using, for example, the water hammer equation. The one or more sensors may be contained in a disposable patch or collocated with another sensor, such as a patient-monitor sensor, or the like.
Systems and methods are disclosed that facilitate the reduction of both radio frequency (RF) noise and photoacoustic artefacts in differential photoacoustic radar imaging through a multi-step electrical and optical domain calibration method. An example two-step calibration method involves reducing RF image noise via an initial calibration step that involves the control of the relative amplitudes and phases of electrical driving modulation waveforms, while a second calibration step involves the differential suppression of photoacoustic artefact signals via tuning, in the optical domain, of the relative intensity the optical beams that are delivered to the sample. Another example embodiment involves the use of the standard deviation of the unwrapped phase that is obtained, after performing frequency-domain cross-correlation and an inverse transform to the time domain, to improve the amplitude signal that is employed to generate a differential photoacoustic radar image.
A robotic surgical instrument comprising a shaft, an articulated section and a drive mechanism. The articulated section extends from the shaft and terminates at its distal end in a tip. The tip has an attachment for an end effector. The drive mechanism drives the articulated section via flexible driving elements thereby altering the angular orientation of the tip relative to the shaft. The drive mechanism is controlled so as to always fully compress the articulated section along at least one extent by which the articulated section connects the tip and the shaft whilst driving the articulated section from any one configuration to any other configuration. The drive mechanism constrains movement of the articulated section so as to permit the tip to move with two degrees of rotational freedom and no degrees of translational freedom relative to the shaft.
A system for registering a luminal network to a 3D model of the luminal network includes a computing device configured to identify potential matches in the 3D model with location data of a location sensor, assigning one of the potential matches a registration score based on a deformation model applied to the 3D model, and displaying the potential match having the highest registration score.
The present invention relates to the field of instruments for visualizing the inner structures of the human body, and in particular of the eye. More specifically, its object is an optical coherence tomography system and method of the “Fourier-domain” type with the removal of unwanted artifacts through digital image processing.
An ophthalmologic imaging apparatus having an OCT optical system for acquiring OCT data of a tissue of a subject eye based on a spectral interference signal of measurement light emitted to the tissue and reference light. The apparatus further has a second optical system for acquiring a front image of the tissue; an optical element having asymmetry and arranged on a common optical path of the OCT optical system and the second optical system; and an arithmetic controller that associates an OCT data acquisition position with coordinates of the front image while taking at least a difference in distortion caused by the optical element between the OCT optical system and the second optical system into consideration.
An electrosurgical instrument includes a housing and an elongated shaft extending from the housing. An end effector is disposed at a distal portion of the elongated shaft. The end effector is configured to deliver electrosurgical energy to tissue. The end effector includes a first jaw member having a first electrode plate and a second jaw member having a second electrode plate. A movable handle is operably coupled to the housing. The movable handle is configured to move at least one of the first or second jaw members between an open position and a closed position. A first plate is disposed on the first jaw member. A second plate is disposed on the first plate. The second plate includes an opening defined therein. A bead is disposed on the first plate and is configured to protrude through the opening defined in the second plate.
A system for facilitating changing of a configuration of a bone having: a bone plate with a surface to overlie a surface of a bone; and a spacing assembly configured to be placed together with the bone plate selectively in: a) a cutting state wherein the spacing assembly maintains a gap region between at least a part of the bone plate surface and the bone surface which the bone plate surface is situated to overlie; and b) a second state wherein the at least part of the bone plate surface can be moved closer to the bone surface. A cutting component can be directed fully through a bone and into the gap region with the spacing assembly and bone plate in the cutting state. After the bone is cut, the bone plate and spacing assembly can be changed into the second state whereupon the bone plate can be placed against the bone surface in an operative position.
A multiaxial receiver may include a body having a U-shaped cavity configured to receive a longitudinal rod therein and a lower cavity configured to couple to a pedicle screw. The multiaxial receiver may include a first passageway configured to permit a tether to pass therethrough in the vertical direction. In some embodiments, the multiaxial receiver may also include a second passageway configured to permit a tether to pass therethrough in the horizontal direction. An immobilization assembly including a set screw and a wedge may immobilize the tether. The immobilization assembly may be configured to be rotated from an open position in which the tether is permitted to pass through the first passageway to a closed position in which the tether is immobilized within the first passageway or second passageway by pining the tether against a bearing surface of the first passageway.
Provided is an apparatus and component parts of a system for the external fixation of bones. The component parts include fixation plates such as a C-shaped Plate, an N-shaped Plate, a J-shaped Plate, a K-shaped Plate, an I-shaped Plate, a Foot Plate, a Z-shaped Plate, a T-shaped Plate and an oval shaped Plate. Two or more fixation plates are configured along an axis, the two or more fixation plates; a plurality of telescoping adjustable struts that connect a first fixation plate along the axis with a second fixation plate of the plurality of fixation plates along the axis, wherein the first and second fixation plates are adjacent plates along the axis; and a plurality of posts, each post connecting two adjacent fixation plates of the plurality of fixation plates along the axis.
A uterine manipulator device includes: an elongated cannulated tube comprising a proximal end and a distal end; a cervical cup having a top proximal portion of a first diameter and a base distal portion of a second smaller diameter, wherein: the base distal portion includes a hole formed therein having a perimeter including a distal end and a proximal end, and including a longitudinal axis positioned therethrough; one of the proximal end of the perimeter and the distal end of the perimeter is angled away from the longitudinal axis and the other of the proximal end of the perimeter and the distal end of the perimeter is in line with the longitudinal axis; and the elongated cannulated tube is positioned through the hole in the cervical cup.
Provided is a medical device capable of easily changing a position of the device inside a biological lumen and effectively removing a cut object. The medical device for removing the object in the biological lumen has a drive shaft, a cutting portion, a first housing that accommodates the drive shaft to be rotatable, a second housing that is rotatable with respect to the first housing, and a support portion that supports the first housing and the second housing. The second housing and the support portion relatively move along an axis to restrict relative rotation of the first housing and the second housing. The support portion supports the second housing to be rotatable around the axis, and restricts a relative movement and a relative inclination of the second housing and the support portion in a direction intersecting with the axis.
A retrieval device can include inwardly facing protruding features that facilitate engagement and capture of a thrombus or other mass from a body lumen of a patient. The protruding features can deploy from a frame of the retrieval device to extend radially inwardly toward an opposing side of the frame. When deployed into a thrombus, the protruding features engage and urge the thrombus as the retrieval device moves to facilitate capture.
Release System and Cutting Profile applied to disposable self-locking intracranial drill bit, comprising a disposable cranial drill bit, for single-use, assembled from a coupling mechanism with an internal drill bit and another external one, where an axial load is applied to the cutting edges to transmit the rotary movement to the device, so that, after accessing the cranial bone the mechanism is released and the drill bit ceases its movement, being the coupling mechanism composed by a mechanical arrangement of two sliding helical cams, which interact with a ring, the geometry of which results in coupling, when the drill bit contacts the cranial bone surface, and the drill bit release, once the internal drill bit crossed the bone without affecting the lower cranial layers. The set is encapsulated in a plastic body, which allows the drill bit assembly in a number of craniotomy equipment.
A system for decorticating at least one bone surface includes an elongated soft tissue protector, an elongated drive shaft and a cutter. The elongated soft tissue protector has a bore extending therethrough. The bore has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The cutter may be located on or near a distal end of the drive shaft. The cutter has a non-circular lateral cross-section, a maximum lateral extent and a minimum lateral extent. The maximum lateral extent of the cutter is greater than the minimum lateral extent of the bore but is no greater than the maximum lateral extent of the bore. The bore of the soft tissue protector is configured to slidably receive the cutter therethrough. Other systems and methods for decorticating at least one bone surface are also provided.
A surgical stapling device for performing anastomoses procedures within a body of a patient includes a handle assembly, an elongate body, and a tool assembly. The handle assembly includes a manually actuated approximation mechanism and a motorized firing mechanism.
A device for treating tissue includes a capsule extending longitudinally from a proximal end to a distal end and including a channel extending therethrough, the capsule releasably coupled to a proximal portion of the device and clip jaws, proximal ends of which are slidably received within the channel of the capsule so that the clip jaws are movable between an open configuration and a closed configuration. Clip jaws are configured so that a distance between the distal ends of the clip jaws in an open configuration is between 15 and 18 millimeters. Clip jaws further include barbs extending from a distal portion thereof.
An endoscope system includes an insertion portion receiving a first force from an enteric canal and applying a second force, which is a reaction, to the enteric canal, a detection device detecting a position of the insertion portion, and a processor. The processor calculates a position of a point of application, a direction, and a magnitude of the first force, performs an arithmetic operation of a shape/position of the insertion portion based on an output from the detection device, determines a reaction position at which the second force is received, based on position information of the insertion portion and on position information of the point of application of the first force, sets two fixed points where the enteric canal is fixed, and calculates information of a third force and a fourth force directed toward the two fixed points from the reaction position with respect to the second force.
A medical scope device such as an endoscope is produced using a cast aluminum process including a molten casting aluminum alloy including a maximum of 0.2-0.3% Si and at least 5% Zn. The process includes providing an investment casting mold, casting the aluminum alloy in the mold to create a component and removing the mold from the component, post-machining the component to meet a desired specification, and after post-machining the component, performing surface finishing, such as centrifugal barrel finishing (CBF) sufficient to remove impurities on casting surfaces by 2-3 mils, then coating the component with a micro-crystalline aluminum anodic coating of at least 0.5 mil thickness. A medical scope and product-by-process is also provided employing such techniques.
A fluorescence imaging system is configured to generate a video image onto a display. The system includes a light source for emitting infrared light and white light, an infrared image sensor for capturing infrared image data, and a white light image sensor for capturing white light image data. Data processing hardware performs operations that include filtering the infrared image data with a first digital finite impulse response (FIR) filter configured to produce a magnitude response of zero at a horizontal Nyquist frequency and a vertical Nyquist frequency. The operations also include filtering the infrared image data with a second digital FIR filter configured with a phase response to spatially align the white light image data with the infrared image data. The operations also include combining the white light image data and the infrared image data into combined image data and transmitting the combined image data to the display.
A bone plate for the compression of a fracture site or osteotomy of a bone includes a bone plate assembly having a plate body shaped and configured for an anatomical location on a patient. The plate body has an upper surface, a lower, bone contacting surface, medial and lateral side surfaces connecting the upper and lower surfaces and at least one screw hole extending through the plate body. The bone plate further includes an access hole extending between the upper and lower surfaces and defining an inner surface shaped to indicate the anatomical location on the patient. This configuration allows the surgeon to easily determine which bone plate should be used for the operation, thereby avoiding costly mistakes during surgery. The bone plate may further include an adjustable screw hole for repositioning the bone plate relative to the fracture site.
A computer-implemented method of detecting and quantifying a spinal curve is disclosed herein. The method comprises obtaining an infrared radiometer camera, positioning the infrared radiometer camera for receiving thermal data for a spine of a subject, the camera being horizontally spaced about ½ meters to about 3 meters from the spine, scanning at least a portion of the spine with the infrared radiometer camera to obtain the thermal data, analyzing the thermal data using machine learning software which uses a classification algorithm to determine the presence of the spinal curve, and calculating a first Cobb angle for the curve of the subject's spine. Corresponding systems and additional methods also are disclosed.
An automatic and currentless dirt remover for collecting dirt from the area surrounding the dirt remover, having a dirt-collecting body and a rolling-action sheath body, which defines a receiving space for receiving the dirt-collecting body. The sheath body has openings for providing external access to the dirt-collecting body, which has a surface that collects the dirt.
The present invention relates to a cleaning implement that includes a melamine-formaldehyde foam. The melamine-formaldehyde foam includes from about 0.1 to about 5 weight % of at least one linear polymer with a number average molecular weight Mn in the range from 500 to 10,000 g/mol. Additionally the present invention encompasses processes for making and methods for cleaning hard surfaces with a cleaning implement according to the present invention.
A retractable shower floor in various embodiments is convertible between an operating position and a retracted position. The retractable shower floor in the operating position spans across a bathtub and facilitates support of at least one person and drainage of water through the retractable shower floor and into the bathtub underneath. The retractable shower floor in the retracted position facilitates unobstructed use of the bathtub.
An automatic doner kebab cutting robot comprises; position sensors perceiving positions of the engine to introduce to the processor providing rotation movements of first engine providing vertical movement of cutting rod in second axis, a second engine providing horizontal movement of cutting rod in third axis, an engine providing movement of the knife of cutting rod in first axis, an engine providing rotation movement of doner kebab skewer in fourth axis, at least one scanner and/or laser perceiving starting point, height and diameter of doner kebab on it to introduce to the processor, at least 1 temperature sensor perceiving the value achieved by measuring temperature of doner kebab to introduce to the processor, a scanner and/or laser, control system (PLC/PIC) sending commands transferred by position sensors and temperature sensors and in this direction, to make furnace, doner kebab skewer, cutting rod and cutting knife it is connected to, move synchronously.
A pillow formed by a folded over foam substrate, has attached at its respective distal end an openable inner compartment. The inner compartment can be filled with variable inserts for back of head and neck support, wherein the inserts includes loose fibrous materials or loose pieces of viscoelastic foam, either loose or in discrete closed pouches. This utilizes the softness and support of the materials, to individually vary the softness and support as the user of the pillow chooses. This promotes interchangeability of the interior pillow materials. The pillowcase may include an internal opened sleeve at one end of the pillowcase, to enhance the ease and speed of inserting pillows within pillowcases, with extra manual shoving and manipulation.
The invention discloses an artificial tree branch with string lights, comprising a main stem, a wood grain strip and string lights. The wood grain strip comprises a wrapped wire and a plurality of decorated blades. The wrapped wire is spirally wrapped on the main stem. The plurality of the decorated blades is integrally formed with the wrapped wire and extended far away from a side of the main stem. The string lights each comprise a lead and a plurality of lamp beads. Each of the lamp beads is electrically connected to the lead. The lead is spirally wrapped on the main stem and interlaced with the wrapped wire.
The disclosure concerns an improved doormat having an anchored frame surrounding a center portion. A collapsible storage apparatus is rotatably coupled to the anchored frame and is configured to deploy into an expanded state and retract into a collapsed state. The collapsible storage apparatus is configured to store and secure delivered packages. In some embodiments, the center portion includes a doormat material disposed on an upper surface thereof. In some embodiments, the collapsible storage apparatus is disposed between the center portion and the anchored frame while in a collapsed state.
A support element (100, 200) for a timepiece (10) or a piece of jewellery including a receiving surface (111) configured to be at least partly in direct contact with the timepiece (10), or piece of jewellery, the support element (100, 200) including a peripheral portion (110) carrying the receiving surface (111), and a central portion (120, 220) formed by a block of material, the support element (100, 200) including an internal cavity (130, 230) forming a recess of the central portion (120, 220); the internal cavity defining a volume configured to receive and hold in position an object (140) inside the support element (100, 200).
A system of interchangeable, interconnectable, standardized components that individually, or as an assembly, display stick-mounted and stick-like food and non-food products in a vertical or substantially fashion. Examples of stick-mounted or stick-like objects include lollypops, corn dogs, chop sticks, pens, pencils, markers, and skewers. Other examples may include stick-like tools, such as knives, wrenches, ratchets, or screwdrivers. Still other examples may include stick-like kitchen implements, such as spoons, spatulas, forks, whisks, etc.
A neck pillow comprising a cylindrical body that can encircle a neck of a human body, wherein the neck pillow is wearable around and detachable from the neck, wherein the cylindrical body has hardness for stably supporting the neck of the wearer and is provided with a fastener that is openable and closable on a front side of a wearer, and wherein degree of opening of the fastener can be adjusted by a millimeter unit from an upper edge of the cylindrical body in accordance with a height of the lower jaw of the wearer.
An adjustable bed base may be folded in half for shipping without removing the leg assemblies. The leg assemblies are adjustable in length and may be secured in a raised position to facilitate folding the adjustable bed base. To change the length of the leg assembly, a hollow leg is moved inside a hollow receiver and fixed in place by a first push pin assembly. A second push pin assembly inside the hollow receiver fixes the leg assembly in a lowered position and a raised position for storage or shipment. Each hollow receiver is pivotally secured to a mounting bracket welded to a foldable frame of the adjustable bed base.
A wall mount adaptor of embodiments of the disclosed technology includes a wire loop with a plurality of front and back crossbars and a plurality of removably attachable shelves. Each shelf of the plurality of shelves may be removably attached by placing a curved portion of the shelf over a front crossbar, passing a back portion of the shelf between the front crossbar and a back crossbar (such as a back crossbar which corresponds to the front crossbar), and rotating the shelf such that the back portion thereof abuts the back crossbar.
The present disclosure relates to an adjustable table including (i) a base, (ii) a first elongated rod coupled to the base, wherein the first elongated rod includes one or more first through holes, (iii) a second elongated rod configured to translate with respect to the first elongated rod, wherein the second elongated rod includes one or more second through holes, (iv) a table top coupled to the second elongated rod, and (v) a coupling mechanism configured to be positioned between one of the one or more first through holes and one of the one or more second through holes to thereby set a distance between the table top and the base.
A foldable food serving cart, including a stand, side stands, electric circuit assembly and a base stand; the stand includes a stand body. The side stands include a first side stand and a second side stand, which are respectively rotatably connected to left and right sides of the stand body, and provided with a sliding groove on their top parts; the stand further include a first horizontal beam where its left and right sides are respectively slidably connected to the sliding grooves. A supporting frame is defined by the stand, the first horizontal beam, the first side stand and the second side stand for cooking modules, which are powered by the electric circuit assembly, to be placed on its top part. The supporting frame is detachably connected on top of the base stand; wheels are provided on a bottom part of the base stand.
Disclosed are mobile tables and table assemblies having a selectively rotating table top relative to the table frame. A mobile table including a selectively rotatable table top that is configured to securely rotate about an axis in an unlocked position and to be secured in a predetermined plane in a locked position; and two spaced apart frame members securely connected to the selectively rotatable table top positioned on a first end of each spaced apart frame member and movement members attached to a second end of each spaced apart frame members that are configured to selectively move the mobile table to and from desired locations.
A personal care implement that uses less plastic by removing material from a handle of the oral care implement while maintaining a comfortable grip which is similar to a normal grip that a user associates with a personal care implement. That is, the handle has a recess in a rear surface thereof, such that the handle or a portion thereof has a U-shaped transverse cross-sectional area. Portions of the handle may be covered with an elastomeric material to increase gripability and comfort. The handle may also include various rib structures elongated along the recess to increase the strength of the handle so that it does not significantly deform during normal use.
A tracking attachment for an oral care implement that includes a housing and a tracking unit configured to track position, orientation, or movement of the oral care implement. The housing may define a receiving cavity that is configured to receive a portion of the oral care implement. The housing may include a first housing portion having an inner surface that defines a first portion of the receiving cavity that is open at both of the first and second ends of the first housing portion and a second housing portion that mates with the first housing portion to detachably couple the second housing portion to the first housing portion. The second housing portion may have an inner surface that defines a second portion of the receiving cavity that is open at the second end of the second housing portion.
A handle device for use with a hand held portable skin care device has a gas emitting portion that is configured to be proximate to the head of the skin care device during use with the skin care device. The gas emitting portion of the handle device has one or more gas openings. The handle device also includes an inlet that is fluidly coupled to the one of more gas openings through a channel in the handle device. During use, oxygen can be provided to the inlet, and emitted through the one or more gas openings as the skin care device is used to provide therapeutic light to the user's skin.
An applicator includes a first applicator tool and a second applicator tool, wherein the first and second applicator tools are positioned diagonally apart from each other; and the applicator has an overall width that decreases with the flexing of a spring holding the first and second applicator tools as the first and second tools overlap with each other.
A light-weight, easily portable luggage combination is described. The combination comprises a garment bag and a general purpose bag and optionally a utility bag, wherein the garment bag and general purpose bag may be reversibly secured together or used separately if desired. The combination provides for a first interior space in the garment bag so that hanging clothes can be stored in the garment bag and a second interior space in the general purpose bag so that other items (for example, clothing, shoes, accessories, and toiletries) can be stored separately from the hanging clothes.
A carry strap for use on electronic display devices, such as laptop computers or tablets is disclosed herein. The carry strap includes an elongate portion configured to be worn by a user that can be attached to either a second elongate portion that supports the electronic display device or to a mantle that is adhered to the electronic display device through a mantle having an attachment vehicle. The attachment vehicle can include a structural or pressure-sensitive adhesive.
An article of footwear includes a strobel that has a polymeric bladder defining an interior cavity and configured to retain a fluid in the interior cavity. The polymeric bladder has a peripheral flange extending around at least a portion of a perimeter of the interior cavity. A tensile component is disposed in the interior cavity. The tensile component is secured to opposing inner surfaces of the polymeric bladder. The peripheral flange defines a groove extending along the peripheral flange. The groove serves as a guide path for an operator or for a machine to follow when stitching or otherwise securing the strobel to the upper. A method of manufacturing footwear is included.
A sole structure for a footwear article includes a system of support structures. Each support structure includes a tubular body with an inwardly curving wall, which compresses under load to attenuate a force or impact and returns to a resting state when the load is removed.
A sole structure for an article of footwear may have a midsole system that includes a sole plate having a forefoot region and a midfoot region. The sole plate may have a foot-facing surface and a ground-facing surface opposite to the foot-facing surface. The sole plate may define a through hole extending from the foot-facing surface to the ground-facing surface in the forefoot region. The through hole may be closer to a medial edge of the sole plate than to a lateral edge of the sole plate. The sole plate may have ridges extending longitudinally in the midfoot region and in the forefoot region. The ridges may have crests at least some of which may extend non-parallel with one another in a longitudinal direction of the sole plate.
Embodiments described herein relate generally to devices, systems and methods for optimizing and masking compression in a biosensing garment. The biosensing garment has a first fabric portion configured to be disposed about a circumferential region of a user, the first fabric portion having an inner surface including electrode sensor assembly configured to be placed in contact with the skin of the user, the first fabric portion having a first compression rating; and a second fabric portion extending from the first fabric portion, the second fabric portion having a second compression rating less than the first compression rating.
Aspects herein are directed to a support garment having a single strap adjustment mechanism. A first end of the strap is adjustably secured to an upper margin of a first breast contacting surface, and a second end of the strap is adjustably secured to an upper margin of a second breast contacting surface. An intervening portion of the strap is configured such that as the strap extends from its first end, it crosses diagonally downward to a first aperture located on a wing portion of the support garment through which it passes. It then crosses horizontally to pass through a second aperture located on another wing portion of the support garment. It then crosses diagonally upward where it terminates at its second end.
Provided is an aerosol generating device including a heater configured to heat an aerosol generating material; a sensor configured to detect movement of the aerosol generating device; and a controller configured to: count stop time corresponding to a time for which the movement is not detected during an operation time of the heater, and extend the operation time based on the stop time.
The present invention provides an antibacterial composition capable of forming an antibacterial film having suppressed coloration, excellent antibacterial property, and suppressed film cracking, antibacterial film, and an antibacterial film-attached substrate. The antibacterial composition of the present invention includes a silver-based antibacterial agent containing zirconium phosphate and silver carried and supported on the zirconium phosphate, a monomer having a polymerizable group, and a solvent. The monomer having a polymerizable group includes a first monomer having a polymerizable group and a hydrophilic group, and a second monomer having a polymerizable group and having no hydrophilic group, and the content of the first monomer is 30% to 70% by mass with respect to the total mass of the monomer having a polymerizable group.
A rod rack system including a base, base block, at least one rounded arm, a top block and a top bar. The base block and top block allow the rod rack to adjust in all directions for flexibility. The rod rack system combines full adjustability with strength for use in a variety of fishing activities.
Provided is a fishing reel spool that has a line knot hider. The spool for a fishing reel includes a knot hider for hiding a knot of a fishing line inside the surface of a winding part such that a line is uniformly wound on the winding section without a knot exposed outside the surface of the winding section, thereby not interfering with thumbing in casting and enabling even a beginner to easily connect and use a fishing line without connecting a fishing line to a spool using a complicated knotting manner. The spool for a fishing ring includes a drum-shaped winding part mounted on a reel body by a shaft and configured to wind a fishing line on an outer surface thereof, and a knot hider configured to hide a knot of the fishing line inside a surface of the winding part.
A lure 1A of the present invention has a body 2 and a lip part 3 projecting from the body 2, and the lip part 3 is provided with a hologram sheet 4. As the hologram sheet 4 of the lure 1A reflects light while the lure 1A dives and swims in water, a target fish is easily attracted by the lure 1A.
An object of the present invention is to develop: a method of efficiently producing a long bagworm silk thread containing no contaminant while preventing a change in the spinning direction and the runaway of the bagworm from a rail, and alleviating a burden on the bagworm; and an apparatus for implementing the thread-producing method. Provided is an apparatus for producing a bagworm silk thread, having a movable rail having a width smaller than the maximum width between the right and left legs of a bagworm and configured to move in the longitudinal direction and to be able to hold with the legs of the bagworm; and a fixator configured to fix a bagworm, wherein the fixator is placed at a position such that the fixed bagworm can hold the movable rail.
A transgenic non-human mammal containing a heterologous lambda light chain gene locus, and/or a heterologous kappa light chain gene locus, and/or a heterologous heavy chain gene locus, each of which can re-arrange so that immunoglobulin heavy and light chain genes are formed and expressed in B-cells following antigen challenge.
An irrigation system is configured with a sprinkler module resting on at least two guide rails supported in a parallel arrangement by a plurality of legs, with the legs forming a rack used to provide a guideway for a sprinkler module along the guide rails, with the guide rails and cross supports arranged to form a plane. An adjustment is provided for positioning the plane of the guide rails and cross supports at tilt or angular adjustment of the plane to provide a selected alignment of the plane with a terrain location of the irrigation system. The sprinkler module is connectable to a water source capable of providing a water supply for discharge through the sprinkler modules; and at least one tracking wheel drive motor, such as a water powered drive motor or an electric motor, is provided for driving the sprinkler module along the guide rails.
A backpack blower has a backpack with a load-bearing frame, a blower tube with a backpack-side tube section which is held on a rear side of the load-bearing frame, and a hand-side tube section which extends past a first side region of the load-bearing frame, a drive motor, an energy source for the drive motor, and an axial fan which is driven by the drive motor, has an axial fan axis, and is arranged in the backpack-side tube section of the blower tube. The backpack-side tube section of the blower tube runs with a main direction component in a backpack transverse direction of the load-bearing frame and has an axial blower tube end termination which projects laterally beyond a second side region of the load-bearing frame, which second side region faces away from the first side region, and/or is surrounded at least on a part of its circumference by a protective ring element which is connected to the load-bearing frame. The blower may be an electric leaf blower.
A Tray and Trellis System includes vertical posts or legs, longitudinal members, and cross members. Combs include tines fixed at one end to longitudinal members on one side, and releasably engaged at their other end to other longitudinal members on the other side. Further combs include tines fixed to a cross member at one end, and releasably engaged to another cross member at the other end. There may be intermediate cross members having tines fixed to them and other tines releasably engaged to them. Fixation of the tines may be by clips, rings, welding, bonding, fastening, or by molding as a single piece. The releasably engaged ends of the tines may be engaged with snap-fit slot features in the longitudinal members, the cross members, or the clips or rings, or may be engaged with open grommets inserted into openings in the longitudinal members or cross members.
An apparatus and methods for delivering seed from a metering device to a furrow. In one embodiment, a seed meter entrains seeds on a seed disc rotating toward a seed release location. A guide brush assembly guides the entrained seeds toward the seed release location, whereupon the entrained seeds are released from the seed disc into an upper end of a seed conveyor. The seed conveyor conveys the seed toward the soil and releases the seed with a rearward relative velocity.
A seed delivery apparatus and methods in which a seed conveyor delivers seed from a metering device to a furrow in a controlled manner to maintain seed placement accuracy within the furrow.
The disclosure relates to devices, systems, and corresponding methods to be used in connection with agricultural planters. More particularly to a vacuum and generator system including a housing, a fan assembly within the housing, a generator, and a hydraulic motor. Some implementations include a voltage regulator or voltage regulation module. The system allow for adjustable fan control without affecting electrical output, integral cooling, and multi-level voltage output from a single generator. Additionally, the system provides greater efficiency in operating an agricultural implement.
An agitating system includes an agitator disposed within a sub-hopper of the agitating system. The agitator is configured to promote movement of the particulate material through the sub-hopper. The agitating system also includes a deflector assembly configured to movably couple to a bracket at a position laterally offset from a center axis of the agitator. The deflector assembly includes a deflector that establishes a space between the deflector and the agitator, and the deflector is configured to block a portion of the particulate material from exerting a force onto the agitator as the particulate material flows through the sub-hopper.
In one aspect, a system for controlling the operation of an agricultural implement may include a ground-engaging tool configured to engage soil within a field such that the tool creates a field material cloud aft of the tool as the implement is moved across the field. Furthermore, the system may include an imaging device configured to capture image data associated with the field material cloud created by the ground-engaging tool. Moreover, a controller of the disclosed system may be configured to identify a plurality of field material units within the field material cloud based on the image data captured by the imaging device. Additionally, the controller may be configured to determine a characteristic associated with the identified plurality of field material units.
An electronic device comprises a semiconductor memory that includes: a first line; a second line disposed over the first line to be spaced apart from the first line; a variable resistance layer disposed between the first line and the second line; a first electrode layer disposed between the first line and the variable resistance layer; and a first oxide layer disposed between the variable resistance layer and the first electrode layer. The first electrode layer includes a first carbon material doped with a first element, and the first oxide layer includes a first oxide of the first element.
Provided are a resistive random access memory (RRAM) and a manufacturing method thereof. The resistive random access memory includes multiple unit structures disposed on a substrate. Each of the unit structures includes a first electrode, a first metal oxide layer, and a spacer. The first electrode is disposed on the substrate. The first metal oxide layer is disposed on the first electrode. The spacer is disposed on sidewalls of the first electrode and the first metal oxide layer. In addition, the resistive random access memory includes a second metal oxide layer and a second electrode. The second metal oxide layer is disposed on the unit structures and is connected to the unit structures. The second electrode is disposed on the second metal oxide layer.
A magnetoresistive random access memory (MRAM) structure is provided in the present invention, including multiple MRAM cells, and an atomic layer deposition dielectric layer between and at outer sides of the MRAM cells, wherein the material of top electrode layer is titanium nitride, and the nitrogen percentage is greater than titanium percentage and further greater than oxygen percentage in the titanium nitride, and the nitrogen percentage gradually increases inward from the top surface of top electrode layer to a depth and then start to gradually decrease to a first level and then remains constant, and the titanium percentage gradually decreases inward from the top surface of top electrode layer to the depth and then start to gradually increase to a second level and then remains constant.
A handset for an ultrasonic device for bone cement removal and/or osteotomy operations comprises a handset body which encloses ultrasound generating means including at least one piezoelectric transducer and a horn, connection means configured to connect the handset to a tool to which the ultrasounds generated by the ultrasound generating means are transmitted, a duct for circulation of a cooling medium, the duct extending at least partially on the outside of the handset, a triggering element whose activation causes the activation of the ultrasound generating means, and a control lever coupled to the handset body at a connection point, the control lever being configured to activate the triggering element by means of its movement about the connection point.
A method for producing an ultrasonic transducer or ultrasonic transducer array, the method comprising providing or depositing a layer of piezoelectric material on a substrate. The piezoelectric material is a doped, co-deposited or alloyed piezoelectric material. The piezoelectric material comprises: a doped, co-deposited or alloyed metal oxide or metal nitride, the metal oxide or metal nitride being doped, co-deposited or alloyed with vanadium or a compound thereof; or zinc oxide doped, co-deposited or alloyed with a transition metal or a compound thereof. Optionally, the deposition of the layer of piezoelectric material is by sputter coating, e.g. using a sputtering target that comprises a doped or alloyed piezoelectric material. In examples, the layer of piezoelectric material is deposited onto the substrate using high power impulse magnetron sputtering (HIPIMS). Further enhancement may be obtained using substrate biasing (e.g. DC and/or RF) during deposition of the layer of piezoelectric material. In further examples, the substrate is provided on a rotating drum whilst tire layer of piezoelectric material is being deposited.
An organometallic compound represented by Formula 1:
wherein M1 and M2 are each independently a first row transition metal, a second row transition metal, or a third row transition metal in the Periodic Table of Elements; and wherein L1, L2, a1, a2, Ar1, Ar2, R1 to R4, and LK in Formula 1 are as described in the present disclosure.
A heterocyclic compound may be represented by Formula 1:
where Formula 1 is the same as described herein. An organic light-emitting device including the heterocyclic compound in, for example, an emission layer may have excellent driving voltage, luminescence efficiency, and external quantum yield.
A display panel and an electronic device including the same are disclosed. A circuit layer of the display panel includes at least a first transistor and a second transistor. The first transistor includes a first oxide semiconductor pattern, a gate electrode, a first electrode in contact with one side of the first oxide semiconductor pattern, a second electrode in contact with the other side of the first oxide semiconductor pattern, and a first-first metal pattern disposed on the substrate to overlap the first oxide semiconductor pattern. The second transistor includes a second oxide semiconductor pattern, a gate electrode, a first electrode in contact with one side of the second oxide semiconductor pattern, a second electrode in contact with the other side of the second oxide semiconductor pattern, a first-second metal pattern disposed on the substrate to overlap the second oxide semiconductor pattern, and a second metal pattern disposed between the second oxide semiconductor pattern and the first-second metal pattern.
A display device includes a first substrate where a display area and a non-display are defined, wherein a plurality of pixels are arranged at the display area and the non-display area surrounds the display area; a dam surrounding the display area and arranged at the non-display area; an organic light emitting diode provided in the display area; an encapsulation film disposed on the organic light emitting diode; a buffer layer disposed on the encapsulation film; an insulating film disposed on the buffer layer; a pad area arranged outside the dam, wherein the buffer layer and the insulating film extend from the display area to the pad area; a link line disposed between the dam and the first substrate; and a routing line provided on the insulating layer between the display area and the pad area.
An OLED display panel and a manufacturing method of the same are provided. The OLED display panel includes a base plate, a first electrode layer and a pixel definition layer on a first side of the base plate, a plurality of electroluminescent layers on the first electrode layer, a second electrode layer covering the pixel definition layer and the plurality of electroluminescent layers, an encapsulation layer covering the second electrode layer, a black matrix and a color filter layer on the encapsulation layer and a plurality of photosensitive fingerprint sensors on a second side of the base plate; a plurality of light-transmitting holes are arranged in the black matrix, and orthographic projections of the plurality of light-transmitting holes on the second electrode layer are in hollow-out regions of the second electrode layer, respectively; and the photosensitive fingerprint sensors are in the orthographic projections of the light-transmitting holes, respectively.
A display apparatus includes: a first electrode; a bank layer defining a first opening which overlaps the first electrode in a plan view; an emission layer which overlaps the first electrode through the first opening; a second electrode on the emission layer; an encapsulation layer on the second electrode; a first insulating layer on the encapsulation layer, where the first insulating layer includes a first portion overlapping the first opening and defines a trench surrounding the first portion; a touch electrode on the first insulating layer; a second insulating layer on the touch electrode and defining a second opening which overlaps the first opening; and a third insulating layer on the second insulating layer.
A display device includes a substrate including a display area and a peripheral area. A display element is disposed in the display area and is electrically connected to a thin film transistor. A power supply line is disposed in the peripheral area. An insulating layer covers a portion of the power supply line. A barrier layer is disposed on the insulating layer and includes a first side surface facing the display area and a second side surface facing away from the display area. At least one of the first side surface or the second side surface includes a concavo-convex surface. The barrier layer forms a step difference with respect to an upper surface of the insulating layer. An end of the insulating layer is positioned beyond the second side surface of the barrier layer on a side of the barrier layer facing away from the display area.
A hybrid organic-inorganic solar cell is provided that includes a substrate, a transparent conductive oxide (TCO) layer deposited on the substrate, an n-type electron transport material (ETM) layer, a p-type hole transport material (HTM) layer, an i-type perovskite layer, and an electrode layer, where the substrate layers are arranged in an n-i-p stack, or a p-i-n stack, where the passivating barrier layer is disposed between the layers of the (i) perovskite and HTM, (ii) perovskite and ETM, (iii) perovskite and HTM, and perovskite and ETM, or (iv) TCO and ETM, and ETM and perovskite, and perovskite and HTM, or (v) substrate and TCO, and TCO and ETM, and ETM and perovskite, and perovskite layer and HTM, or (vi) a pair of ETM layers, or (vii) a pair of HTM layers.
A memory array is provided that includes a plurality of word lines and a plurality of bit lines, and a plurality of memory cells each including a corresponding magnetic memory element coupled in series with a corresponding selector element. Each memory cell is coupled between one of the word lines and one of the bit lines. Each memory cell has a half-pitch F, and comprises an area between 2F2 and 4F2.
Provided herein may be a semiconductor memory device and a method of manufacturing the semiconductor memory device. The semiconductor memory device may include a stacked body including a plurality of interlayer insulating layers and a plurality of gate electrodes that are alternately stacked on a substrate, and a plurality of channel structures configured to vertically pass through the stacked body. Each of the plurality of channel structures may include a core insulating layer, a first channel layer, a second channel layer, a tunnel insulating layer, and a charge storage layer that extend vertically towards the substrate. Electron mobility of the first channel layer may be higher than electron mobility of the second channel layer.
According to one embodiment, a semiconductor memory device includes a first insulating layer; a first conductive layer provided in the first insulating layer and extending in the first direction; a second conductive layer extending in the first direction and provided adjacent to the first conductive layer in a second direction; and a contact plug coupled to one surface of the first conductive layer in a third direction. Thicknesses in the third direction of portions of the first and second conductive layers that overlap the contact plug in the third direction are smaller than thicknesses in the third direction of portions of the first and second conductive layers that do not overlap the contact plug in the third direction.
A one-time programmable (OTP) memory device includes an access transistor, a word line, a voltage line, a well, a first filling oxide layer, a first semiconductor layer, and a bit line. The access transistor includes a gate structure on a substrate, and first and second impurity regions at portions of the substrate adjacent to the gate structure. The word line is electrically connected to the gate structure. The voltage line is electrically connected to the first impurity region. The well is formed at an upper portion of the substrate, and is doped with impurities having a first conductivity type. The first filling oxide layer is formed on the well. The first semiconductor layer is formed on the first filling oxide layer, and is doped with impurities having the first conductivity type and electrically connected to the second impurity region. The bit line is electrically connected to the well.
A semiconductor device includes an active pattern on a substrate, a gate structure buried at an upper portion of the active pattern, a bit line structure on the active pattern, a spacer structure on a sidewall of the bit line structure, a contact plug structure contacting the spacer structure, an insulating interlayer structure partially penetrating through upper portions of the contact plug structure, the spacer structure and the bit line structure, and a capacitor on the contact plug structure. The spacer structure includes an air spacer including air. The insulating interlayer structure includes first and second insulating interlayers. The second insulating interlayer may include an insulation material different from that of the first insulating interlayer. A lower surface of the second insulating interlayer covers a top of the air spacer, and a lowermost surface of the first insulating interlayer is covered by the second insulating interlayer.
A memory cell is disclosed. The memory cell includes a transistor and a capacitor. The transistor includes a source region, a drain region, and a channel region including an indium gallium zinc oxide (IGZO, which is also known in the art as GIZO) material. The capacitor is in operative communication with the transistor, and the capacitor includes a top capacitor electrode and a bottom capacitor electrode. Also disclosed is a semiconductor device including a dynamic random access memory (DRAM) array of DRAM cells. Also disclosed is a system including a memory array of DRAM cells and methods for forming the disclosed memory cells and arrays of cells.
A method of forming a semiconductor memory device, the semiconductor memory device includes a plurality of active areas, a shallow trench isolation, a plurality of trenches and a plurality of gates. The active areas are defined on a semiconductor substrate, and surrounded by the shallow trench isolation. The trenches are disposed in the semiconductor substrate, penetrating through the active areas and the shallow trench isolation, wherein each of the trenches includes a bottom surface and a saddle portion protruded therefrom in each active areas. The gates are disposed in the trenches respectively.
Methods, systems, and devices for designing and implementing power and cooling fluid in a computing environment such as an electronics rack are disclosed. The disclosed methods and systems may provide for a high degree of power distribution and cooling fluid distribution reliability. To provide for a high degree of reliability, the system may include a number of protective features that may reduce the likelihood of connectors used for power and cooling fluid distribution from being damaged. The system may also provide for segregation of power distribution components from cooling fluid distribution components. The rack configurations include codesign of the server and rack to form the physical segregation. The segregation may reduce the chance of these components impacting the operation of other components.
A heat spreader including a body having a first conduction value and a first electromagnetic interference shield value. The heat spreader further includes a conduction enhancement affixed to the body, the conduction enhancement having a second conduction value greater than the first conduction value and a second electromagnetic interference shield value less than the first electromagnetic interference shield value. At least a portion of the conduction enhancement is positioned relative to the body for increasing an effective electromagnetic interference shield value of the body associated with the at least a portion of the conduction enhancement.
In one embodiment, an immersion cooling system includes a container to contain first coolant received from a first cooling source and server chassis at least partially submerged into the first coolant. Each server chassis includes an electronic device and a cooling plate attached thereon to extract at least a portion of heat generated by the electronic device. The cooling plate includes an inlet port to receive second coolant from a second cooling source, a coolant channel to distribute the second coolant, and an outlet port to return the second coolant back to the second cooling source. The cooling system further includes a return manifold to be coupled to the second cooling source, the return manifold having one or more manifold return connectors respectively coupled with the server chassis and to receive and return the second coolant from the server chassis back to the second cooling source.
A computational heat dissipation structure includes a circuit board including a plurality of heating components; and a radiator provided corresponding to the circuit board; wherein a space between the adjacent heating components is negatively correlated with heat dissipation efficiency of a region where the adjacent heating components are located. Since the space between the adjacent heating components of the disclosure is negatively correlated with the heat dissipation efficiency of the region where the adjacent heating components are located, i.e., the higher the heat dissipation efficiency of the region where the adjacent heating components are located is, the smaller the space between the adjacent heating components in the region will be, the heat dissipation efficiencies corresponding to the heating components are balanced, and load of a fan is reduced.
A manufacturing method of an embedded component package structure includes the following steps: providing a carrier and forming a semi-cured first dielectric layer on the carrier, the semi-cured first dielectric layer having a first surface; providing a component on the semi-cured first dielectric layer, and respectively providing heat energies from a top and a bottom of the component to cure the semi-cured first dielectric layer; forming a second dielectric layer on the first dielectric layer to cover the component; and forming a patterned circuit layer on the second dielectric layer, the patterned circuit layer being electrically connected to the component.
A chip substrate includes a base substrate having a plurality of base circuit traces mounted thereon for supporting a chip assembly and an intermediate substrate mounted on the base substrate adjacent the plurality of base circuit traces. The intermediate substrate has a plurality of intermediate circuit traces mounted thereon. Each of the plurality of intermediate circuit traces are wirebonded to a respective one of the plurality of base circuit traces and the plurality of intermediate circuit traces are configured to be electrically coupled to an external device. For example, each of the plurality of intermediate circuit traces may be wirebonded to a respective one of a plurality of feedthrough circuit traces mounted on a feedthrough device.
Disclosed is a wiring board, including: an insulating substrate containing aluminum oxide; and a metallized layer that includes a metal phase containing a metal material and a first glass phase containing a glass component and that is disposed on the insulating substrate. At least one of the insulating substrate and the metallized layer further contains mullite. In the metallized layer, the metal phase continues in a three-dimensional network shape, and the first glass phase is embedded between the metal phase.
A device includes a circuit carrier board and a conductor element that is configured to transfer an electric current from and/or to the circuit carrier board. The device includes an electrically conductive, elastically deformable, contoured, plate-like connection element that connects the circuit carrier board to the conductor element and is configured to create a local, dynamic resilience. As a result of this, a force transmission front the conductor element to the circuit carrier board may be reduced. A plate thickness of the connection element is at least 2 cm. A power converter and an aircraft having such a device are also provided.
A dielectric layer for manufacturing a component carrier is described. The dielectric layer includes a first section including a first material having a first material property; and a second section including a second material having a second material property. The second material property is different from the first material property. A method for manufacturing such a component carrier and a component carrier including such a dielectric layer is further described.
A multi-channel power supply system including a power supply circuit configured to generate a drive signal for powering a plurality of color channels based on an input power signal, a first current control circuit coupled to a first color channel of the plurality of color channels and configured to adjust a first channel current of the first color channel based on the drive signal and a first reference signal, and a channel controller configured generate the first reference signal based on a color temperature according to a black body curve.
A light source driver for a light source of a luminaire. The disclosure proposes to monitor a parameter, responsive to or a cause of a temperature change in a resistive element to facilitate determination of whether the light source driver is compatible with an AC supply. The resistive element in connected in series between the rectifying arrangement, of the light source driver, and the energy storage capacitor for storing charge that powers the light source.
Selecting combinations of antennae of a wireless device based on transmission type includes determining a transmission type of a transmission between the wireless device and an access node and, based on the transmission type, instructing the wireless device to utilize different antenna configurations, including 5G EN-DC, MIMO, mm-wave, and other combinations. The different antenna configurations comprise different combinations of antennae of the wireless device.
According to one configuration, a mobile communication device is in communication with a network. During operation, the mobile communication device executes a monitor application associated with embedded SIM (Subscriber Identity Module) information downloaded to programmable hardware of the mobile communication device. The monitor application is received as a portion of the embedded SIM information. Via the executed monitor application: the monitor application monitors a status of the embedded SIM information and then communicates the status over a network to a remote communication management resource.
Embodiments of the present disclosure relate to the field of communications technologies, and provide an RRC connection management method and apparatus, and a device. The method includes: sending, by UE when in an RRC idle mode, an uplink data request to an access network node by using a shared data sending resource, where the uplink data request includes uplink data and request information that is used for requesting to enter an RRC connected mode; and receiving, by the UE, an access network dedicated identifier of the UE from the access network node, where the access network dedicated identifier of the UE is determined by the access network node according to the request information, and the UE is in the RRC connected mode within a validity period of the access network dedicated identifier of the UE.
According to an aspect, a wireless device, operating in a wireless network, handles transitions from Radio Resource Control, RRC, connected state to an RRC inactive state. The wireless device receives, from the wireless network, a message indicating either that the wireless device is to enter the RRC inactive state or that the wireless device is to remain in the RRC inactive state. The wireless device, responsive to the message, uses, for inactive state operation, at least one previously stored inactive state parameter corresponding to a parameter omitted from the message.
A method and apparatus for data transfer in RRC_INACTIVE state is provided. Method for data transfer in RRC_INACTIVE state includes receiving configuration information for second resume procedure, initiating second resume procedure and transmitting a uplink RRC message together with data in a MAC PDU. During the procedure, a timer starts and stops at specific time points for supervising the procedure
Aspects of the present disclosure provide apparatuses, methods, processing systems, and computer readable mediums for retransmitting a random access channel (RACH) message, for example, based on parameters for initial RACH transmission. For example, a user equipment (UE) transmits an initial transmission of an uplink RACH message with repetition. The UE receives a downlink control information (DCI) scheduling a retransmission of the uplink RACH message with repetition. The UE determines parameters for the retransmission of the uplink RACH message with repetition based, at least in part, on parameters for the initial transmission of the uplink RACH message with repetition. The UE retransmits the uplink RACH message to the network entity with repetition in accordance with the determined parameters.
This application provides a random access method and apparatus applicable to satellite communication. The method includes: obtaining a round-trip transmission latency tRTD of a signal between a terminal device and a satellite; obtaining a random access parameter based on the tRTD, where the random access parameter includes one or more of: a duration between a moment at which the terminal device sends a random access preamble and a moment at which the terminal device starts to receive a random access response RAR, a duration of a window in which the terminal device receives the RAR, a duration between a moment at which the terminal device stops receiving the RAR and a moment at which the terminal device sends the random access preamble again, and a subframe duration; and receiving, by the terminal device the RAR based on the random access parameter.
Embodiments of the present invention are drawn to electronic systems that perform EHT operations for a wireless network supporting a 160+160 MHz/320 MHz operating mode. RTS/CTS frame exchange sequences and TXOP truncation can be performed using punctured preambles according to subchannels indicated in a bitmap subfield (e.g., an Allowed Bitmap Subfield). Preamble puncturing is supported for EHT PPDUs transmitted to multiple STAs using MU-RTS/MU-CTS frames transmitted in non-HT duplicate PPDUs. Preamble puncturing is also supported for an EHT PPDU transmitted to a single STA. The RTS and CTS frames can be sent in a non-HT duplicate PPDU with preamble puncturing, for example.
Example operations may include initiating wireless transmission of a first data frame of data designated for wireless transmission. The wireless transmission of the first data frame may be via a first wireless signal packet configured to carry the data of the first data frame. The operations include directing termination of the wireless transmission of the first data frame via the first wireless signal packet prior to wireless transmission, via the first wireless signal packet, of all of the data of the first data frame. In addition, the operations include directing, in response to termination of transmission of the first data frame, wireless transmission of a termination signal, the termination signal indicating that transmission of the first data frame via the first wireless signal packet terminated prior to completion of transmission of all of the data of the first data frame via the first wireless signal packet.
Certain aspects of the present disclosure provide techniques for wireless communication by a user equipment (UE). For example, the UE receives a physical downlink shared channel (PDSCH) channel state information (CSI) report configuration from a network entity. The UE monitors a PDSCH transmission. The UE generates and transmits a CSI report to the network entity, based on the monitoring and in accordance with the PDSCH CSI report configuration.
A method performed by a WTRU may comprise receiving first periodic uplink transmission information and second periodic uplink transmission information which are different. The method may further comprise receiving configuration information indicating that data of a first logical channel is allowable for transmission in accordance with the first periodic uplink transmission information and that data of a second logical channel is allowable for transmission in accordance with the second periodic uplink transmission information. Data of the first logical channel may be transmitted in accordance with the first periodic uplink transmission information and data of the second logical channel may be transmitted in accordance with the second periodic uplink transmission information.
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may determine whether to perform a simplified uplink control information (UCI) multiplexing procedure or select an overlapping uplink channel having the highest priority and drop the remaining overlapping uplink channels. The UE may determine that a first symbol period of the physical uplink scheduled channel (PUSCH) is aligned with a first symbol period of the physical uplink control channel (PUCCH) and the UE may multiplex UCI with an uplink data transmission. The UE may transmit the multiplexed UCI and uplink data on the PUSCH and drop the PUCCH. The UE may perform UCI multiplexing for overlapping PUCCH and PUSCH, located on the same component carrier (CC). The UE may refrain from performing UCI multiplexing if the PUSCH and the PUCCH are located on different CCs, and may simultaneously transmit UCI and uplink data over the different CCs.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, in a single dynamic signaling communication, an indication to activate one or more coverage enhancement parameters. The UE may activate the one or more coverage enhancement parameters based at least in part on receiving the indication. Numerous other aspects are provided.
A wireless communication system includes one or more base stations able to divide resources between multiple network operators sharing the base station. A shared base station is configured to monitor a contribution to the load on the base station associated with network operators sharing the base station resources and to provide the determined contribution to the load to one or more other base stations for use in load balancing between the base stations.
Provided are wireless communication methods for D2D communication and UEs therefor. A wireless communication method involves transmitting either a first DCI or a second DCI based on whether a first UE and a second UE are to be in a communication type of groupcast or unicast. In the wireless communication methods, the first DCI and the second DCI are scrambled by the UE ID of the second UE if the first UE and the second UE are in the communication type of unicast upon transmitting the first DCI and the second DCI, and the first DCI and the second DCI are scrambled by the group ID if the first UE and the second UE are in the communication type of groupcast upon transmitting the first DCI and the second DCI.
A UE can receive a PDCCH for scheduling a first PDSCH on a serving cell. The UE can receive the first PDSCH from among a plurality of SPS PDSCHs and the first PDSCH on the basis of that i) the first PDSCH overlaps, with respect to time, with the plurality of SPS PDSCHs that are required to be received on the serving cell, and ii) a PDCCH ends at least 14 symbols before the start symbol of the earliest SPS PDSCH from among the plurality of SPS PDSCHs.
A New Radio (NR) control signal that indicates one or more Long Term Evolution (LTE) network parameters may be transmitted to NR UEs to enable the NR UEs to identify which resources carry LTE signal(s). The NR UEs may then receive one or more NR downlink signals over remaining resources in a set of resources without processing those resources that carry LTE signal(s). The NR downlink signals may have a zero power level, or otherwise be blanked, over resources that carry the LTE signal(s).
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and an apparatus for transmitting and receiving data for coordination communication is provided.
Methods, systems, and devices for wireless communications are described. A first device, which may be a user equipment (UE), may transmit a sidelink control information SCI) message (e.g., an SCI-1 message) on a physical sidelink control channel (PSCCH) to a group of devices. The SCI may message may reserve a set of sidelink resources for a sidelink communication between the first device and a second device of the group of devices. The first device may receive an acknowledgment (ACK) message on a physical sidelink feedback channel (PSFCH) from the second device. Based on receiving the ACK message, the first device may release the set of sidelink resources and may transmit a release message (e.g., a physical sidelink release channel (PSRCH) message) on a PSRCH that includes an indication of the released set of sidelink resources.
Systems and methods are provided to determine an estimated location of a user equipment (UE). For instance, a UE can provide a positioning request to a node while the UE is in a radio resource control idle (RRC_IDLE) or inactive (RRC_INACTIVE) state. The positioning request can be implemented in a random access channel (RACH) message A (MsgA). The UE can then receive a positioning response from the node. The positioning response can be implemented in a RACH message B (MsgB).
First information corresponding to a radio signal received at a first sensing device from a candidate location is obtained. Second information corresponding to a radio signal received at a second sensing device from the candidate location is obtained. A first relationship between the first sensing device and the candidate location and a second relationship between the second sensing device and the candidate location are determined. A first inverse and a second inverse of respectively the first and second relationships are obtained. A first estimate of the radio signal at the first sensing device is determined from the first information and the first inverse. A second estimate of the radio signal at the second sensing device is determined from the second information and the second inverse. Energy emitted from the candidate location is measured based on the first estimate and the second estimate.
A method of communicating over a plurality of network slices concurrently. The method comprises building a distributed ledger by a network slice registrar function (NSRF) application executing on a computer, where the distributed ledger records an association between a first network slice allocated to a user equipment (UE) and a second network slice allocated to the UE, providing information about the association of the UE to the first network slice and the second network slice by the NSRF application to a network slice selector function (NSSF), establishing a first communication link between the UE and a first call end point via the first network slice by a first user plane function (UPF) and establishing a second communication link between the UE and a second call end point via the second network slice by a second UPF based on the information provided by the NSRF application to the NSSF.
A method for transporting a Multi-Transport Network Context Identifier (MTNC-ID) over a Segment Routing Version 6 (SRV6) enabled data plane for fifth generation (5G) transport. The method includes setting an indicator in a flags field of a SRV6 header of a data packet that an MTNC-ID type-length-value (TLV) is included in a TLV field of the SRV6 header. The MTNC-ID TLV for the MTNC-ID is inserted in the TLV field of the SRV6 header of the data packet. The data packet with the SRV6 header containing the MTNC-ID is transmitted over the SRV6 enabled data plane to a next node along a forwarding path corresponding to the MTNC-ID.
Systems and methods are provided for in-vehicle data-driven connectivity optimization in a network of moving things. An on-board unit configured for deployment in a vehicle may obtain, during operations in an area of the network of moving things, connectivity-related data relating to coverage within the area, and generate or update, based on processing of the obtained connectivity-related data, a networking decision model. The networking decision model is configured for optimizing connectivity to the one or more access points in or associated with the network of moving things. The networking decision model may be shared with other on-board units deployed in other vehicles and/or with a Cloud-based network node in the network.
A telecommunications system, that after a communication is established by a first electronic communication device and a second electronic communication device, while the conversation is ongoing between a first person using the first electronic communication device and a second person using the second electronic communication device, responsive to content of converted text based on a plurality of words spoken, route the content to a cloud-based phone recognition and entity identification, annotation, and relevance processing resource, to enable display of information related to the content by at least one of the first electronic communication device and the second electronic communication device.
A method and an apparatus of measuring a position of user equipment (UE) in a wireless communication network are provided. The method includes receiving, from a base station, positioning reference signal (PRS) configuration information including information about at least one PRS resource set including at least one PRS resource for receiving a PRS, receiving, from the base station, the PRS based on the PRS configuration information, and performing position measurement of the UE based on the received PRS.
In one embodiment, a method includes receiving, at a tracking server from a user device, a hash value associated with a tracking device. The hash value is computed based on at least a unique identifying value associated with the tracking device. The hash value is configured to expire after a predetermined period of time. The method includes determining that the received hash value is not expired. The method includes identifying the tracking device based on a comparison between a stored hash value and the received hash value. The method includes updating one or more records stored in a database accessible to, and maintained by, the tracking server that are associated with the identified tracking device based on the received hash value.
The present disclosure relates to method and apparatus for mobility wireless communications. According to an embodiment of the present disclosure, a method performed by a wireless device in a wireless communication system comprises: performing measurements to derive a cell quality; determining a set of candidate cells for a mobility based on the cell quality; selecting a mobility target cell from the set of candidate cells for the mobility based on a number of good beams and a number of detected beams; and performing the mobility to the mobility target cell.
Disclosed are systems and methods for providing a differentiated neighbor list that can be individually generated for a specific service (e.g., per service) based on network service information, which can include, but is not limited to, a user equipment (UE) group identifier (ID), network slicing and/or quality of service (QoS) flow, and the like. Neighbors within the differentiated list can be characterized based on, but not limited to, service types, distance to devices, transport costs, service locations, and the like, or some combination thereof. The disclosed framework can generate and dynamically update a differentiated neighbor list for specific types of services so that optimal neighbor selection is performed for the type of service a UE is operating within to ensure that a network connection is maintained at a threshold satisfying QoS.
Methods, systems, and devices for wireless communication are described. A first device may transmit an indication of a first set of signal strength metrics for signal strengths of transmit beams of a second device using receive beams of the first device and a second set of signal strength metrics for signal strengths of transmit beams of the first device using the receive beams of the first device. The first device may determine, for one or more signal strength metrics in the first set of signal strength metrics, the second set of signal strength metrics, or both, a change in the corresponding signal strength. The first device may transmit, based at least in part on the determining, an indication of the change in the corresponding signal strength for each of the one or more signal strength metrics.
A method for providing backhaul dynamic link distance for backhaul is disclosed. In one embodiment, the method includes propagating, by a network owner, a configured link distance parameter as part of beacon; using, by a mesh node joining the network, the configured link distance parameter for backhaul to set slot-time and Acknowledgement (ACK)/Clear To Send (CTS) timeout values before joining the network; wherein the configured link distance parameter for backhaul is part of a backhaul network profile.
Methods, systems, and devices for wireless communications are described for joint communications among a UE and multiple transmission-reception points (TRPs) in which a subset of the multiple TRPs transmit periodic tracking reference signals (TRSs) for use in measurement and beam management at the UE and the multiple TRPs. The subset of TRPs may include TRPs having a relatively large contribution to signals received at the UE, and may transmit periodic (or semi-persistent) TRSs to be measured at the UE. One of the TRPs may provide configuration information to the UE of which TRPs are included in the subset of TRPs, or the UE may determine which TRPs are included in the subset of TRPs based on a signal quality of transmissions associated with each TRP.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless node may perform a listen-before-talk (LBT) operation in a first direction and a second direction, wherein the second direction is opposite to the first direction, and wherein the LBT operation is performed using a first receive beam in the first direction and a second receive beam in the second direction, and selectively performing a transmission in the first direction based at least in part on a result of the LBT operation. Numerous other aspects are provided.
A wireless LAN router includes a directional antenna configured to transmit and receive wireless signals to and from each device, and a processing circuit. The processing circuit learns training data indicating an incoming direction of a wireless signal from an authorized device. The processing circuit then determines whether a wireless signal of a detection target device is a wireless signal from an authorized direction, using an incoming direction of the wireless signal from the detection target device received by the directional antenna and the training data obtained by the machine learning, and outputs a result of determination.
Disclosed are a method and device for determining a security algorithm, and a computer storage medium. The method comprises: a first base station configures an RAN notification area for a terminal, wherein all base stations in the RAN notification area at least support a first security algorithm; the first base station configures the terminal for the first security algorithm.
An embodiment user authentication system for a connected vehicle service includes a service terminal configured to encrypt first vehicle identification information comprising identification information of a vehicle system and terminal identification information comprising identification information of the service terminal to generate a service identification (ID) comprising identification information of the connected vehicle service, and to display the service ID on a display screen as an optically readable code, and a user terminal configured to receive the service ID by scanning the code and to transmit the received service ID to a service server through an external network to request a user authentication.
A key generation method includes determining, by an access and mobility management function node, key-related information. The method also includes sending, by the access and mobility management function node, a redirection request message to a mobility management entity. The redirection request message includes the key-related information, and the redirection request message is used to request to hand over a voice service from a packet switched (PS) domain to a circuit switched (CS) domain. The method further includes receiving, by the mobility management entity, the redirection request message. The method additionally includes generating, by the mobility management entity, an encryption key and an integrity protection key for the voice service based on the key-related information.
The present invention relates to a method for communicating in a network from a first station to a second station, wherein the first station comprises at least one buffer memory for storing data packets to be transmitted, the method comprising the steps of
(a) the first station estimating the status of the at least one buffer memory,
(b) the first station transmitting at least one buffer status packet representative of the buffer memory status, wherein the method further comprises (c) adapting the value of a first parameter of the buffer status packets on the basis of a data traffic characteristic.
Disclosed is a speaker driver from which surrounding (suspension) has been omitted, including a magnet unit disposed in a set form, a vibration unit disposed adjacent to the magnet unit and generating a sound through vibration, and a winding unit disposed between the magnet unit and the vibration unit in a winding shape, generating magnetism in a first direction or a second direction which is a direction opposite to the first direction when power is applied to the winding unit, and vibrating the vibration unit by applying, to the vibration unit, a force generated in association with magnetism of the magnet unit.
The present application discloses a heat dissipation device. The heat dissipation device includes a heating element, a sounding device and a heat conductor. The speaker unit includes a diaphragm separating the accommodation space into a front cavity and a back cavity. The housing body is provided with first sound outlet holes communicating to the front cavity. Heat generated by the heating element is transferred outside along with an air flow in the front cavity. The heat dissipation device provided by the present application has the advantages of being good in heat dissipation effect and exquisite and compact in structure and capable of meeting the demand of miniaturization of the heat dissipation device.
An audio signal synchronization control device of the present disclosure includes a host controller, a plurality of audio devices, a communication unit capable of performing broadcast communication for controlling the plurality of audio devices from the host controller, and a clock oscillator that supplies a master clock of the same source oscillation to the plurality of audio devices. The host controller performs broadcast communication with a plurality of audio devices using a synchronization address. Each of the plurality of audio devices includes a synchronization control unit that generates a synchronization reset signal in a case where broadcast communication is performed by a synchronization address, a clock reset control unit that generates a timing signal in response to the synchronization reset signal, and an audio signal processing unit that processes audio data in accordance with the timing signal.
The present invention relates to a wireless speaker chair, and more particularly, to a wireless speaker chair capable of providing a sense of space and a three-dimensional effect to a user who sits in the chair through sounds output from a plurality of speaker channels and allowing the plurality of speaker channels to wirelessly receive sound signals and power which are received to output sounds.
Embodiments of an audio distribution module and system provide a compact and rugged audio switching device including a radio control unit in communication with an operator control panel. In various embodiments, an audio switching fabric is included with audio relays for directing the transmission and receipt of audio content between a headset in communication with the operator control panel and one or more radios in communication with the radio control unit, facilitating transmission and receipt of audio communications between the radio(s) and the headset.
A method is given for a broadband constant beam width acoustic array using shading function parameters for a three dimensional axially symmetric beam. Coefficients are calculated for an estimated shading function fitting the parameters that is a summation of Legendre polynomial orders. The number of orders is user specified. Null bearing locations can be determined from the parameters or from the shading function. A constant beam width shading function can be created from these parameters and used as amplifications and attenuations for a conical spherical array of transducers. The array can be truncated at the null bearing locations. The estimated shading function can be further refined by provided additional Legendre polynomial orders.
A group of devices acquire audio input of a sound, such as speech, using respective microphones. For pairs of devices in the group, intensity of energy of audio input at each of the devices in the pair is used to determine first proximity data. Relative differences in time-of-arrival of the sound at the devices in the pair is used to determine second proximity data. The first and second proximity data are used to determine an estimated closest device of the pair with respect to the sound. Comparison of the first proximity data to the second proximity also allows a confidence value to be associated with the estimated closest device. The estimated closest device with the greatest confidence value may be selected for use to acquire audio input, present output, and so forth. Additional techniques such as beamforming techniques may be applied to the audio input from the selected device.
Disclosed are system and methods for automated fitting of a hearing aid, through an automated hearing test based upon which a suitable set of hearing aid parameters is determined.
A hearing-aid device, in particular in the form of a conventional hearing aid, includes a signal processing apparatus for processing input signals and for outputting output signals. A loudspeaker unit has a loudspeaker and a conductor connection through which the loudspeaker is electrically conductively connected to the signal processing apparatus. A transmitter and reception unit has a coupling element. A coupling is formed over at least one galvanic isolation point between the coupling element and the conductor connection in such a way that at least a part of the loudspeaker unit is used as antenna structure in transmission and reception operation.
Aspects of the present disclosure provide methods and apparatuses for determining a nozzle of an audio device is, at least partially blocked. More specifically, based on a measured transfer function between the driver and a microphone and an expected transfer function between the driver and the microphone, a blockage is detected. In response to the detected blockage, the user is notified.
A mobile communications device that does not have a physical opening on the screen for audio is operable to transmit a signal to which a photoacoustic effect can be employed by interaction with water vapor in an ear of a user so as to generate audio in the ear or the immediate vicinity of the user's ear. Related methods, apparatuses, systems, techniques and articles are also described.
A system comprises automatic noise cancellation circuitry and interface circuitry operable to provide an interface via which a user can configure which sounds said automatic noise cancelling circuitry attempts to cancel and which sounds said automatic noise cancelling circuitry does not attempt to cancel. The interface circuitry may be operable to provide an interface via which a user can select a sound to whitelist or blacklist. The interface circuitry may be operable to provide an interface via which a user can increase or decrease an amount of noise cancellation that is desired. The interface circuitry may be operable to provide an interface via which a user can select from among three or more levels of noise cancellation.
Aspects of the subject technology relate to liquid-resistant microphone modules for electronic devices. A microphone module may include a non-porous membrane that seals the front volume of the microphone module from the external environment of the electronic device. The microphone module may also include a substrate having an opening that allows airflow between the front volume and an interior cavity within the housing of the electronic device. In various implementations, an inductive vent and/or a resistive vent may be provided over the opening in the substrate.
One example system for sharing content across videoconferencing sub-meetings includes a system comprising a processor; and at least one memory device including instructions that are executable by the processor to cause the processor to establish a videoconferencing session including a main meeting and a first sub-meeting, receive a content transmitted over a data stream to be displayed in the main meeting; cause the content to be displayed in the main meeting, receive a request to subscribe to the data stream over which the content is transmitted, and responsive to receiving the request to subscribe to the data stream, cause the content to be displayed in the first sub-meeting simultaneously with the content displayed in the main meeting.
Systems and methods for sharing data streams in a virtual collaboration room. The method includes receiving a user video data stream from a user device for display to one or more other participants in the virtual collaboration environment and receiving a user screen sharing data stream from the user device for display to the one or more other participants in the collaboration environment. The method further includes providing a participant video data stream and a participant screen sharing data stream associated with each participant of the one or more other participants in the collaboration environment to the user device, the data streams associated with each participant configured for simultaneous display with each other participant data stream at the user device and simultaneous display with the user video data stream and the user screen sharing data stream to the one or more other participants.
An image processing method comprises: performing a spectral analysis of a HDR image (220) to determine whether the HDR image (220) comprises spectral components indicative of a lighting of the scene by a modulated light source; analysing meta-data associated with a set of component images (221) for the HDR image to determine a difference between meta-data for one component image of the set and meta-data for at least one other component image of the set, any difference being indicative of an artefact caused by illumination of the scene by a modulated light source; combining a result of the spectral analysis and the meta-data analysis to provide an indication that illumination of the scene by a modulated light source is causing a visible artefact in at least one of the HDR images; and changing a HDR operating mode of the image processing system (200) accordingly.
An apparatus for correction of a direction to which a tool channel or a camera moves or is bent in a case where a displayed image is rotated. The apparatus includes at least one memory and at least one processor that executes instructions stored in the memory to receive a directional command of a capturing direction of a camera, move the capturing direction of the camera according to the received directional command, detect a rotation amount of a captured image displayed on a monitor, wherein the captured image is captured by the camera, and correct, based on the detected rotation amount, directional information corresponding to a particular directional command or directional coordinate for moving the camera, wherein the directional information is used for moving the capturing direction of the camera.
A control apparatus controls one or more image capturing units. The apparatus comprises: an obtaining unit configured to, based on an image of a plurality of objects captured by the image capturing units, obtain positions of the plurality of objects; and a generation unit configured to, based on at least the image, the positions of the plurality of objects and the orientation of the image capturing units, generate a control command for changing the orientation of the image capturing units.
One embodiment of a camera module may comprise: a lens barrel provided with at least one lens; a holder to which the lens barrel is coupled; a printed circuit board coupled on the bottom of the holder to face the lens; an adhering portion coupling the holder and the printed circuit board; an opening portion opening a portion of a first space formed through the coupling of the printed circuit board and the holder; and a housing coupled with the holder, wherein a second space separated from the first space may be formed through the coupling of the holder and the housing, and the opening portion may communicate the first space with the second space.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for detecting errors that can occur in third party content presentation and verifying that third party content provided by a content provider to a content platform is actually displayed and is visible to the user when the content platform is accessed on the client device. Methods can include receiving, from an application executing on a client device, a request to generate a digitally signed token that is used to validate whether a particular content item displayed at the particular portion of the display is a third party content item. A digital watermark embedded at the particular portion of the display can be extracted and decoded to obtain data for attributes that are descriptive of the particular content item. A digitally signed token can be generated using this data, and the token can then be provided to application.
An optical network includes a transmitting portion configured to (i) encode an input digitized sequence of data samples into a quantized sequence of data samples having a first number of digits per sample, (ii) map the quantized sequence of data samples into a compressed sequence of data samples having a second number of digits per sample, the second number being lower than the first number, and (iii) modulate the compressed sequence of data samples and transmit the modulated sequence over a digital optical link. The optical network further includes a receiving portion configured to (i) receive and demodulate the modulated sequence from the digital optical link, (ii) map the demodulated sequence from the second number of digits per sample into a decompressed sequence having the first number of digits per sample, and (iii) decode the decompressed sequence.
The present invention relates to an image encoding/decoding method and device, and the image encoding method or device according to an embodiment of the present invention may encode a position of a reference coefficient within a current transform block to be encoded, and encoding skip region information of a skip region selected on the basis of the position of the reference coefficient. The skip region information may represent whether or not coefficients within the skip region have an identical coefficient value.
An image decoding device includes a prediction unit configured to generate a prediction signal included in a prediction block based on a motion vector. The prediction unit is configured to perform refinement processing of setting a search range based on a reference position specified by the motion vector, specifying a corrected reference position having the smallest predetermined cost from the search range, and correcting the motion vector based on the corrected reference position. When a block size of the prediction block is larger than a predetermined block size, the prediction unit is configured to divide the prediction block into sub-block groups and perform the refinement processing for each sub-block.
A method for transmitting point cloud data according to embodiments may encode and transmit point cloud data. A method for receiving point cloud data according to embodiments may receive and decode point cloud data.
A predictive contrastive representation method for multivariate time-series data processing includes: mapping temporal coding information at a current moment and future situational information by using a logarithmic bilinear model to obtain a similarity; training the similarity according to a noise contrastive estimation method and prediction situational label data, and constructing, based on a training result, a predictive contrastive loss function of the temporal coding information at the current moment and the future situational information; sampling the prediction situational label data based on a corresponding optimal loss in the predictive contrastive loss function, optimizing the predictive contrastive loss function by using a direct proportion property between the sampling probability and the similarity, constructing mutual information between the temporal coding information at the current moment and the future situational information based on the optimized predictive contrastive loss function, and performing predictive contrastive representation by maximizing the mutual information.
The present invention relates to a method for decoding a bitstream for a video signal including at least one precinct, and a device for same. Specifically, the present invention relates to a method, and a device for same, the method including: a step for demultiplexing packets of the current precinct among the at least one precinct into a plurality of first packets and a plurality of second packets; and a step for entropy-decoding the plurality of first packets and the plurality of second packets in parallel, wherein the plurality of first packets and the plurality of second packets are respectively entropy-decoded in parallel by a first entropy decoder engine and a second entropy decoder engine, the plurality of first packets include packet 0, packet 1, packet 4, packet 6, and packet 8, and the plurality of second packets include packet 2, packet 3, packet 5, packet 7, and packet 9.
In transform coefficient coding, predetermined sets of transforms may be used. Embodiments of the present invention provide an encoder and a decoder for encoding a picture into/from a data stream using block-based prediction and block-based residual coding, the encoder and decoder supporting a set of transforms for the block-based residual coding. The encoder and decoder are configured to determine a transform candidate list of transforms for a current residual block out of the set of transforms based on a height and a width of the current residual block, and to encode/decode a prediction residual within the residual block using one selected transform out of the selectable list of transforms and selectively signal/derive the selected transform in/from the data stream.
An image encoding method includes, using an image as input, determining a first mode suited to encode the image in accordance with a first processing procedure; using the image as input, determining a second mode suited to encode the image in accordance with a second processing procedure; selecting one of first mode and the second mode as a final mode; encoding the image, using the final mode; and calculating a cost of using the second mode to encode the image. The second processing procedure is implemented by a reconfigurable circuit. In the selecting, the first mode is selected when the cost calculated in the calculating is higher than a first predetermined value, and the second mode is selected when the cost is lower than or equal to the first predetermined value.
An image forming apparatus includes a scanner configured to read an image of a document and generate image data of the image according to a reading mode, a storage device configured to store the image data and the reading mode used when reading the image of the document, and a processor. The processor generates a combined image that includes the image of the document and a reading direction image that indicates a reading direction of the scanner and has a shape indicating the reading mode, and store data of the combined image in the storage device. The processor determines a position of the reading direction image in the combined image and a size of the reading direction image in the combined image, based on a reading resolution of the scanner and a resolution of the image data stored in the storage device.
The present disclosure relates generally to image signal processing, including encoding signals for image data or artwork. A color blend/print model is used to predict signal detectability and visibility as is printed on a particular substrate, which facilitates object grading prior to print runs.
An electronic device includes: a communication unit that performs communication with an external device; and a control unit that issues a command to the external device via the communication unit, on the basis of at least one of capacity of the external device, and capacity of the electronic device.
Systems and methods for a work distribution service. At a multi-tenant platform that provides a work distribution service for a plurality of external systems, a priority is assigned to a first work item of a first external system. The work item is received via a RESTful work item API call request. The priority is assigned based on work item attributes of the work item and a workflow instruction corresponding to workflow information specified by the work item. The workflow instruction is provided by the external system via a RESTful Workflow API. A worker is assigned to the work item based on: the priority of the work item, the workflow information, and worker state managed by the first external system via a RESTful Worker API. The worker state includes worker attributes. The work item is generated by the external system, and the workflow instruction is managed by the external system.
A contact center system uses user profiles and agent profiles to determine a routing for a contact center engagement request from a user device to an agent device. Responsive to the contact center engagement request, a user profile associated with the user device is accessed to determine a prioritization score. The prioritization score can be determined in some cases using both information associated with the user profile and input obtained from the user device. Agent profiles are accessed to determine an agent to support the contact center engagement request based on the prioritization score. Each of the agent profiles corresponds to a different contact center agent or agent group. The determined agent may be selected from amongst a plurality of candidates identified based on the profile evaluation. A private session is then established between the user device and a device of the agent.
Systems and methods for predictive cross-platform customer service include receiving first data about a service provider system that includes a plurality of customer service platforms. First user interaction rules are determined based on the first data received. A first condition is then determined to exist in the service provider system based on the first data and the first user interaction rules. First instructions for the service provider system are then determined based on the first condition to achieve a customized user response. The first instructions are provided for the service provider system such that the plurality of customer service platforms has access to the first instructions. Second data of a user interaction with at least one customer service platform is received when the first instructions have been executed. The first instructions are updated to second instructions based on the second data received.
A recording device comprising a base, a top cover, at least one computer with a wi-fi dongle coupled to the base that is configured to automatically upload a .zip file of the audio files to a cloud network when the device is turned on and in range of a preferred wifi network, a hook switch coupled to the base, and electrically coupled to the computer, at least one rechargeable battery electrically coupled to the computer, an LED that indicates battery charge electrically coupled to the computer, at least one USB-A connector electrically coupled to the computer for charging the power source, a rotary dial coupled to the base and configured to extend through an opening in the top cover, a power button electrically coupled to the computer, and a handset removably supported by the top cover and electrically coupled to the computer.
Systems and applications are described that use group signature technology to allow for anonymous and/or semi-anonymous feedback while allowing for the application of rules and parameters. The use of group signature technology may serve to potentially mitigate or prevent malicious identification of individuals or entities providing a communication such as feedback. Feedback may range from constructive feedback all the way to the ‘whistleblower’ variety. It may be desirable to identify the individuals as belonging to a particular group or having a particular status or position while maintaining the anonymity of the individuals within the particular group.
The disclosed embodiments include computer-implemented processes that, using a distributed notarized ledger, constrain an ability of multiple parties to simultaneously, or near simultaneously, update or modify elements of reference data maintained within a centralized data store. For example, an apparatus may receive, from a first computing system, a request to modify reference data maintained at a second computing system. The apparatus may approve the first requested modification to the reference data based on a notarization criterion maintained within an element of a notarized distributed ledger, and perform operations that record notarization data characterizing the approved modification within an additional element of the notarized distributed ledger. The apparatus may also transmit the notarization data to the first computing system, and the notarization data causing an application program executed by the first computing system to modify local reference data in accordance with the notarization data.
Data can be protected in a centralized tokenization environment. A security value is received by a central server from a client device. The central server accesses a token table corresponding to the client device and generates a reshuffled static token table from the accessed token table based on the received security value. When the client device subsequently provides data to be protected to the central server, the central server tokenizes the provided data using the reshuffled static token table and stores the tokenized data in a multi-tenant database. By reshuffling token tables using security values unique to client devices, the central server can protect and store data for each of multiple tenants such that if the data of one tenant is compromised, the data of each other tenant is not compromised.
A matching apparatus generates a random number and transmits second encrypted data obtained by performing an operation of first encrypted data of each of first values related to a first binary vector encrypted and the random number to a matching request apparatus; transmits third encrypted data obtained by performing an operation of the second encrypted data and elements of a matching target second binary vector; based on a second value related to the first binary vector encrypted with the encryption key, the encrypted data and the random number, generates and transmits encrypted data and transmits the generated data to a verification apparatus as a query; and determines whether a count number of mismatched elements between the second binary vector and the first binary vector is less than or equal to a predetermined number based on values obtained by decrypting the encrypted data in the query.
A method for tracing a digital information element in a computer system including electronic devices of users and a system for archiving digital information elements including a blockchain-type distributed database, the method including a step of making the digital information element from the electronic device of one of the users, a step of archiving the digital information element, the archiving step including a substep of generating an identification element of the version of the digital information element, the method including a step of adding the identification element signed with a secure element associated to this user and/or to their electronic device in the distributed database, the addition step including a substep of encrypting the identification element from a cryptographic algorithm and the secure element, the cryptographic algorithm including at least one metric variable associated to the user.
Techniques for data compression for efficient network management are described herein. In one example, for each byte of input data, either: (1) a value of that byte is added to a first-instance array if the value of that byte has not yet been seen in the input data; or (2) an index value is added to an index array, wherein the index value points to the appropriate location in the first-instance array. An “address-bit array” is created with one bit for each byte of the input data. Each bit in the address-bit array indicates whether information of a corresponding byte of the input data was put into the first-instance array or the index array. When the input data file is smaller, the index values in the index array tend to be mostly small valued bytes. Accordingly, the number of zero-valued most significant bits (MSBs) present in all bytes may be stripped from the index array, thereby compressing the input data. The number of zero-valued MSBs stripped from all bytes in the index array may be indicated in a packet header.
Systems and methods are provided for initiation, use, access, and control of functionality of a network. In one aspect, the systems and methods can be utilized to generate information defining signaling or control performance and operational characteristics associated with the functionality in a variety of network environments. In another aspect, based on such information, adaptive signaling can be utilized to monitor, analyze and detect specific signaling signatures associated with the functionality. Managing signaling or control messages in response to information collected by monitoring and analyzing the adaptive signaling permits originating or requesting the functionality without conventional operation of a network component.
Methods and system include receiving frames of data generated for an online game, from a server device and encoding the frames using an encoder. Each encoded frame of data is transmitted to a client device over a network, for rendering. A monitoring engine is used to evaluate the data contained in the encoded frame to determine if an amount of data contained in the encoded frame exceeds a maximum data limit specified for a communication channel established between the server device and the client device. When the amount of data contained in the encoded frame exceeds the maximum data limit, a signal is sent to the encoder to dynamically reduce amount of data included in one or more subsequent frames forwarded to the client device for rendering. The adjusting is performed to maintain a frame rate defined for the online game.
Quality communication can be maintained for integrated channels in transaction systems. For example, a system can receive, by a transaction management layer, a transaction request from a transaction channel of a plurality of transaction channels, the transaction request being in a channel-specific format associated with the transaction channel. The system can, in response to a downstream transaction processing system processing the transaction request, receive a status indicator of the processing of the transaction request. The system can transform the status indicator into the channel-specific format associated with the transaction channel. The system can send the status indicator in the channel-specific format to the transaction channel. The transaction channel can be configured to perform an action in response to receiving the status indicator.
A verifier peer system transmits a request to an application of another peer system to obtain integrity data of the application. In response to the request, the verifier peer system obtains a response that includes kernel secure boot metrics of the other peer system and integrity data of the application and of any application dependencies. If the verifier peer system determines that the response is valid, the verifier peer system evaluates the integrity data and the kernel secure boot metrics against a set of Known Good Values to determine whether the integrity data and the kernel secure boot metrics are valid. If the integrity data and the kernel secure boot metrics are valid, the verifier peer system determines that the other peer system is trustworthy.
One or more Push-To-Talk (PTT) processing devices of an Internet Protocol (IP) communication system receive an indication that a telephone call has been parked in the IP communication system. The one or more PTT processing devices determine the location of one or more PTT users of the IP communication system. The one or more PTT processing devices generate a first PTT channel based upon location of the one or more PTT users. The first PTT channel includes a first subset of the one or more PTT users. The one or more PTT processing devices transmit a first PTT audio notification that the telephone call is parked in the IP communication system to the first PTT channel.
Disclosed is a method and a system configured to be arranged at a location. The system being configured for visual and auditory communication between one or more at-location participants and one or more far-end participants. The system comprising an audio/video (AV)-system. The AV-system comprising an audio component for audio transmission and a video component for video transmission. The AV-system is configured for providing a video-feed from the location. The AV-system is configured to connect to a unified communication cloud server for enabling/performing cloud communication service. The system comprising a functionality service software embedded in the AV-system. The functionality service software being configured for controlling a number of functionalities of the video-feed to generate a processed video-feed. The processed video-feed from the location is configured to be provided to the far-end participant(s) via the cloud communication service.
Various embodiments provide for asymmetric data transmissions using one or more efficiency features, which can be used in such applications as data network communications between sensors (e.g., cameras, motion, radar, etc.) and computing equipment within vehicles (e.g., smart and autonomous cars), or data network communications between a media server (e.g., movies or music) and a display device (e.g., one in a passenger compartment of a vehicle).
A system for detecting phishing websites accesses a website that comprises a plurality of images. The system extracts the plurality of images from the website. The system generates a hash value for each image from the plurality of images. Each hash value uniquely identifies its corresponding image. The system generates a first overall hash value for the website by hashing the generated hash values. The first overall hash value represents a signature of the website. the system compares the first overall hash value with a second overall hash value that is associated with a phishing website. The system determines whether the first overall hash value corresponds to the second overall hash value. If it is determined that the first overall hash value corresponds to the second overall hash value, the system determines that the website is associated with the phishing website.
For each network resource request received at a server of a cloud-based service, a determination of whether that request originated from a second network resource is made. For each such request where the network resource originated from the second network resource, a referrer indication is logged that indicates the second network resource is a referrer to that network resource. A network resource relevance dataset is generated based on the referrer indications of the second network resources. A relevance metric is associated with each second network resource based on a total number of referrer indications. A search request is received from a client device. Based at least in part on the network resource relevance dataset, search results are determined. The search results are transmitted to the client device.
Systems and methods are presented for mitigating cyber threats. Cybersecurity-related data are stored in a semantic cybersecurity database. A user interface converts a user input to a command utterance. A command node that corresponds to the command utterance is identified in the cybersecurity database. The command node is resolved to one or more action nodes that are connected to the command node, and each action node is resolved to one or more parameter nodes that are connected to the action node. The command node has a command that implements actions indicated in the action nodes. Each action can have one or more required parameters indicated in the parameter nodes. The values of the required parameters are obtained from the command utterance, prompted from the user, or obtained from the cybersecurity database. Actions with their parameter values are executed to mitigate a cyber threat in accordance with the user input.
Embodiments are directed toward a non-transitory processor-readable medium for providing a zero-day attack prevention cybersecurity system, including an agent and an orchestrator. The agent is configured to be installed at an endpoint within a network to be evaluated. The endpoint has a cybersecurity solution to be tested. The orchestrator is enables standardized tactics, techniques, and procedures (“TTPs”) and non-standard TTPs to be sent across the network to the endpoint. The agent is configured to limit network communication outgoing from the endpoint to predefined or selected communications while the agent is installed at the endpoint. Accordingly, the agent and the orchestrator cooperatively enable testing the cybersecurity solution of the endpoint with respect to both the standardized TTPs and the non-standard TTPs without exposing other endpoints in communication with the network to security risks posed by the standardized TTPs and the non-standard TTPs sent to the endpoint.
A method including transmitting, by an infrastructure device, a current fingerprint associated with a first instance of a source application; receiving, by the infrastructure device, respective results associated with comparing the current fingerprint with respective verification fingerprints, which are associated with instances of the source application other than the first instance; determining, by the infrastructure device based at least in part on the respective results, a determination result indicating whether the first instance of the source application is to be utilized for transmitting a transmission packet; and transmitting, by the infrastructure device, the determination result to indicate whether the first instance of the source application is to be utilized for transmitting the transmission packet. Various other aspects are contemplated.
In IP communication, an authentication code AC1 uniquely generated by a receiving-side communication device 1b is sent to an originating-side communication device 1a (S1, S2), and stored in the originating-side communication device (S3). Packets in which the stored authentication code is embedded are sent to the receiving-side communication device 1b on connection from the originating-side communication device 1a to the receiving-side communication device 1b (S4), and it is determined at the receiving-side communication device whether the originating-side communication device is true or false depending on if the authentication code sent from the receiving-side communication device is contained in the packets received from the originating-side communication device or not (S5).
The disclosed technology is generally directed to web authentication. In one example of the technology, authentication of a broker is obtained with an identity provider. Obtaining the authentication includes at least communication between the broker and a top-level frame and communication between the broker and the identity provider. The broker is executing in a descendant frame of the top-level frame. The top-level frame and the broker are hosted on different domains. At the broker, from an embedded application that is executing on another descendant frame of the top-level frame, a token request is received. Via the broker, a token is requested from the identity provider. The token is associated with an authorization of secure delegated remote access of at least one resource by the embedded application. At the broker, from the identity provider, the token is received. Via the broker, the token is provided to the embedded application.
A system for communicating email messages using tokens receives a request to send an email message to a receiver. The email message is associated with a sender's email address. The system determines whether the sender's email address is associated with a token from a plurality of tokens stored in a token-email address mapping table. The system generates a particular token for the sender's email address in response to determining that the sender's email address is not associated with a token, where the particular token uniquely identifies the sender's email address. The system sends the email message using the particular token instead of the sender's email address, such that the sender's email address remains anonymous from the perspective of the receiver.
Examples of renewal of security certificates of supplicant devices are described. In an example, a request to authenticate a supplicant device based on a security certificate is received by an authenticator device and from a supplicant device. The request comprises information relating to the security certificate which is expired. A login history of the supplicant device and presence of a valid account associated with the supplicant device in a directory database is determined. An authentication successful message is sent to the supplicant device based on the login history and presence of the valid account in the directory database. The supplicant device is redirected to a captive web portal for authentication of the supplicant device based on the login credential. In response to a successful authentication of the supplicant device in the captive web portal, a renewed security certificate for the supplicant device is provided.
Various embodiments of the present technology generally relate to authentication. More specifically, some embodiments relate to systems and methods for mobile application infrastructure and framework for application authentication. Currently, methods and systems for authentication are not flexible or dynamic and over-authentication has become a solution because it is cheap and easy. In contrast, in accordance with some embodiments of this application, the methods and systems can analyze authentication challenges and non-authentication challenges received from a server over a network in a client side infrastructure. The client side infrastructure can determine a customized, flexible, and dynamic plan for responding to authentication challenges in manner that avoids over-authentication on the client side.
According to an embodiment, a communication control device includes a first communication system connected between a first device and a network communication network, and a second communication system connected between the first device and the network communication network separately from the first communication system. The first communication system and the second communication system each include a controller. The controller executes switching such that one of the communication systems executes communication in the first communication mode, and when a problem is detected in the communication system that is executing communication in the first communication mode, the other communication system executes communication in the first communication mode.
Various embodiments of the present application set forth a computer-implemented method that includes receiving, by a trusted tunnel bridge and from a first application executing in a first network, a first encrypted data packet, where the first encrypted data packet includes an encrypted portion of data, and a destination device identifier (DDI). The method further includes determining, by the trusted tunnel bridge, a particular device in a second network and associated with the DDI included in the first encrypted data packet. The method further includes sending, by the trusted tunnel bridge directly to the particular device, the first encrypted data packet.
A method that is performed to access data nodes of a data cluster. The method includes obtaining, by a data access gateway (DAG), a request from a host; and in response to the request, obtaining bidding counters from the data nodes; obtaining metadata mappings from the data nodes; identifying, based on the bidding counters and metadata mappings, a data node of the data nodes associated with a highest bidding counter of the bidding counters and an appropriate metadata mapping of the metadata mappings; and sending the request to the data node.
A method in a virtual private network (VPN) environment, the method including determining, by a processor, first substitute domain information by utilizing a hashing function to hash a first time marker and a string of alphanumeric characters; determining, by the processor, second substitute domain information by utilizing the hashing function to hash a second time marker and the string of alphanumeric characters, the second time marker being different than the first time marker; and transmitting, by the processor, a connection request utilizing the second substitute domain information to reach a VPN service provider based at least in part on determining that the VPN service provider is unreachable via utilization of the first substitute domain information. Various other aspects are contemplated.
A computer-implemented method causes data processing hardware to perform operations for training a firewall utilization model. The operations include receiving firewall utilization data for firewall connection requests during a utilization period. The firewall utilization data includes hit counts for each sub-rule associated with at least one firewall rule. The operations also include generating training data based on the firewall utilization data. The training data includes unused sub-rules corresponding to sub-rules having no hits during the utilization period and hit sub-rules corresponding to sub-rules having more than zero hits during the utilization period. The operations also include training a firewall utilization model on the training data. The operations further include, for each sub-rule associated with the at least one firewall rule, determining a corresponding sub-rule utilization probability indicating a likelihood the sub-rule will be used for a future connection request.
An example method of dynamically distributing messaging resources in a software as a service (SaaS) platform includes: receiving, by a processing device, from a first tenant associated with a first tenant set of a plurality of tenant sets, a request to forward a first message to a recipient within a specified destination; identifying, among a plurality of queues associated with the plurality of tenant sets, a subset of queues associated with the first tenant; queuing the first message into a first queue of the subset of queues associated with the first tenant; assigning, to each queue of the plurality of queues, a score reflecting a respective tenant portion of a messaging resource quota associated with the specified destination; retrieving a second message from a queue associated with a highest score; and forwarding the second message to a messaging gateway associated with the specified destination.
Systems and methods for intelligent interference mitigation for time division multiplexing broadband networks. One example embodiments of a wireless base station includes an electronic processor and a transceiver coupled to the electronic processor. The electronic processor is configured to operate to communicate wirelessly via the transceiver with subscriber units utilizing time division duplexing (TDD) and a first frame configuration, and characterize each of a plurality of sub-frames of the first frame configuration as being either conflicting or non-conflicting. The electronic processor is configured to estimate link conditions for the subscriber units and determine, based on the link conditions, whether the subscriber units are resilient or non-resilient. The electronic processor is configured to assign resilient subscriber units to conflicting sub-frames and non-resilient subscriber units to non-conflicting sub-frames.
Apparatuses, methods, and systems are disclosed for selectively deactivating a bandwidth part. One apparatus includes a transceiver that receives one or more UL BWP configurations and receives a SL BWP configuration. Here, the one or more UL BWP configurations includes an active UL BWP and the SL BWP is associated with a first numerology. The apparatus also includes a processor that identifies a second numerology of an active UL BWP and determines whether the first numerology matches the second numerology. If the first numerology does not match the second numerology, the processor selectively deactivates one of the SL BWP and the active UL BWP.
A method, performed by a User Equipment (UE), includes receiving, from a cell, configuration signaling configuring the UE with one or more PUCCH resources on an active UL BWP, the one or more PUCCH resources not being configured with PUCCH-SpatialRelationInfo, and the configuration signaling indicating that a default spatial relation behavior for PUSCH transmission scheduled by a DCI format 0_0 is enabled; receiving, from the cell, the DCI format 0_0 on an active DL BWP, the DCI format 0_0 providing scheduling information for a PUSCH; and transmitting the PUSCH according to the default spatial relation behavior which determines a spatial relation with reference to a QCL-TypeD RS corresponding to a QCL assumption of a pre-determined CORESET on the active DL BWP of the cell.
Methods, systems, and devices for wireless communication are described. Wireless communications systems may support beamformed transmissions between devices (e.g., to improve coverage range). The beamformed transmissions may depend on discovery and maintenance of receive and transmit beams over which a given device may communicate with another device. Various receive and transmit beams for a given device may be compared using reference signals. As the number of devices attempting to access a cell increases, the number of reference signals to be transmitted may scale proportionally. Large numbers of reference signals may flood time-frequency resources of the system and/or require excessive processing at a mobile device. Scrambling sequences for reference signals may be employed to improve efficiency of resource usage. In aspects, the scrambling sequences may be implicitly determined (e.g., based on resources over which the access request was transmitted). Such an implicit association may reduce the need for additional signaling.
A port selection method applied to a first network device and a second network device includes determining that a port status of a first port that is in the first network device and that is used for dual-homing access can switch from a first state to an UP state; receiving a port status of a second port that is in the second network device and that is used for dual-homing access; and selecting, based on the port status of the first port and the port status of the second port, a port to be switched to the UP state from the first port and the second port.
A client device in a wireless network accesses a queue comprising Transmission Control Protocol Acknowledgement (TCP ACK) packets. At least some packets include packet descriptors with a flow identifier indicating a corresponding TCP flow, and a TCP ACK Generation Count. The device inspects a packet descriptor of a first TCP ACK packet, and identifies a first flow identifier and a first TCP ACK Generation Count. The device accesses entries in a data structure that each includes a first field and a second field respectively storing a flow identifier and a TCP ACK Generation Count. The device determines that a condition is satisfied, comprising that an entry in the data structure includes a flow identifier and a TCP ACK Generation Count matching the first flow identifier and the first TCP ACK Generation Count, respectively. In response to the determination, the device marks the first TCP ACK packet to be dropped.
This application provides a traffic classification method and apparatus. The method includes: determining, based on distribution characteristics of concerned bits of a plurality of rules in a first rule set, an effective bit corresponding to the first rule set; determining a hash key value of each rule based on a value of the effective bit of each rule in the first rule set, and storing each rule in the first rule set in at least one of S storage units based on the hash key value, where the first rule set is any one of N rule sets, the N rule sets are stored in the S storage units; and when traffic classification is performed, searching for a corresponding rule in each of the S storage units based on a hash key value of a search key.
An example method includes receiving, from a network device, data indicating characterizations of network traffic on a plurality of ports of the network device; determining, by processing circuitry, for each port of the plurality of ports, an indicator of a port type for the port based on the data indicating the characterizations of network traffic on the plurality of ports, wherein the port type indicates a link type of network traffic exchanged by the port; and outputting, by the processing circuitry, the indicator of the port type to an output device.
Method and system for providing time-critical services via a flow control environment, wherein at least one respective server component is provided for each service, wherein the server component is formed by a flow control component that is loadable into the flow control environment and executed there, where a configuration unit for at least one gateway component of a subnetwork forming the flow control environment ascertains globally valid access information associated with respective addressing information of the server components that is valid within the subnetwork, based on a mode of operation predefined via the configuration unit, one or more gateway components connected in parallel and/or in series are used, and where the at least one gateway component forwards service access requests to the server components in accordance with the forwarding and/or filter rules and the mode of operation.
A network device includes first, second, and third processors. The first processor detects congestion in a packet flow. The packet flow is i) one packet flow among a plurality of packet flows and ii) is formed of a plurality of packets of a same type received from a first device in a network via a first network connection. The packets in the packet flow are destined for a second device in the network. When congestion notification packet generation is enabled for the packet flow, the second processor generates a congestion notification packet by replicating a packet from the packet flow and sends the congestion notification packet to the first device via the first network connection. The congestion notification packet identifies the packet flow for which congestion is detected. The third processor forwards the plurality of packets in the packet flow to the second device via a second network connection.
When the load becomes high, an identification unit (301) of a second packet forwarding device (30) identifies an application of a new flow. Then, a determination unit (302) determines whether or not distribution of new flow is necessary, based on the flow characteristic of the application and the type of the high load. Then, when distribution of the new flow is necessary, a decision unit (303) acquires a list of second packet forwarding devices (30) having a low load from the load monitoring device (10), and decides a second packet forwarding device (30) as the distribution destination. Then, a control unit (304) performs a route control for guiding the flow to the second packet forwarding device (30) which is the distribution destination.
Systems and methods are disclosed herein for filtering Ethernet device source addresses for loop avoidance in a cellular communications system. Embodiments of a method performed by a User Plane Function (UPF) in a core network of a cellular communications system and corresponding embodiments of a UPF are disclosed. In some embodiments, a method performed by a UPF in a core network of a cellular communications system comprises obtaining a Medium Access Control (MAC) address that is reachable over a particular Protocol Data Unit (PDU) session. The method further comprises installing, at the UPF, a filtering rule that prevents Ethernet frames having the MAC address as a source address from being delivered by the UPF via downlink on the particular PDU session. In this manner, loopback of Ethernet frames on the PDU session is avoided.
Systems and methods implemented in a network element in a Segment Routing network include, for a service having two or more candidate paths and responsive to a failure on a current candidate path of the two or more candidate paths, setting an eligibility flag for the current candidate path; and selecting another candidate path of the two or more candidate paths, for the service, based on their eligibility flag.
The present disclosure provides a network packet transmission device and a network packet transmission method thereof. The network packet transmission method includes: receiving a network packet, wherein the network packet has at least one packet attribute; determining at least one destination VID for the network packet according to the at least one packet attribute; determining a transmission speed corresponding to the at least one destination VID based on at least one LAN speed table; and transmitting the network packet to a VLAN corresponding to the at least one destination VID according to the transmission speed.
A method and apparatus for delivering a service to an end point, such as a UE or server, via a communication network, is provided. A virtual network is pre-configured to handle service packets and includes virtual routers for routing packets via logical tunnels. The end point pre-registers with the virtual network and/or service and receives operating parameters for use in service access. The end point location may be tracked following pre-registration. The end point subsequently transmits and/or receives service packets using the operating parameters via an edge node, such as an access node or gateway. The edge node transmits service packets using the operating parameters and, upon detecting operating parameter usage by the end point, forwards received service packets to the virtual network. Operating parameters may include an identifier included in the packet. The end point may use multiple different edge nodes to access the service.
A packet sending method and device. The first node sets a next-hop of the routing information to a next-hop through which the first node reaches the first route source. The destination address of the routing information is the address prefix. When the second route source is superior to the first route source, the first node switches the next-hop of the routing information to a next-hop through which the first node reaches the second route source. Then, the first node adds, to a target packet, path information of a forwarding path from the first node to the second route source according to the switching operation, where a destination address of the target packet matches the address prefix. Finally, the first node forwards the target packet to the second route source through the forwarding path.
Disclosed in the embodiments of the present disclosure are a packet forwarding method, apparatus and system, a network device and a storage medium. The method includes: carrying, according to Deterministic Networking (DetNet) requirements for a multicast packet based on Bit Index Explicit Replication (BIER), corresponding DetNet configuration information in BIER header information of the multicast packet; and sending the multicast packet carrying the BIER header information.
Described are embodiments of a method for performance measurement of a communication device. The method comprises: executing active probing by a communication device coupled to another communication device via a network forming a communication link; reading operational data associated with the communication link in response to executing active probing; and measuring performance, by the communication device, of the communication link with reference to the communication link, the performance measured according to the read operational data.
Example implementations relate to changing a status of a device responsive to detecting an anomaly. A traffic pattern of a device may be monitored across a network. It may be determined that the monitored traffic pattern deviates from an expected traffic pattern of the group of devices by a threshold. Responsive to determining that the devices deviates from the expected traffic pattern, packet data transmitted by the device may be inspected. It may be determined that the inspected packet data transmitted by the device is anomalous. The status of the device may be changed responsive to determining that the packet data transmitted by the device is anomalous.
A method for managing data migration includes: obtaining a confidence level of a predicted failure state of a storage component (SC) of a source device; making a first determination that the confidence level exceeds a minimum threshold; making, based on the first determination, a second determination that a high priority network slice of a network exists; mapping data stored in the SC to the high priority network slice; migrating the data to a target device; after migrating the data to the target device: obtaining a confidence level of a predicted failure state of a processing component (PC); making a third determination that the confidence level of the predicted failure state of the PC exceeds a maximum threshold; mapping, based on the third determination, non-migrated data stored in the source device to the high priority network slice; and migrating the non-migrated data to the target device.
Some embodiments provide a network management system for managing a logical network that spans multiple physical sites. The network management system includes a global network manager for receiving global logical network configuration data for the multiple physical sites. The network management system includes, at each of the physical sites, (i) a local network manager for receiving a logical network configuration for the physical site from the global network manager and (ii) a set of central controllers for distributing logical network configuration data to computing devices that implement the logical network at the physical site.
The present disclosure describes systems, methods, and computer-readable storage media implementing techniques for providing split control of an execution environment. According to aspects of the disclosure, a first entity may be configured to exert control over presentation related aspects (e.g., the look and feel) of services provided by a second entity, while the second entity may exert control over backend processing and execution of the services. To facilitate the different portions of the split control, one or more servers may be configured to provide a first execution layer, a second execution layer, and a second execution layer control panel. The first execution layer may perform operations for executing the provisioning of the service. The second execution layer may perform operations for presenting the computing/execution environment for providing the service, and the second execution environment control panel may provide the first entity to customize/modify presentation related aspects of the computing/execution environment.
A storage gateway serves as an interface between processes on a customer network and a service provider. The storage gateway is located on-premise with the customer processes. To customer processes, it appears that data is stored locally. However, the storage gateway interfaces with a remote storage service to store the data. For cached gateways, the primary data store is a remote data store, while frequently accessed data may be locally cached by the gateway. Reads may be satisfied from the local cache or from virtual data storage; writes are handled so as to appropriately update data blocks in the local cache and/or in virtual data storage. For shadowing gateways, the primary data store is the local data store; reads are passed through to a local data store, and writes are shadowed to virtual data storage as well as being sent to local data store.
Devices, methods, and systems that provide transmitting of messages between different units of a multi-unit system in response to instantiated multi-unit transactions. For example, a method may include: identifying, by a first unit of a multi-unit system of computing devices, an event has occurred that triggers initiation of a transaction; generating, by the first unit, a transaction identifier associated with the transaction, the transaction identifier comprising a unit identifier of the first unit and an application identifier of an application associated with the event; and transmitting, from the first unit and to a second unit of the multi-unit system, the transaction identifier as part of an inter-unit message.
Novel tools and techniques are provided for implementing error detection in a network, and, more particularly, to methods, systems, and apparatuses for implementing error and/or fault detection in a network and/or media stream and providing options to address the error and/or fault in the network and/or media stream. In various embodiments, a computer might detect an error in a first network and send a notification indicating that the error has occurred. The notification might contain one or more options to address the error in the first network. The computer, a user device, a service provider device, or a content provider device might receive and display the notification containing the one or more options. The computer, the user device, the service provider device, or the content provider device might then select at least one of the one or more options to address the error in the first network.
This application proposes multi-beam antenna systems using spherical lens with high isolation between antenna ports and compatible to 2×2, 4×4, 8×8 MIMO transceivers. Several compact multi-band multi-beam solutions (with wideband operation, 40%+, in each band) are achieved by creating dual-band radiators movable on the track around spherical lens and by placing of lower band radiators between spherical lenses. By using of secondary lens for high band radiators, coupling between low band and high band radiators is reduced. Beam tilt range and side lobe suppression are improved by special selection of phase shift and rotational angle of radiators. Resultantly, a wide beam tilt range (0-40 degree) is realized in proposed multi-beam antenna systems. Each beam can be individually tilted. Based on proposed single- and multi-lens antenna solutions, cell coverage improvements and stadium tribune coverage optimization are also achieved, together with interference reduction.
Embodiments provide a data receiver, the data receiver being configured to receive a signal including a sequence of N bits so as to obtain a reception signal, wherein N is a natural number greater than or equal to eight, N≥8, wherein the data receiver is configured to sample the reception signal with a sampling rate that corresponds, with an intentional deviation of up to 2/N, to one sample value per bit of the sequence of N bits so as to obtain a sequence of received bits, wherein the data receiver is configured to correlate the sequence of received bits with K different sequences of N-1 reference bits so as to obtain K partial correlation results, wherein K is smaller than or equal to N-1 and greater than or equal to three, N-1≥K≥3.
Embodiments of apparatus and method for transition smoothing implementation on a stream of data are disclosed. In an example, a system on chip (SoC) for wireless communication includes a digital front-end. The digital front-end is configured to obtain a stream of data having one carrier or multi-carriers. The stream of data is divided into a plurality of blocks. The digital front-end is also configured to adjust a gain of the stream of data based on a predetermined frequency corresponding to a length of each of the plurality of blocks. The digital front-end is also configured to append a ramp-down tail sequence to a first block of the stream of data after a last sample of the first block, and generate a ramp-up head sequence for a second block immediately after the first block, based on a head sequence of the second block.
The present application relates to an adaptive PAM4 decision feedback equalization circuit, including a decision feedback equalization main circuit and an adaptive circuit. The main circuit includes an adder, a first decision device, a second decision device, a third decision device, a first delay unit group, a second delay unit group, a third delay unit group, a decoder, and a DSP coefficient table; the adaptive circuit includes an eye pattern monitoring module and an adaptive module; and the adaptive module includes a comparison unit, a delay unit, and a coefficient regulation and control unit.
Systems, methods, and devices to reduce the channel estimation overhead by collecting data from many UEs and building a location-based mathematical model are disclosed. During building of the model, a reference signal is used to collect location- and signal-related data from connected UEs. Once the model is successfully built, it is then transmitted and/or downloaded to each new UE that connects to the base station. The UEs and/or the base stations then use this model to determine their own transmission parameter values. The UEs also report their location to the base stations, which use the model to estimate channel conditions and adapt transmission parameters for themselves.
A method and apparatus for hybrid automatic repeat request (HARQ) feedback is provided. The method includes: determining at least one target HARQ result corresponding to at least one target PDSCH, wherein the at least one target PDSCH is from all PDSCHs scheduled by a current PDCCH, HARQ results corresponding to the at least one target PDSCH are to be fed back through a current sub-frame; determining a target PUCCH and a combined HARQ result in at least one candidate PUCCH according to the at least one target HARQ result, wherein corresponding target PUCCH resource of the target PUCCH is configured to carry the combined HARQ result, and the combined HARQ result and the target PUCCH resource are configured to identify the at least one target HARQ result; and carrying the combined HARQ result through the target PUCCH resource, and sending the target PUCCH to a base station.
A radio communication terminal that increases the ACK/NACK resource utilization efficiency while preventing ACK/NACK collision, and that causes no unnecessary reduction of the PUSCH band in a system that transmits E-PDCCH control information. The radio communication terminal adopts a configuration including a receiving section that receives a control signal including an ACK/NACK index via an enhanced physical downlink control channel (E-PDCCH) transmitted using one configuration from among one or a plurality of configuration candidates, a control section that selects a resource to be used for an ACK/NACK signal of downlink data from among specified resources specified beforehand based on E-PDCCH configuration information used for transmission or reception of the E-PDCCH and the ACK/NACK index, and a transmitting section that transmits the ACK/NACK signal using the selected specified resource.
A system provides for authorization of data access and processing functions within a distributed server network using a delegated proof-of-stake consensus mechanism. In particular, the system may use assign authorization levels to each node within the network environment. Certain actions or processes performed within the network (e.g., potentially damaging actions) may require that the node proposing the action meets a threshold authorization level before authorizing the action. The system may further increase or decrease authorization levels for each node depending on the outcomes of the proposed actions. In this way, the system may provide a secure way to authorize certain actions or processes taken within a computing environment.
A method for automatically modifying hyper-text markup language (HMTL) code of an e-mail within an email pre-deployment platform comprises receiving previously-created e-mail content comprising a plurality of e-mail content types, each of the e-mail content types written in HMTL code, automatically detecting, by parsing the received HTML code, one or more deficiencies in the e-mail content, identifying the one or more deficiencies in the HTML of the e-mail content types for a user by presenting a natural language explanation of the one or more deficiencies on the user interface, guiding a user of the platform to rectify the one or more deficiencies in the e-mail content by using one or more user interface tools for rectifying the one or more deficiencies; and automatically editing the HTML code based on the user's use of the one or more user interface tools.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may identify, for each of one or more candidate beams in a set of candidate beams, a downlink throughput, an uplink throughput, a downlink power consumption, and an uplink power consumption. The UE may select a beam based at least in part on: at least one of the downlink throughput or the uplink throughput, at least one of the downlink power consumption or the uplink power consumption, and one or more throughput thresholds. The UE may communicate using the selected beam. Numerous other aspects are described.
Examples described herein provide multi-band directional scanning. Examples may include receiving, by a first radio of a first network device operating at a first frequency band below the millimeter-wave (mmWave), a probe request from a second network device indicating a protocol and a particular sector receiving direction of the second network device, and in response to the protocol indicated by the probe request, transmitting, by a second radio of the first network device operating at a second frequency band within the mmWave, a probe response in each of one or more sector transmitting directions, wherein the second network device receives one or more probe responses in the particular sector receiving direction.
Methods and apparatuses for modular MIMO system and CSI feedback in a wireless communication system. The methods and apparatuses include: identifying configuration information of an antenna system including antenna modules for a MIMO operation; identifying, based on the configuration information, a number of collocated antenna groups that each includes one or more of the antenna modules; identifying, based on the configuration information, a number of the antenna modules for each type of the antenna modules in each of the collocated antenna groups, wherein each of the collocated antenna groups includes one or more types of the antenna modules; generating a CSI report for one or more of the collocated antenna groups in the antenna system; and transmitting, to a BS, the CSI report.
A communications method and apparatus implement radio frequency link sharing, improve radio frequency link utilization, and increase an uplink transmission rate. The method is as follows: a terminal receives first configuration information and second configuration information from a first network device. The first configuration information is used to indicate a first reference signal resource of a first antenna port, and the second configuration information is used to indicate a second reference signal resource of a second antenna port; or the first configuration information is used to indicate a third reference signal resource of a first quantity of antenna ports, and the second configuration information is used to indicate a fourth reference signal resource of a second quantity of antenna ports. The terminal sends a first reference signal based on the first configuration information and sends a second reference signal based on the second configuration information.
A receiver is provided for processing an input signal from a communication network. The receiver includes a processor and a memory configured to store computer executable instructions, which, when executed by the processor, cause the processor to (i) receive an input data signal including digital bit information, (ii) code the input data signal into a plurality of multi-level symbols, (iii) map the plurality of multi-level symbols into a plurality of constellation points in the phase domain, (iv) execute a first phase recovery subprocess on the plurality of constellation points to recover a first carrier phase of the input signal, (v) implement a Gaussian mixture model (GMM) on the recovered first carrier phase to generate an enhanced recovered carrier phase, and (vi) process the enhanced recovered carrier phase with a second phase recovery subprocess to reduce distortion from the input signal.
Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
An electrical layer subnetwork connection protection includes determining, by a network device including a processor, signal status information based on a power of an obtained optical signal. The signal status information is used to indicate a state of a subnetwork connection carrying the optical signal. The method also includes filtering, by the network device, the signal status information based on a preset first threshold. The first threshold indicates a minimum duration in which the optical signal is in a valid state. The method further includes determining, by the network device based on the filtered signal status information, whether to switch a currently used first clock to a second clock different from the clock. The first clock or the second clock is used to initialize connection monitoring information in response to the determination of whether to switch the currently used first clock to the second clock.
Embodiments provide a method for generating a hopping pattern for transmitting a plurality of sub-data packets in a communication system. The method has a step of deriving a hopping pattern from a binary sequence, wherein an autocorrelation function of the binary sequence has autocorrelation side maximums with a predetermined maximum value. The method further has a step of determining a maximum sub-data packet length for the plurality of sub-data packets in dependence on a total emission duration of the plurality of sub-data packets indicated by the hopping pattern, and a minimum value of a difference sequence of a sorted difference number series derived from the binary sequence.
A method includes producing a plurality of TX LO signals by a first LO generator comprising a first frequency doubler and a first frequency divider, the first frequency doubler configured to receive a VCO signal having a first frequency and generate a first signal fed into the first frequency divider, the first signal having a second frequency that is twice the first frequency, producing a plurality of MRX LO signals by a second LO generator comprising a second frequency doubler and a second frequency divider, the second frequency doubler configured to receive the VCO signal and generate a second signal fed into the second frequency divider, the second signal having the second frequency, configuring the TX to operate at a first LO frequency equal to the second frequency, and configuring the MRX to operate at a second LO frequency equal to the first frequency through disabling the second frequency doubler.
A comparator circuit includes a first comparator configured to compare a voltage based on an input voltage with a first reference voltage, a charge/discharge portion configured to switch between charging and discharging of a capacitor based on an output of the first comparator, a second comparator configured to compare a voltage of the capacitor with a second reference voltage, and a control portion. The control portion is configured to, in a case where the voltage of the capacitor is larger than a predetermined value when the charge/discharge portion performs switching from the charging of the capacitor to the discharging thereof, supply a predetermined voltage instead of the voltage based on the input voltage to the first comparator until the voltage of the capacitor becomes smaller than the predetermined value so that the discharging of the capacitor is maintained by the charge/discharge portion.
A superconducting integrated circuit design method based on placement and routing by different-layer JTLs comprises: cutting a bias line at a cell data interface of a cell library, and reserving a position of a via; placing and arranging cells on a logic cell layer according to a schematic circuit logic diagram; connecting clock lines of each of the cells by using a JTL and a splitter of the logic cell layer; and performing data connection on each of the cells by using JTLs of a transverse JTL routing layer and a longitudinal JTL routing layer which are not in the same layer as the logic cell layer, wherein the JTL of the transverse JTL routing layer is used as a transverse routing cell for data between the cells, the JTL of the longitudinal JTL routing layer is used as a longitudinal routing cell for data between the cells.
A relay circuit may include a solid state relay switch, coupled to an external voltage line and to an charging capacitor; and a solid state relay control circuit, coupled between the charging capacitor and the solid state relay switch. The solid state relay control circuit may be arranged to: turn the solid state relay switch to an OFF state when a capacitor voltage of the charging capacitor falls below a low threshold value; and change the solid state relay switch from the OFF state to an ON state when the capacitor voltage increases above a high threshold value.
To prevent deterioration of current detection accuracy due to a difference in deterioration between a main MOS and a sense MOS. The load drive device includes a main MOS (101) for supplying a load current to a load, a sense MOS (102) to be used for detection of the load current, and an equalizer circuit (110) and a switch (120) which are provided in parallel between the source terminal of the main MOS and the source terminal of the sense MOS. The drain terminal of the main MOS and the drain terminal of the sense MOS have a common connection, and when a current is detected, the terminal voltage of the main MOS and the terminal voltage of the sense MOS are equalized by the equalizer circuit, and the switch is opened. When a current is not detected, the equalizer circuit is stopped and the switch short-circuits the source terminal of the main MOS and the source terminal of the sense MOS.
A multiplexer includes: a switch capable of connecting a common terminal to at least one of a first selection terminal, a second selection terminal, and a third selection terminal at the same time; a first filter connected to the first selection terminal, the first filter having a first pass band; a second filter connected to the second selection terminal, the second filter having a second pass band that is different from the first pass band; and a coupling circuit connected to the third selection terminal and the first filter, the coupling circuit forming a signal path between the third selection terminal and the first filter by electromagnetic coupling.
An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the IDT and the substrate.
A method of manufacture for an acoustic resonator device. The method includes forming a nucleation layer characterized by nucleation growth parameters overlying a substrate and forming a strained piezoelectric layer overlying the nucleation layer. The strained piezoelectric layer is characterized by a strain condition and piezoelectric layer parameters. The process of forming the strained piezoelectric layer can include an epitaxial growth process configured by nucleation growth parameters and piezoelectric layer parameters to modulate the strain condition in the strained piezoelectric layer. By modulating the strain condition, the piezoelectric properties of the resulting piezoelectric layer can be adjusted and improved for specific applications.
A power control circuit includes a negative feedback loop, and a radio frequency signal path including a first NMOS transistor having a gate configured as a radio frequency signal input end, a drain connected with a source of a second NMOS transistor, and a source connected with a ground terminal. A drain of the second NMOS transistor is configured as a radio frequency signal output end and connected with a first voltage source. The negative feedback loop includes a third NMOS transistor having a gate connected with an output end of a differential amplifier, a source connected with the ground terminal, and a drain connected with a source of a fourth NMOS transistor having a gate connected with a reverse input end of the differential amplifier and with a second voltage source, and a drain connected with a forward input end and a first bias current source.
A module switchoff device and a security protection system of a photovoltaic power generation system. The module switchoff device comprises: a switch tube having a first end connected to a positive input end of the module switchoff device and a second end connected to a negative input end of the module switchoff device, the positive input end and the negative input end of the module switchoff device being connected to a photovoltaic module; a driving module connected to a control end of the switch tube; and a power supply module connected to the driving module and an output end of the module switchoff device, the output end of the module switchoff device being connected to a controller used for controlling the switch tube to be switched off when there is a need for the photovoltaic module to normally output a voltage and controlling the switch tube to be switched on when there is no need for the photovoltaic module to output a voltage, and the power supply module being used for converting a control signal of the controller.
A power switch circuit includes a switch circuit, a solar photovoltaic panel and a detection circuit and connected with the solar photovoltaic panel and the switch circuit respectively. The solar photovoltaic panel is configured to provide an electrical signal to the detection circuit, the detection circuit is configured to detect whether the power in the electric signal exceeds a preset threshold, and when the power exceeds the preset threshold, the detection circuit outputs a first control signal to the switch circuit to turn on the switch circuit; when the switch circuit is turned on, the solar photovoltaic panel supplies power to the load through the switch circuit, and the switch circuit feeds back a second control signal to the detection circuit so that the detection circuit stops working.
Provided is a drive device for a rotating electric machine, including: a power conversion unit configured to convert DC power supplied from a storage battery into AC power, and to supply the AC power to a rotating electric machine; and a control unit output a switching signal to the power conversion unit. The control unit is configured to set, when the storage battery is to be charged, in a case in which a temperature of the storage battery input from an outside is lower than a set temperature suitable for charging, the switching signal for the power conversion unit so as to be different from the switching signal in a normal drive state of the rotating electric machine.
A motor unit having a motor having a stator and an armature, the armature being arranged for relative driven motion with respect to the stator. A motor control unit has a supply circuit for providing a supply voltage at the motor to provide a set power level to the motor for driving the armature into motion. A measurement circuit is measuring a value of a physical variable indicative of a current flow through the motor, The motor control unit is arranged to interrupt the provision of the supply voltage by the supply circuit and to dynamically brake the motor during a braking time interval and further to measure the value of the physical variable during the braking time interval. The motor control unit is further arranged to compare the measured value of the physical variable with a target value that depends on the supplied power level and on an intended motion amplitude of the armature, to determine a new set power level in dependence on the comparison result and to subsequently provide the new set power level to the motor.
A control system for an electric motor powered by a battery can be configured to receive an input power or torque command corresponding to a commanded power or torque. The control system can be configured to determine if the battery is capable of supplying the commanded power or torque over a time period based on a state of charge of the battery. The control system can be configured such that if the battery is capable of supplying the commanded power or torque over the time period, the control system outputs the input power or torque command, and if the battery is not capable of supplying the commanded power or torque over the time period, the control system outputs an available maximum power or torque command corresponding to an available maximum power or torque over the time period that is less than the commanded power or torque.
An electrical system includes: 1) a buck converter; 2) a battery coupled to an input of the buck converter; and 3) a load coupled to an output of the buck converter. The buck converter includes a high-side switch, a low-side switch, and regulation loop circuitry coupled to the high-side switch and the low-side switch. The regulation loop circuitry includes: 1) a main comparator; 2) a bias current source coupled to the main comparator and configured to provide a bias current to the main comparator; and 3) a dynamic biasing circuit coupled to the main comparator and configured to add a supplemental bias current to the bias current in 100% mode of the buck converter. The supplemental bias current varies depending on an input voltage (VIN) and an output voltage (VOUT) of the buck converter.
A circuit portion comprises a DCDC converter that is configured to charge and discharge an inductor according to a duty cycle to provide current to an output load. A duty module is configured to determine the duty cycle such that the DCDC converter will output a target current. A duty limiter module is configured to cause the inductor to discharge early if the determined duty cycle exceeds a threshold.
A power supply device includes a power supply circuit configured to output different voltages to a plurality of output lines, a plurality of capacitors provided in correspondence with the plurality of output lines, one end of each of the plurality of capacitors being coupled to a corresponding output line of the plurality of output lines and an other end thereof being coupled to a ground potential, a plurality of diodes provided in correspondence with the plurality of output lines, anodes of the plurality of diodes being coupled to the corresponding output lines and cathodes thereof being commonly coupled, and a discharge resistor coupled to the cathodes of the plurality of diodes.
An on-board charger (OBC) may include a power factor corrector PFC comprising a three phase active front end (AFE) connected to an AC electrical grid, and a DC/DC converter receiving a regulated DC voltage from the PFC and configured to charge a high voltage battery. The OBC may be configured to extract a power value which is equal to a reference maximum power extracted from a three phase electrical grid PMAX3∅, from any type of AC electrical grid to which the OBC is connected, and may include three switches SW1, SW2 and SW3 and a diodes arm having diodes D1 and D2 connected in series between a high and low side of the AFE, whereby two switches SW1 and SW2 are arranged between the AFE and the AC electrical grid and are able to interrupt current flowing between phase arms of the three phase AFE, wherein the third switch SW3 is arranged on a line connecting the diodes arm and the AC electrical grid.
A power generation system which is mounted on at least one triangular shaped horizontal base on which is placed a cylindrical platform at the center, which is called a primary rotor, and a set of three cylindrical platforms, which are called secondary rotors, which surround the first rotor. The primary rotor and secondary rotors have a specific set of neodymium magnets and are fixed on vertical axis bearings mounted on the said horizontal base.
A motor assembly for use with a power tool includes a motor housing, a brushless electric motor disposed at least partially in the motor housing, and a PCB assembly coupled to the motor housing. The PCB assembly includes a heat sink, a power PCB coupled to a first side of the heat sink, and a position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor.
A control module (120,120a-b) for controlling a plurality of power switching elements (111a-d) arranged for controlling provision of power to one or more wireless network devices (125a-c); wherein the control module (120,120a-b) comprises a processor (122) arranged for: determining which one of the plurality of power switching elements (111a-d) the control module (120,120a-b) receives power through; determining a set of the plurality of wireless network devices (125a-c) which receives power via a first power switching element out of the plurality of power switching elements (111a-d); determining that the set includes all the wireless network devices which receive power via the first power switching element; determining operational state of each of the wireless network devices in the set; determining whether the control module (120,120a-b) receives power via the first power switching element; evaluating a first set of conditions; wherein the first set of conditions comprises that the control module (120,120a-b) does not receive power via the first power switching element and the determined operational state indicates that each of the wireless network devices in the set does not require power, controlling, based on a positive result of the evaluation of the first set of conditions, the first power switching element to cease power provision to the set of wireless network devices.
Provided are a wireless charging device and method. The wireless charging device may include: a first group of coils; a second group of coils; and a processor. The processor may be configured to: transmit a first ping signal through the first group of coils and the second group of coils; sense a change in current, voltage, and/or frequency occurring in the first group of coils and the second group of coils in response to the first ping signal to detect that an electronic device is placed on the wireless charging device; select at least one coil from the first group of coils and at least one coil from the second group of coils at which the change is sensed; transmit a second ping signal through the selected coils; and wirelessly transmit power to the electronic device by using the selected coils. Various other embodiments are also disclosed.
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of one or more parameters associated with management of multiple antenna groups of the UE for use in energy harvesting. The UE may transmit or receive signaling based at least in part on the one or more parameters of the multiple antenna groups of the UE. Numerous other aspects are described.
Embodiments relate to an operating system coupled to and controlling at least one Distributed Energy Resource (DER) in a smart grid and includes an electricity distribution network and a 2-dimensional Extremum Seeking (2D-ES) controller coupled to network. The electricity distribution network has first and second inputs and one output and maps all active power and reactive power inputs to the smart grid providing measurements of an objective function. The 2D-ES controller controls the DER and includes an active power loop and a reactive power loop. The active power loop is in communication with the first input and the output, governs active power contribution, and receives measurements of the objective function which contain static and oscillatory components. The reactive power loop is in communication with the second input and the output, governs reactive power contribution, and receives measurements of the objective function which contain static and oscillatory components.
A DC-overcurrent detector includes: at least one electric line passing the detector from a source terminal of the detector to a load terminal of the detector; at least one first sensor for monitoring an electric current in the at least one electric line and outputting a current measurement signal; at least one current flow direction sensor for distinguishing a current flow direction of the electric current in the at least one electric line between a first direction from the source terminal to the load terminal and a second direction from the load terminal to the source terminal, and outputting a current flow direction signal; a comparator unit for comparing an actual value of the current measurement signal with a threshold criterion, and outputting a trigger signal at a trigger output if a value of the current measurement signal reaches the threshold criterion; and a threshold criterion unit.
A longitudinal differential protection method for a transformer comprises: calculating a corrected parameter of a transformer according to a voltage and electrical parameters of the transformer, wherein the electrical parameters of the transformer comprise a rated capacity of the transformer, and the corrected parameter of the transformer comprise a capacity of the transformer.
A multiple cable clamp is configured to hold a number of sheathed electrical cables in a cable run within a building structure using electrical power, with such cables in a parallel flat array. The cable clamp is configured as a pair of rail members, one being a back or distal rail member and the other being a corresponding front or proximal rail member. These rail members can favorably be formed as bars of a tough, sturdy non-conductive material such as PVC or similar plastic resin. Transverse grooves and lands in the distal member align with teeth and recesses in the proximal member to contain and secure the respective sheathed cables. The depth of the teeth can vary to accommodate different size cables.
An ion generation device includes a discharge electrode substrate, an induction electrode substrate, and an insulating resin. The discharge electrode substrate on which a discharge electrode is mounted and a first electrode connected to the discharge electrode is formed. The induction electrode substrate on which an induction electrode configured to generate a discharge between the induction electrode and the discharge electrode and a second electrode connected to the induction electrode are formed. The insulating resin is filled at least between the discharge electrode and the induction electrode. The insulating resin provides insulation between the discharge electrode and the induction electrode. The first electrode and the second electrode are disposed and face each other at least partially. The first electrode, the second electrode, and the insulating resin interposed between the first electrode and the second electrode form a capacitor.
A laser system may include one or more of the following components: a power supply, a continuous wave pump laser, a fiber optic cable, a positive lens, a gain medium, a heat sink, and/or a Q-switch. The laser system may be used in a light detection and ranging (LIDAR) system such as a scanning LIDAR system. The laser system may be designed to operate at wavelengths that may be safe for human eyes.
It is difficult to construct an optical fiber transmission system enabling relay optical amplification using a coupled multi-core optical fiber as an optical transmission path; therefore, an optical amplification device includes first optical spatial layout converting means for converting a spatial layout of a plurality of optical signal beams propagating through each of a plurality of cores, from a coupled state in which optical signal beams interfere between a plurality of cores to a non-coupled state in which optical signal beam interference is reduced between a plurality of cores; optical amplifying means for amplifying, in the non-coupled state, the plurality of optical signal beams with the non-coupled state and generating a plurality of amplified optical signal beams; and second optical spatial layout converting means for converting a spatial layout of the plurality of amplified optical signal beams from the non-coupled state to the coupled state.
Systems and methods of electrically connecting electrical energy storage or photovoltaic equipment with electrical destination equipment without performing any hard-wiring or installing any terminations in the field. A utility-scale electrical energy storage system and/or photovoltaic inverter is provided with a receptacle at its electrical output with a frame shaped and sized to secure to a first plug on a first cable to form an electrical connection between the first source equipment, first cable and the destination equipment.
A connecting terminal for connecting an electrical conductor is provided. The connecting terminal includes a housing and a conductor insertion opening formed in the housing, via which the conductor to be connected is insertable into the conductor connection chamber along an insertion direction. The connecting terminal also includes a current bar arranged in the conductor connection space of the housing and a clamping spring arranged in the conductor connection chamber and having a retaining leg and a clamping leg. The clamping leg is transferrable into a clamping position and into an open position. The connecting terminal further includes an actuating element, which is arranged displaceably in the housing along an actuating direction. The clamping leg of the clamping spring is actuatable by means of the actuating element in order to transition from the clamping position into the open position.
A ganged connector assembly includes: a plurality of coaxial connectors, each of the coaxial connectors connected with a respective coaxial cable extending rearwardly therefrom, each of the coaxial connectors including an inner contact and an outer body that is electrically separated from the inner contact; a shell having a plurality of cavities; and a plurality of rear bodies, each of the rear bodies encircling a respective outer body, each of the rear bodies mounted in a respective cavity of the shell. Each of the rear bodies includes a first locking feature. A second locking feature is located in each of the cavities and is fixed relative to the shell. The first and second locking features are configured such that rotation of a first of the plurality of rear bodies relative to the shell moves the first rear body between locked and unlocked positions, wherein in the locked position a respective first connector and respective first cable are secured with the shell within a respective cavity, and in the unlocked position the first connector and first cable can be removed from the shell without removing the remaining connectors and cables.
The disclosure relates to an apparatus for connecting modules included in an electronic device, and the apparatus may comprise: a power source between a first module of an electronic device and a second module of the electronic device; at least one line unit including lines for transferring a control signal, an intermediate (IF) signal, or a radio frequency (RF) signal; a first connector unit for connecting at least one of the lines to the first module; a second connector unit for connecting at least one of the lines to the second module; and a connection unit for connecting at least one external apparatus and at least one line for transferring the IF signal or the RF signal from among the lines.
Embodiments of the present invention provide an antenna arrangement including a magnetic antenna and a tuning element. The magnetic antenna includes a loop interrupted one or several times and a tuning element for tuning the magnetic antenna. The tuning element is configured to provide a tuning signal (e.g., control signal) for tuning the magnetic antenna, and to control the tuning element with the tuning signal to tune the magnetic antenna.
Embodiments of the present disclosure disclose an antenna array applied to an optical phased array, the optical phased array, and a LiDAR. The antenna array includes N phase compensation groups and N antenna groups, where each phase compensation group includes M phase compensation units, and each antenna group includes M antenna units, and where N and M are positive integers. An input end of a phase compensation unit in the phase compensation group is configured to receive an optical signal. An output end is connected to an antenna unit in the antenna group, is configured to transmit the received optical signal to the antenna unit, and performs phase compensation on the optical signal based on a phase shift caused by the antenna unit. The antenna unit is configured to transmit the optical signal.
A radar system with antenna modules that have first and second planar slotted waveguide antenna arrays for radiating and receiving electromagnetic waves. A rotation system supports and rotates the antenna modules around a vertical axis. The modules are arranged back-to-back on opposite sides of a plane intersecting the vertical axis of rotation. Another radar system includes planar slotted waveguide antenna arrays with longitudinal extending waveguide columns. The front side of the columns holding the cavity slots of the first planar antenna array are positioned in a first plane and the front side of the columns holding the cavity slots of the second planar antenna array are positioned in a second plane parallel to the first plane. The arrays may be positioned at a distance to each other in a direction to the first and second planes. The parallel planes may be offset with a minimum perpendicular array distance.
The invention relates to a method for characterizing the effects of coupling of a radiofrequency transceiver apparatus comprising at least one transmit path and at least one receive path, and to an apparatus implementing the method. The method comprises the calculation of coefficients of a correcting filter, with the steps of: transmitting a known signal over a transmit path, receiving a signal over a receive path, calculating the coefficients of the correcting filter on the basis of the known signal and of the signal received over said receive path. The method further comprises a step, carried out during the transmission of a useful signal over the transmit path, of filtering the signal transmitted over the transmit path by means of said correcting filter in order to determine the transmitted signal received by coupling effect over the receive path.
Embodiments of the present application provide a box of a battery. The box includes: an electrical chamber configured to accommodate a plurality of battery cells, a battery cell including a pressure relief mechanism, and the pressure relief mechanism being configured to be actuated when an internal pressure or temperature of the battery cell reaches a threshold, to relieve the internal pressure; a thermal management component configured to accommodate a fluid to adjust the temperature of the battery cell; and a collection chamber configured to collect emissions discharged from the battery cell when the pressure relief mechanism is actuated, where the electrical chamber and the collection chamber are disposed on both sides of the thermal management component, a wall of the collection chamber is provided with a first pressure relief zone, and the first pressure relief zone is configured to relieve the emissions in the collection chamber.
Set forth herein are electrochemical cells which include a negative electrode current collector, a lithium metal negative electrode, an oxide electrolyte membrane, a bonding agent layer, a positive electrode, and a positive electrode current collector. The bonding agent layer advantageously lowers the interfacial impedance of the oxide electrolyte at least at the positive electrode interface and also optionally acts as an adhesive between the solid electrolyte separator and the positive electrode interface. Also set forth herein are methods of making these bonding agent layers including, but not limited to, methods of preparing and depositing precursor solutions which form these bonding agent layers. Set forth herein, additionally, are methods of using these electrochemical cells.
Battery cases are formed such that a small second battery case is disposed on an upper front part of a large first battery case, the second battery case is disposed below a front part of a seat cushion of a rear seat, a recess portion extending in a fore-and-aft direction and having at least part of an exhaust passage member passing therethrough is formed in a lower face of a middle part in a vehicle width direction of the first battery case, battery modules housed in the first battery case are disposed on left and right sides of the recess portion, and a battery module housed in the second battery case is disposed so that a longitudinal direction thereof follows the vehicle width direction. Therefore, it is possible to ensure the headroom for a rear seat by disposing the rear seat at as low a position as possible.
A positive electrode active material and a preparation method thereof, a secondary battery, and an electric apparatus are provided. The positive electrode active material in the present invention includes: a core, where the core is a lithium-containing phosphate; a first coating layer disposed on at least part of surface of the core, where the first coating layer is a carbon coating layer co-doped with titanium and nitrogen; and a second coating layer disposed on at least part of surface of the first coating layer, where the second coating layer includes Li1+xMxTi2−x(PO4)3, where M is at least one element selected from aluminum, lanthanum, indium, zirconium, gallium, and scandium, and 0.2≤x≤0.8. With use of the positive electrode active material of the present invention, a high discharge capacity, excellent rate performance, and excellent cycling performance can be achieved.
A method for fault diagnosis and a computer device are provided. The method is applied to a battery management system of the energy storage system and includes the following. A first thermal-runaway parameter detected by a first detection apparatus and a second thermal-runaway parameter detected by a second detection apparatus are obtained. A difference between the first thermal-runaway parameter and the second thermal-runaway parameter is calculated. Determine that at least one of the first detection apparatus or the second detection apparatus fails, when the difference is greater than a difference threshold. Determine that a battery module fails, when the first thermal-runaway parameter is greater than a first threshold, the second thermal-runaway parameter is greater than a second threshold, and the difference is less than or equal to the difference threshold.
A battery case short-circuit processing method and system are provided. The battery case short-circuit processing method includes: when a short circuit between a case of a battery and a first electrode of the battery is detected, connecting the case and a second electrode of the battery by shorting, wherein if the first electrode is a positive electrode, the second electrode is a negative electrode; and if the first electrode is a negative electrode, the second electrode is a positive electrode; disconnecting the case of the battery from the second electrode, and carrying out standing of the battery for a preset duration; after the standing duration of the battery, detecting a potential difference between the case and the first electrode.
A polymer electrolyte is provided, which includes a polymer including an ethylene oxide unit; and a lithium salt, wherein the terminal of the polymer is substituted with one to four functional groups selected from the group consisting of a nitrogen compound functional group and phosphorus compound functional group, and the terminal of the polymer and the one to four functional groups are linked by one selected from the group consisting of a C2 to C20 alkylene linker, a C2 to C20 ether linker, and a C2 to C20 amine linker. A method for preparing the same is also provided.
A solid-state electrolyte membrane includes an interlocking layered microstructure formed by melting and spraying of ionic conductive material for use in a battery system.
A battery including: a battery can having a cylindrical portion, a bottom wall closing one end of the cylindrical portion, and an open rim continuous with the other end of the cylindrical portion; an electrode body housed in the cylindrical portion; and a sealing body fixed to the open rim so as to seal an opening defined by the open rim. The sealing body includes a sealing plate and a gasket disposed at a peripheral portion of the sealing plate. The gasket has at least one protruding portion configured to restrict insertion of the sealing body into the open rim.
A display device may include a substrate, and a display element layer disposed on the substrate and including a light emitting element that emits light in a display direction. The display element layer may include a first contact electrode electrically connected to the light emitting element, a second contact electrode electrically connected to the light emitting element, and a bank pattern having a shape extending in the display direction. At least one of the first contact electrode, the second contact electrode, and the bank pattern may include a transparent conductive polymer.
A device with a light-emitting diode includes a substrate, a first conductive pad and a second conductive pad, a light-emitting diode, a metal protrusion, a polymer layer, and a top electrode. The substrate has a top surface. The first conductive pad and the second conductive pad are on the substrate. The light-emitting diode is on the first conductive pad. The metal protrusion is on the second conductive pad. The polymer layer covers the top surface of the substrate, the first conductive pad, the second conductive pad, the metal protrusion, and the light-emitting diode, in which a distance from a top of the metal protrusion to the top surface of the substrate is greater than a thickness of the polymer layer. The top electrode covers the light-emitting diode, the polymer layer, and the metal protrusion such that the light-emitting diode is electrically connected with the second conductive pad.
The structure of a semiconductor device with inner spacer structures between source/drain (S/D) regions and gate-all-around structures and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes a substrate, a stack of nanostructured layers with first and second nanostructured regions disposed on the substrate and first and second source/drain (S/D) regions disposed on the substrate. Each of the first and second S/D regions includes an epitaxial region wrapped around each of the first nanostructured regions. The semiconductor device further includes a gate-all-around (GAA) structure disposed between the first and second S/D regions and wrapped around each of the second nanostructured regions, a first inner spacer disposed between an epitaxial sub-region of the first S/D region and a gate sub-region of the GAA structure, a second inner spacer disposed between an epitaxial sub-region of the second S/D region and the gate sub-region of the GAA structure, and a passivation layer disposed on sidewalls of the first and second nanostructured regions.
A semiconductor device includes: a substrate; a source region formed on a main surface of the substrate; a well region electrically connected to the source region; a drift region in contact with the well region; a drain region in contact with the drift region; a first electrode electrically connected to the source region; a second electrode electrically connected to the drain region; a third electrode formed in contact with the source region, the well region, and the drift region through an insulating film; and a parasitic capacitance reduction region formed in contact with the source region and in contact with the third electrode through the insulating film and having a higher resistance value than that of the source region.
The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors and methods of manufacture. The structure includes: a subcollector under a buried insulator layer; a collector above the subcollector; a base within the buried insulator layer; an emitter above the base; and contacts to the subcollector, the base and the emitter.
A method includes providing a silicon carbide substrate, wherein a gate trench extends from a main surface of the silicon carbide substrate into the silicon carbide substrate and wherein a gate dielectric is formed on at least one sidewall of the gate trench, and forming a gate electrode in the gate trench, the gate electrode including a metal structure and a semiconductor layer between the metal structure and the gate dielectric.
A semiconductor device includes a channel, a first source/drain structure on a first side surface of the channel, a second source/drain structure on a second side surface of the channel, a gate structure surrounding the channel, an inner spacer layer on a side surface of the gate structure, and an outer spacer layer on an outer surface of the inner spacer layer. The first source/drain structure includes a first source/drain layer on the channel and a second source/drain layer on the first source/drain layer, and on a plane of the semiconductor device that passes through the channel, at least one of a first boundary line of the first source/drain layer in contact with the second source/drain layer and a second boundary line of the first source/drain layer in contact with the channel may be convex, extending toward the channel.
The present disclosure relates to semiconductor structures and, more particularly, to gate structures and methods of manufacture. The structure includes: a gate structure comprising a horizontal portion and a substantially vertical stem portion; and an air gap surrounding the substantially vertical stem portion and having a curved surface under the horizontal portion.
A semiconductor device according to the present disclosure includes: a first conductivity-type silicon substrate including a cell part and a termination part surrounding the cell part in plan view; a first conductivity-type emitter layer provided on a front surface of the silicon substrate in the cell part; a second conductivity-type collector layer provided on a back surface of the silicon substrate in the cell part; a first conductivity-type drift layer provided between the emitter layer and the collector layer; a trench gate provided to reach the drift layer from a front surface of the emitter layer; and a second conductivity-type well layer provided on the front surface of the silicon substrate in the termination part. Vacancies included in a crystal defect in the cell part are less than vacancies included in a crystal defect in the termination part.
A method of assembling a display area includes selecting a first tile from a plurality of tiles, each tile of the plurality of tiles includes a predetermined parameter and a plurality of microLEDs defining a plurality of pixels. The selecting the first tile based on a value of the predetermined parameter of the first tile. The method includes selecting a second tile from the plurality of tiles based on a value of the predetermined parameter of the second tile. The method further includes positioning the first tile and the second tile into an array defining at least a portion of the display area. A first edge of the first tile facing a second edge of the second tile. A display device including the display area assembled by the method is also provided.
Provided is a camera module and a photosensitive component thereof and a manufacturing method thereof, said photosensitive component comprising: a circuit board, a photosensitive element, and a molding base; the molding base is integrally formed on the circuit board and photosensitive element to form a light window; a first end side corresponding to the molding base adjacent to the flexible region has a first side surface facing the light window; said first side surface comprises a first partial surface arranged adjacent to the photosensitive element and a second partial surface connected to said first portion surface; a first angle between said first partial surface and the optical axis of the camera module is greater than a second angle between the second partial surface and the optical axis; a second end side opposite to and away from the flexible region of the molding base has a second side surface facing the light window; said second side surface comprises a third partial surface arranged adjacent to the photosensitive element and a fourth partial surface connected to said third portion surface; a third angle between the third partial surface and the optical axis is greater than a fourth angle between the fourth partial surface and the optical axis.
Techniques for realizing compound semiconductor (CS) optoelectronic devices on silicon (Si) substrates are disclosed. The integration platform is based on heteroepitaxy of CS materials and device structures on Si by direct heteroepitaxy on planar Si substrates or by selective area heteroepitaxy on dielectric patterned Si substrates. Following deposition of the CS device structures, device fabrication steps can be carried out using Si complimentary metal-oxide semiconductor (CMOS) fabrication techniques to enable large-volume manufacturing. The integration platform can enable manufacturing of optoelectronic module devices including photodetector arrays for image sensors and vertical cavity surface emitting laser arrays. Such module devices can be used in various applications including light detection and ranging (LIDAR) systems for automotive and robotic vehicles as well as mobile devices such as smart phones and tablets, and for other perception applications such as industrial vision, artificial intelligence (AI), augmented reality (AR) and virtual reality (VR).
A multi-chip package includes: an interposer; a first IC chip over the interposer, wherein the first IC chip is configured to be programmed to perform a logic operation, comprising a NVM cell configured to store a resulting value of a look-up table, a sense amplifier having an input data associated with the resulting value from the NVM cell and an output data associated with the first input data of the sense amplifier, and a logic circuit comprising a SRAM cell configured to store data associated with the output data of the sense amplifier, and a multiplexer comprising a first set of input points for a first input data set for the logic operation and a second set of input points for a second input data set having data associated with the data stored in the SRAM cell, wherein the multiplexer is configured to select, in accordance with the first input data set, an input data from the second input data set as an output data for the logic operation; and a second IC chip over the interposer, wherein the first IC chip is configured to pass data associated with the output data for the logic operation to the second IC chip through the interposer.
The present invention provides a nitride semiconductor device, including an insulating substrate, a substrate over the first surface of the insulating substrate, a first lateral transistor over a first region of the substrate, wherein the first lateral transistor includes a first nitride semiconductor layer formed over the substrate, and a first gate electrode, a first source electrode and a first drain electrode formed over the first nitride semiconductor layer, and a second lateral transistor over a second region of the substrate, wherein the second lateral transistor includes a second nitride semiconductor layer formed over the substrate, and a second gate electrode, a second source electrode and a second drain electrode formed over the second nitride semiconductor layer, and a separation trench formed over a third region, wherein the third region is between the first region and the second region.
An array of poly lines on an active device area of an integrated chip is extended to form a dummy device structure on an adjacent isolation region. The resulting dummy device structure is an array of poly lines having the same line width, line spacing, and pitch as the array of poly lines on the active device area. The poly lines of the dummy device structure are on grid with the poly lines on the active device area. Because the dummy device structure is formed of poly lines that are on grid with the poly lines on the active device area, the dummy device structure may be much closer to the active device area than would otherwise be possible. The resulting proximity of the dummy device structure to the active device area improves anti-dishing performance and reduces empty space on the integrated chip.
A display device includes pixels each of which includes a first pixel electrode; a first connection electrode disposed on the first pixel electrode; a second connection electrode spaced apart from the first pixel electrode; a second pixel electrode disposed on the second connection electrode; first light emitting elements disposed between the first pixel electrode and the first connection electrode; and second light emitting elements disposed between the second connection electrode and the second pixel electrode. The first connection electrode is electrically connected to the second connection electrode.
A display apparatus including a plurality of display modules each including a module substrate and a plurality of light emitting devices mounted on the module substrate, and a support substrate on which the display modules are disposed and including conductive members, in which the module substrates includes a plurality of recesses depressed from at least one end surface of the module substrate, and connection electrodes formed in the recesses, and the light emitting devices are electrically connected to the conducive members of the support substrate through the connection electrodes.
An anisotropic conductive film (ACF) is formed with an ordered array of discrete regions that include a conductive carbon-based material. The discrete regions, which may be formed at small pitch, are embedded in at least one adhesive dielectric material. The ACF may be used to mechanically and electrically interconnect conductive elements of initially-separate semiconductor dice in semiconductor device assemblies. Methods of forming the ACF include forming a precursor structure with the conductive carbon-based material and then joining the precursor structure to a separately-formed structure that includes adhesive dielectric material to be included in the ACF. Sacrificial materials of the precursor structure may be removed and additional adhesive dielectric material formed to embed the discrete regions with the conductive carbon-based material in the adhesive dielectric material of the ACF.
A semiconductor package includes a first connection structure having first and second surfaces and including a first redistribution layer, a first semiconductor chip disposed on the first surface and having a first connection pad electrically connected to the first redistribution layer, a second semiconductor chip disposed around the first semiconductor chip on the first surface and having a second connection pad electrically connected to the first redistribution layer, an interconnection bridge disposed on the second surface to be spaced apart from the second surface and connected to the first redistribution layer through a connection member to electrically connect the first and second connection pads to each other, and a second connection structure disposed on the second surface to embed the interconnection bridge and including a second redistribution layer electrically connected to the first redistribution layer.
A semiconductor storage device includes first and second chips. The first chip includes a first semiconductor substrate, first conductive layers arranged in a first direction and extending in a second direction, a semiconductor column extending in the first direction and facing the first conductive layers, a first charge storage film formed between the first conductive layers and the semiconductor column, a plurality of first transistors on the first semiconductor substrate, and first bonding electrodes electrically connected to a portion of the plurality of first transistors. The second chip includes a second semiconductor substrate, a plurality of second transistors on the second semiconductor substrate, and second bonding electrodes electrically connected to a portion of the plurality of second transistors, and bonded to the first bonding electrodes. A thickness of the second semiconductor substrate in the first direction is smaller than a thickness of the first semiconductor substrate in the first direction.
In examples, a semiconductor package comprises a ceramic substrate and first and second metal layers covered by the ceramic substrate. The first metal layer is configured to carry signals at least in a 20 GHz to 28 GHz frequency range. The package comprises a semiconductor die positioned above the first and second metal layers and coupled to the first metal layer. The package comprises a ground shield positioned in a horizontal plane between the semiconductor die and the first metal layer, the ground shield including an orifice above a portion of the first metal layer. The package includes a metal seal ring coupled to a top surface of the ceramic substrate, the metal seal ring having a segment that is vertically aligned with a segment of the ground shield. The segment of the ground shield is between the orifice of the ground shield and a horizontal center of the ground shield. The package comprises a metal lid coupled to a top surface of the metal seal ring.
In one example, a semiconductor device comprises a first substrate comprising a first conductive structure, a first body over the first conductive structure and comprising an inner sidewall defining a cavity in the first body, a first interface dielectric over the first body, and a first internal interconnect in the first body and the first interface dielectric, and coupled with the first conductive structure. The semiconductor device further comprises a second substrate over the first substrate and comprising a second interface dielectric, a second body over the second interface dielectric, and a second conductive structure over the second body and comprising a second internal interconnect in the second body and the second interface dielectric. An electronic component is in the cavity, and the second internal interconnect is coupled with the first internal interconnect. Other examples and related methods are also disclosed herein.
Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate. As further described below, the first and second dies in some embodiments are placed in a face-to-face arrangement (e.g., a vertically stacked arrangement) that has the first and second set of interconnect layers facing each other. In some embodiments, a subset of one or more interconnect layers of the second set interconnect layers of the second die has interconnect wiring that carries power, clock and/or data-bus signals that are supplied to the first IC die.
The present disclosure provides a method for preparing a semiconductor device. The method includes forming a sacrificial source/drain structure over a first carrier substrate; forming a redistribution structure over the sacrificial source/drain structure; attaching the redistribution structure to a second carrier substrate; removing the first carrier substrate after the redistribution structure is attached to the second carrier substrate; replacing the sacrificial source/drain structure with a first source/drain structure; forming a backside contact over and electrically connected to the first source/drain structure; and forming an interconnect part over the backside contact.
An integrated circuit includes a semiconductor substrate and a plurality of dielectric layers over the semiconductor substrate, including a top dielectric layer. A metal plate or metal coil is located over the top dielectric layer; a metal ring is located over the top dielectric layer and substantially surrounds the metal plate or metal coil. A protective overcoat overlies the metal ring and overlies the metal plate or metal coil. A trench opening is formed through the protective overcoat, with the trench opening exposing the top dielectric layer between the metal plate/coil and the metal ring, the trench opening substantially surrounding the metal plate or metal coil.
A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a first package and a second package. The first package includes a first substrate, an electronic component, a trace layer, and a first conductive structure. The first substrate has a first surface and a second surface opposite to the first surface. The electronic component is embedded in the first substrate. The trace layer has an uppermost conductive layer embedded in the first substrate and exposed from the first surface of the first substrate. The first conductive structure electrically connects the trace layer to the second surface of the first substrate. The second package is disposed on the first surface of the first substrate of the first package.
The present disclosure relates to semiconductor core assemblies and methods of forming the same. The semiconductor core assemblies described herein may be utilized to form semiconductor package assemblies, PCB assemblies, PCB spacer assemblies, chip carrier assemblies, intermediate carrier assemblies (e.g., for graphics cards), and the like. In one embodiment, a silicon substrate core is structured by direct laser patterning. One or more conductive interconnections are formed in the substrate core and one or more redistribution layers are formed on surfaces thereof. The silicon substrate core may thereafter be utilized as a core structure for a semiconductor package, PCB, PCB spacer, chip carrier, intermediate carrier, or the like.
A 3D semiconductor device, the device including: a first level including a plurality of first metal layers; a second level, where the second level overlays the first level, where the second level includes at least one single crystal silicon layer, where the second level includes a plurality of transistors, where each transistor of the plurality of transistors includes a single crystal channel, where the second level includes a plurality of second metal layers, where the plurality of second metal layers include interconnections between the transistors of the plurality of transistors, and where the second level is overlaid by a first isolation layer; and a connective path from the plurality of transistors to the plurality of first metal layers, where the connective path includes a via disposed through at least the single crystal silicon layer, and where at least one of the via includes a contact to at least one of the transistors.
Disclosed is an SOI active interposer for three-dimensional packaging and a fabrication method thereof. An SOI substrate is used as the substrate, and a CMOS inverter is formed on the top silicon of the SOI by using standard integrated circuit manufacturing processes, so that short channel effect and latch-up effect can be suppressed. A via hole structure is etched on the SOI substrate between the PMOS and NMOS transistors of the CMOS inverter, which on the one hand can be used as a conductive channel between the chips in a vertical direction, and on the other hand, can be used as an electrical isolation layer between the PMOS and NMOS transistors.
Stacked die semiconductor packages may include a spacer die disposed between stacked dies in the semiconductor package and the semiconductor package substrate. The spacer die translates thermally induced stresses on the solder connections between the substrate and an underlying member, such as a printed circuit board, from electrical structures communicably or conductively coupling the semiconductor package substrate to the underlying structure to mechanical structures that physically couple the semiconductor package to the underlying structure. The footprint area of the spacer die is greater than the sum of the footprint areas of the individual stacked dies in the semiconductor package and less than or equal to the footprint area of the semiconductor package substrate. The spacer die may have nay physical configuration, thickness, shape, or geometry. The spacer die may have a coefficient of thermal expansion similar to that of the lowermost semiconductor die in the die stack.
A device relates to a semiconductor device. The semiconductor device includes a narrow-line bamboo microstructure integrated within a metal layer of the semiconductor device and a narrow-line polycrystalline microstructure. The narrow-line polycrystalline microstructure is integrated within the same metal layer as the narrow-line bamboo microstructure.
A capping layer is on top of a substrate. A first low-k dielectric layer is on top of the capping layer. One or more trenches are within the first low-k dielectric layer. Each of the one or more trenches have a same depth. Each trench of the one or more trenches include a barrier layer on top of the first low-k dielectric layer, a liner layer and a metal layer on top of the liner layer.
A ring support is attached to an inner wall surface of a chamber that houses a semiconductor wafer to support a susceptor. When the semiconductor wafer is placed on the susceptor, an inner space of the chamber is separated into an upper space and a lower space. Particles are likely to accumulate on a lower chamber window as a floor part of the chamber. However, since the upper space and the lower space are separated, the semiconductor wafer can be prevented from being contaminated by the particles flowing into the upper space and adhering to a surface of the semiconductor wafer even when the particles on the lower chamber window are blown up by irradiation with flash light.
A substrate processing apparatus includes: a chamber; a substrate support disposed in the chamber; a plasma generator configured to form a plasma in the chamber; and a controller configured to perform a process including: placing a substrate on the substrate support, the substrate including a first film, a second film and a third film, the first film containing a silicon, the second film having a second aperture, the first film being disposed between the second film and the third film; cooling the substrate to −30° C. or less; etching the first film through the second aperture with a plasma formed from a first process gas containing a fluorocarbon gas, to form a first aperture of a tapered shape in the first film such that a width of the first aperture gradually decreases toward a bottom of the first aperture; and etching the third film through the first aperture.
Disclosed herein are approaches for reducing buried channel recess depth using a non-doping ion implant prior to formation of the buried channel. In one approach, a method may include providing an oxide layer over a substrate, performing a non-doping implantation process through the oxide layer to form an amorphous region in the substrate, and forming a photoresist over the oxide layer. The method may further include forming a buried layer in the substrate by implanting the substrate through an opening in the photoresist, and performing an oxidation and dopant drive-in process to the amorphous region and to the buried layer to form a second oxide layer.
A directional patterning method includes following steps. A substrate is provided with a mask layer thereon, and the mask layer has at least one opening pattern therein. A cyclic deposition and etching process is performed to increase a length of the at least one opening pattern.
Embodiments of the disclosure provide a lateral bipolar transistor on a semiconductor fin and methods to form the same. A bipolar transistor structure according to the disclosure may include a doped semiconductor layer coupled to a base contact. A first semiconductor fin on the doped semiconductor layer may have a first doping type. An emitter/collector (E/C) material may be on a sidewall of an upper portion of the first semiconductor fin. The E/C material has a second doping type opposite the first doping type. The E/C material is coupled to an E/C contact.
A lamp and epitaxial processing apparatus are described herein. In one example, the lamp includes a bulb, a filament, and a plurality of filament supports disposed in spaced-apart relation to the filament, each of the filament supports having a hook support and a hook. The hook includes a connector configured to fasten the hook to the hook support, a first vertical portion extending from the connector toward the filament, and a rounded portion extending from an end of the first vertical portion distal from the connector and configured to wrap around the filament. A second vertical portion extends from an end of the rounded portion distal from the first vertical portion and the second vertical portion has a length between 60% and 100% of the length of the first vertical portion.
Apparatus and methods use a unique process kit to protect a processing volume of a process chamber. The process kit includes a shield with a frame configured to be insertable into a shield and a foil liner composed of a metallic material that is attachable to the frame at specific points. The specific attachment points are spaced apart to produce an amount of flexibility based on a malleability of the metallic material. The amount of flexibility ranges from approximately 2.5 to approximately 4.5.
Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
A control circuit for generating a primary alternating current (AC) voltage signal provided to a dielectric barrier discharge (DBD) disk of a three-dimensional printer includes a switching regulator receiving a direct current (DC) voltage signal. The switching regulator modulates the DC voltage signal based on a variable duty cycle to create a modulated DC signal. The control circuit also includes a modulation circuit in electrical communication with the switching regulator. The modulation circuit introduces a frequency component to the modulated DC signal, where the primary AC voltage signal includes a variable duty cycle and a set frequency, and the frequency component introduced into the modulated DC signal is representative of the set frequency of the primary AC voltage.
A switch is disclosed. In some examples, a switch includes a generally cylindrical housing; one or more sets of contact points enclosed by the housing; an indicator module, such as a multi-color LED illuminator, also enclosed by the housing; and a pushbutton actuator disposed to operate the contact points. The housing includes a display section spanning substantially the entire circumference of the housing such that the indication made by the indicator module is visible from all radial directions. When the pushbutton actuator is pressed, some of the contact points open to cut off power from hazards, while others are reconfigured to change the state of the indicator module to indicate the changed status of the switch. Multiple switches can be interfaced with each other, such as by serial connection, to facilitate multi-switch safety environment. Modular cables can be used to conveniently establish the interface.
An assembly for a wall-mounted or surface-mounted switch comprises a housing, a shell, and circuitry board. The housing comprises a base and a sidewall defining an interior space, a resilient arm projecting from the base into the interior space. The shell has a sidewall and is mounted to the housing to enclose the interior space. The interior of the shell includes a switch contact surface. The circuitry includes a switch such as a tactile or linear switch. The shell is movable from a disengaged position to an actuating position in response to force applied to the exterior of the shell. Applied force causes the switch contact surface to actuate the switch and the shell to deflect the resilient arm. When the applied force is removed, the resilient arm returns the shell to a neutral position.
A vertical capacitor includes a stack of layers conformally covering walls of a first material. The walls extend from a substrate made of a second material different from the first material.
A multilayer capacitor includes: a body including a stack structure in which a first internal electrode and a second internal electrode are stacked on each other interposing a dielectric layer therebetween; and first and second external electrodes disposed on the body to be respectively connected to the first internal electrode and the second internal electrode. One of the first internal electrode and the second internal electrode includes a recess portion disposed in one surface thereof, and providing a deviation in a distance between the first and second internal electrodes, TD indicates a thickness of a portion of the dielectric layer, based on a portion positioned on the one surface and not in the recess portion, TR indicates a recession depth of a portion positioned on the one surface and recessed by the recess portion, and (TR/TD) is greater than zero and less than (½).
A superconductor (10, 30) has a twisted structure and is adapted to form windings in a superconducting coil. The superconductor (10, 30) comprises at least one superconductor wire. The superconductor further comprises at least one elongated electrical insulation element (18, 37). The elongated electrical insulation element(s) (18, 37) is/are twisted with or around the superconductor wire(s) in order to create a separation distance with an adjacent superconductor wire in a neighbouring winding, The elongated electrical insulation element(s) (18, 37) and the superconductor wire(s) may be twisted in one and the same twisting operation.
A winding for a phase winding of a transformer. The winding has coil turns around a coil axis. The winding is adapted to transform voltage in a transformer at a predetermined frequency, when the transformer is operating. The winding is excited by a mechanical load having a main frequency corresponding to the predetermined frequency multiplied by two and has vibration modes. The combination of load and vibration modes results in a vibration of the winding. The winding has a set of vibration modes. Each vibration mode has a vibration mode frequency, wherein a main contributing vibration mode of the set of vibration modes is the vibration mode resulting in the largest acoustic power of the vibration modes. The winding is excited by the load and a stiffness difference between a first winding portion stiffness and a second winding portion stiffness is such that the acoustic power is minimized at said main frequency.
A coil electronic component includes a support substrate having a first surface and a second surface opposing each other, a coil pattern disposed on the first surface of the support substrate, first and second conductive vias penetrating the support substrate and connected to one end and the other end of the coil pattern, respectively, an encapsulant encapsulating the support substrate and the coil pattern, and first and second external electrodes disposed on a lower surface of the encapsulant and electrically connected to the first and second conductive vias, respectively. The support substrate is disposed between the lower surface of the encapsulant and the coil pattern.
Inductor structure is provided, including: n inductors, each inductor including a base plate, a cover plate, a first magnetic column and a coil wound around the first magnetic column, n≥2; m second magnetic column(s), each second magnetic column is disposed between at least two inductors, and has a first terminal connected to the cover plates of the at least two inductors, and a second terminal connected to the base plates of the at least two inductors, m
The invention relates to a semiconductive polymer composition comprising a polymer component, a conducting component and a crosslinking agent, wherein the polymer component comprises a polar polyethylene and the crosslinking agent comprises an aliphatic mono- or bifunctional peroxide or, alternatively, a monofunctional peroxide containing an aromatic group, and the crosslinking agent is present in an amount which is Z wt %, based on the total amount (100 wt %) of the polymer composition, and Z1≤Z≤Z2, wherein Z1 is 0.01 and Z2 is 5.0, an article being e.g. a cable, e.g. a power cable, and processes for producing a semiconductive polymer composition and an article; useful in different end applications, such as wire and cable (W&C) applications.
Disclosed are a ground terminal and an electronic device. The ground terminal includes a core body, a first bonding layer, a second bonding layer, a metal support plate, a third bonding layer, a fourth bonding layer, and a metal work piece. The metal support plate is attached to a lower part of the core body. The metal work piece includes a contact layer, a side layer, an upper welding layer, a wrapping layer, and a lower welding layer. The contact layer is attached to an upper part of the core body, the side layer is located on one side of the core body, the upper welding layer is connected to the metal support plate, the wrapping layer wraps an end portion of the metal support plate, the upper and lower welding layers are connected to a top end of the wrapping layer and the metal support plate, respectively.
A radioactive nuclear waste storage system includes a cask comprising a hermetically sealed internal cavity configured for holding the waste such as spent nuclear fuel submerged in an inventory of water. One or more pressure surge capacitors disposed inside the cask include a vacuum cavity evacuated to sub-atmospheric conditions prior to storage of fuel in the cask. At least one rupture disk seals a vacuum chamber inside each capacitor. Each rupture disk is designed and constructed to burst at a predetermined burst pressure level occurring inside the cask external to the capacitor. This allows excess cask pressure occurring during a high pressure excursion resulting from abnormal operating conditions to bleed into capacitor, thereby returning the pressure inside the cask to acceptable levels. In one embodiment, the capacitors are located in peripheral regions of the cask cavity adjacent to the circumferential wall of the cask body.
The disclosed systems and methods provide a systematic approach to analyzing an individual's lifestyle factors (e.g., foods consumed by the individual) that contribute to the individual's current or potential for disease, and taking further action based on that analysis. One example embodiment is a machine learning system that includes a food composition layer, chemical compounds layer, and disease layer. The food composition layer provides representations of chemical compounds of foods consumed or to be consumed by the individual. The chemical compounds layer is coupled to the food composition layer by links and filters the representations of the chemical compounds based on genetic or metabolic information of the individual, resulting in representations of personalized filtered chemical compounds. The disease layer is coupled to the chemical compounds layer by links and associates a representation of a disease with representations of the personalized filtered chemical compounds based on a disease module for the disease.
A vital sign information sensor for acquiring vital sign information from a physiological tissue of a subject includes: a sensor element configured to acquire the vital sign information from the subject; and a memory storing URI information. The URI information is capable of gaining access to an electronic content provided by a WEB server disposed on a communication network. When the vital sign information sensor is communicably connected to a vital sign information display apparatus, the URI information is transmitted from the memory to the vital sign information display apparatus. The electronic content includes information relevant to the vital sign information sensor.
A Bayesian model for predicting spectacle independence of one or more IOLs based on pre-clinical data (e.g., visual acuity value for one or more defocus values) of an IOL. The Bayesian model is trained to assign appropriate weights for different combinations of defocus values.
An assembly and method for tracking implant devices within a sterile field, the assembly comprising a reader that includes a housing structure with a base and a cover, a scanner having a scanner housing, where the scanner housing is at least partially positioned in a cavity provided in the base; and an aperture provided in the cover, where the cover is configured to receive a transparent sterile sheath to at least partially encase the cover.
Systems and methods are disclosed hosting multiple visual assessments, evaluating user performance on the assessments, and providing recommendations to assess and improve user visual performance. One method includes hosting a plurality of visual assessments; presenting, via a web portal, a user interface for selecting one or more visual assessments of the hosted plurality of visual assessments; receiving, via a web portal, a request for a user to access a visual assessment, wherein the visual assessment is an assessment out of the hosted plurality of assessments; administering the visual assessment to the user; receiving user performance data associated with a user, in response to the administered visual assessment; comparing the user performance data with performance data associated with one or more other users; and generating a report of user visual performance based on the user performance data, wherein the report is accessible to the user via the web portal.
A virtual assistant/chatbot to improve clinical workflow for home renal replacement therapies is disclosed herein. A virtual assistant/chatbot includes a patient-facing user interface configured to enable a patient to engage in a virtual chat session by typing, speaking, or otherwise providing information regarding a patient request or issue related to their renal replacement therapy. The virtual assistant/chatbot also includes a backend server-based system configured to provide logic to respond to a patient's requests. The logic defines a sequence of questions and answers for resolving patient queries. The sequence of assistant/chatbot questions and patient answers may be configured in a node arrangement such that certain patient answers/requests lead to additional questions for additional information from a patient. The virtual assistant/chatbot is configured to answer patient requests automatically or determine if the patient request is to be immediately addressed by a clinician or later through a phone call, text, or email communication.
Systems of screening memory cells of a memory include modulating bitline and/or wordline voltage. In a read operation, the wordline may be overdriven or underdriven with respect to a nominal operating voltage on the wordline. In a write operation, one or both of the bitline and wordline may be overdriven or underdriven with respect to corresponding a nominal operating voltage. Such a system has margin control circuity, which may be in the form of bitline and wordline margin controls, to modulate bitline and wordline voltages, respectively, in the memory cells of the memory array.
A program control circuit for an antifuse-type one time programming memory cell array is provided. When the program action is performed, the program control circuit monitors the program current from the memory cell in real time and increases the program voltage at proper time. When the program control circuit judges that the program current generated by the memory cell is sufficient, the program control circuit confirms that the program action is completed.
A nonvolatile memory device includes at least one memory block and a control circuit. The at least one memory block includes a plurality of cell strings, each including a string selection transistor, a plurality of memory cells and a ground selection transistor. The control circuit controls a program operation by precharging channels of the plurality of cell strings to a first voltage during a bit-line set-up period of a program loop, applying a program voltage to a selected word-line of the plurality of cell strings during a program execution period of the program loop and after recovering voltages of the selected word-line and unselected word-lines of the plurality of cell strings to a negative voltage smaller than a ground voltage, recovering the voltages of the selected word-line and the unselected word-lines to a second voltage greater than the ground voltage during a recovery period of the program loop.
A content addressable memory cell includes a first floating body transistor and a second floating body transistor. The first floating body transistor and the second floating body transistor are electrically connected in series through a common node. The first floating body transistor and the second floating body transistor store complementary data.
A neuromorphic computing device includes first and second memory cell arrays, and an analog-to-digital converting circuit. The first memory cell array includes a plurality of resistive memory cells, generates a plurality of read currents based on a plurality of input signals and a plurality of data, and outputs the plurality of read currents through a plurality of bitlines or source lines. The second memory cell array includes a plurality of reference resistive memory cells and an offset resistor, and outputs a reference current through a reference bitline or a reference source line. The analog-to-digital converting circuit converts the plurality of read currents into a plurality of digital signals based on the reference current. The offset resistor is connected between the reference bitline and the reference source line.
A neuromorphic device including an electrode including a first terminal connected to a bit line through a write drive transistor and a second terminal connected to a source line, a plurality of unit weighting elements having different resistance values, each of the unit weighting elements including a free layer arranged on the top of the electrode, a tunnel barrier layer arranged on the top of the free layer, and a fixed layer arranged on the top of the tunnel barrier layer, and corresponding to each bit of a synapse weight, and a plurality of control electrodes connected to the bit line through a plurality of read drive transistors, respectively, a control voltage being applied between the free layer and the fixed layer of each of the plurality of unit weighting elements through each of the plurality of control electrodes.
A semiconductor device includes a memory cell array including a plurality of memory cells coupled between a multiplicity of word lines and one or more bit lines; and an operation circuit configured to perform a multiplication and accumulation (MAC) operation with one or more first multi-bit data provided from the one or more bit lines and one or more second multi-bit data, wherein a plurality of memory cells coupled to a bit line store a plurality of bits included in a corresponding one of the one or more first multi-bit data, and wherein the memory cell array sequentially provides the plurality of bits included in the corresponding first multi-bit data to the operation circuit.
A read/write method and a memory are provided. The read/write method includes: issuing a read command to a memory, wherein the read command points to an address; reading to-be-read data from a storage unit corresponding to the address to which the read command points; and in response to an error occurring in the to-be-read data, marking the address to which the read command points as disabled. When executing a read/write operation on the memory, the address of the storage unit is marked to distinguish an enabled storage unit from a failed storage unit in real time. A data error or a data loss can be avoided, thereby greatly improving the reliability and the service life of the memory.
The present disclosure is generally related to a magnetic recording device comprising a magnetic recording head having a current flow in a cross-track direction around a main pole. The magnetic recording device comprises a main pole disposed between a trailing shield, a leading shield, and side shields. A trailing gap is disposed between the main pole and the trailing shield. A hot seed layer is disposed between the trailing gap and the trailing shield. A first insulation layer is disposed between the hot seed layer and the trailing shield, where the first insulation layer contacts the side shields. A second insulation layer is disposed between the main pole and leading shield, where the second insulation layer contacts the side shields. The first and second insulation layers direct the current through the side shields and across the main pole in a cross-track direction.
The present disclosure generally relates to a magnetic recording head comprising a spintronic device. The spintronic device is disposed between a main pole and a trailing shield of the magnetic recording head. The spintronic device comprises a multilayer spacer layer comprising a Cu layer in contact with a spin torque layer and a spin transparent texture layer disposed on the Cu layer, the spin transparent texture layer comprising AgSn or AgZn. A multilayer notch comprising a CoFe layer is disposed over the spin transparent texture layer of the multilayer spacer layer and a Heusler alloy layer is disposed on the CoFe layer, the Heusler alloy layer comprising CoMnGe, CoFeGe, or CoFeMnGe. The multilayer spacer layer and the multilayer notch result in the spintronic device having a high spin polarization and a reduced critical current.
Provided are a server for providing a response message, based on a voice input of a user, and an operation method of the server. Provided are a server that recognizes health state information of a user, based on a voice input from the user, analyzes pre-stored health data, generates a response message, based on the analyzed health data, and outputs the generated response message, and an operation method of the server.
Provided are a server that recognizes event information of a user from a voice input from the user, generates a response message, based on information about the type and frequency of a recognized event, and provides the generated response message, and an operation method of the server.
A method, executed by a processor for compressing an audio signal in multiple layers, may comprise: (a) restoring, in a highest layer, an input audio signal as a first signal; (b) restoring, in at least one intermediate layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in the highest layer or an immediately previous intermediate layer, from the input audio signal as a second signal; and (c) restoring, in a lowest layer, a signal obtained by subtracting an upsampled signal, which is obtained by upsampling the audio signal restored in an intermediate layer immediately before the lowest layer, from the input audio signal as a third signal, wherein the first signal, the second signal, and the third signal are combined to output a final restoration audio signal.
A signal processing method and device includes obtaining spectral coefficients of a current frame of an audio signal, in which N sub-bands of the current frame comprises at least one of the spectral coefficients. A total energy of M successive sub-bands of the N sub-bands, a total energy of K successive sub-bands of the N sub-bands, and an energy of a first sub-band are obtained to determine whether to modify original envelope values of the M sub-bands. When the original envelope values of the M sub-bands are modified, encoding bits are allocated to each of the N sub-bands according to the modified envelope values of the M sub-bands.
A system for identifying computer agents to perform a particular task requested by a user, receives an audio signal to perform the particular task. The system extracts a set of features from the audio signal. The set of features represents at least a first keyword indicating the particular task. The system determines which one or more computer agents from a plurality of computer agents is predetermined to perform the particular task by comparing the first keyword with a plurality of keywords associated with the plurality of keywords. The system determines a first computer agent associated with a second keyword that corresponds to the first keyword. The system executes the first computer agent to perform the particular task.
Various embodiments of the present invention relate to a method for providing an intelligent assistance service, and an electronic device performing same. According to an embodiment, the electronic device includes a display, a communication interface, at least one processor, and at least one memory, wherein the memory is configured to store a task customized by a user and mapped to any one among a selected word, phrase, or sentence. The memory may store instructions which, when executed, cause the processor to: display a user interface, configured to set or change the task, on the display; display at least one utterance related to the task as text on the user interface; identify and display at least one replaceable parameter in the utterance; receive a user input, which may be used as the parameter, for selecting or inputting at least one item; and store the task including the item.
Disclosed are an artificial intelligence (AI) system using a machine learning algorithm such as deep learning, and an application thereof. The present disclosure provides an electronic device comprising: an input unit for receiving content data; a memory for storing information on the content data; an audio output unit for outputting the content data; and a processor, which acquires a plurality of data keywords by analyzing the inputted content data, matches and stores time stamps, of the content data, respectively corresponding to the plurality of acquired keywords, based on a user command being inputted, searches for a data keyword corresponding to the inputted user command among the stored data keywords, and plays the content data based on the time stamp corresponding to the searched data keyword.
The present disclosure relates to a speech synthesis method and device, and a computer-readable storage medium, and relates to the field of computer technology. The method of the present disclosure includes: dividing a text into a plurality of segments according to a language category to which each of the segments belongs; converting each of the segments into a phoneme corresponding to the segment to generate a phoneme sequence of the text according to the language category to which each of the segments belongs; inputting the phoneme sequence into a speech synthesis model trained in advance and converting the phoneme sequence into a vocoder characteristic parameter; and inputting the vocoder characteristic parameter into a vocoder to generate a speech.
A noise control system detects, identifies, and cancels specific, preselected sounds that an operator does not want to hear during operation of a machine. One or more of a microphone or another sensor detects sound vibrations or other operational parameters that result in the generation of sound vibrations during operation of the machine. A controller identifies, and selectively cancels only the specific, preselected sounds the operator does not want to hear while operating the machine by generating an anti-noise signal to interfere with the specific, preselected sounds.
A sound-insulation material for a vehicle has high rigidity and is capable of exhibiting sufficient sound insulation performance against noise having a frequency of 500 Hz to 5000 Hz generated in a vehicle, while maintaining low weight. The sound-insulation material for a vehicle of the present invention has a multilayer structure, the material including: a hard layer having tubular cells, the tubular cells being arranged in a plurality of rows; and a soft layer provided on one surface of the hard layer, in which a ratio of a dynamic spring constant Kd to a static spring constant Ks, of a structure having the hard layer and the soft layer, is 0
The present disclosure discloses a detection method and a detection system. The detection method comprises: creating a plurality of template images based on a reference object, wherein the reference object includes a plurality of units, and the plurality of template images are unit images with different average grayscale values; calculating a first average grayscale value of a unit image to be detected; selecting a first template image from the plurality of template images based on the first average grayscale value, wherein a difference between an average grayscale value of the first template image and the first average grayscale value is smallest; performing color difference detection on the unit image to be detected based on the first template image. The present disclosure can select a template image whose grayscale value is similar to the grayscale value of a unit image to be detected to detect the unit, so that the difference between the unit image to be detected and the template image is smallest, thereby reducing the frequency of false detection and missed detection, and ultimately increasing the detection effect of the color difference detection.
A display module is provided. The display module includes a main display panel, an auxiliary display panel and a backlight module which are laminated sequentially, at least one temperature sensing circuit in the auxiliary display panel, and a control circuit coupled to the at least one temperature sensing circuit. The temperature sensing circuit is configured to generate, based on temperature of the auxiliary display panel, a temperature signal related to the temperature, and the control circuit is configured to adjust a display parameter of the main display panel based on the temperature signal.
A light emitting substrate, a method of driving a light emitting substrate, and a display device are provided. The light emitting substrate includes a plurality of light emitting units arranged in an array. Each light emitting unit includes a driving circuit, a plurality of light emitting elements, and a driving voltage terminal. The plurality of light emitting elements are sequentially connected in series and connected between the driving voltage terminal and the output terminal of the driving circuit. The driving circuit is configured to output a relay signal through the output terminal in a first period according to a first input signal received by the first input terminal and a second input signal received by the second input terminal, and supply a driving signal to the plurality of light emitting elements sequentially connected in series through the output terminal in a second period.
A light-emitting display device includes a display panel including a high-potential power voltage line and a low-potential power voltage line and provided with a plurality of pixels each including a driving transistor and an organic light-emitting diode, a timing controller configured to generate N (N being a natural number) sensing images depending on a size of accumulated image data by accumulating image data for each pixel, and to display the display panel of data of at least one sensing image of the N sensing images on the display panel and to obtain an amount of degradation of organic light-emitting diodes in a sensing mode, and a degradation sensing unit configured to estimate the amount of degradation of the organic light-emitting diodes by sensing an electrical physical quantity for each panel or for each region in a panel in a state in which the at least one sensing image is displayed on the display panel, and to provide the amount of degradation of the organic light-emitting diodes to the timing controller.
A light emitting display device can include a display panel including M subpixels sharing a sensing line, wherein M is an integer equal to or greater than 2; and a circuit configured to sense one or more elements included in at least one of the M subpixels through the sensing line, in which the M sub-pixels are initialized based on an initialization voltage during an initial period, the M sub-pixels are sensed based on a sensing voltage during a data writing period, and an amount of time of the initial period is longer than an amount of time of the data writing period.
A light emitting display device is disclosed that includes an organic light emitting diode having an anode electrode connected to a first power line and a cathode electrode, a capacitor configured to store a data voltage and having a first electrode and a second electrode, and a driving transistor having a first electrode connected to the cathode electrode of the organic light emitting diode, a gate electrode connected to the first electrode of the capacitor, and a second electrode connected to the second electrode of the capacitor and a second power line. The driving transistor applies an initialization voltage to a node connected to the cathode electrode of the organic light emitting diode and the first electrode of the driving transistor.
In a pixel, a display device including a pixel, and a method of driving the display device, the pixel includes a first transistor connected to a first power source, a fourth node and a first node, a second transistor connected to a third node, a data line and an i-th first scan line, a third transistor connected to the first node, the fourth node, and an i-th third scan line, a fourth transistor connected to the second node, an initialization voltage, and an i-th second scan line, a first capacitor connected between the third node and the first node, a second capacitor connected between the first node and the second node, and an organic light emitting diode connected between the second node and a second power source, wherein I is a natural number and the third transistor is an N-type transistor.
Electroluminescent display devices and a method for driving the same are disclosed. An electroluminescent display device according to an embodiment of the present disclosure includes a display panel including a plurality of pixels emitting light according to image data, a first memory storing a stress accumulation value corresponding to the image data, and a compensation gain calculation circuit configured to increase a compensation gain for compensating for the image data on the basis of the stress accumulation value, wherein the stress accumulation value in the first memory is reset whenever the compensation gain increases.
A display device includes: a plurality of gate lines in a display area and extending in a first direction; a scan driver in a non-display area surrounding the display area, connecting the gate lines, extending in a second direction crossing the first direction, and having a first length in the second direction; and an antistatic pattern in the non-display area, extending in the second direction, and having a second length greater than the first length in the second direction.
Provided are a display panel and a display device. The display panel includes a light-emitting element and a pixel drive circuit electrically connected to the light-emitting element. The pixel drive circuit includes a drive transistor and a first reset module. The drive transistor is configured to control a drive current. The first reset module is connected to a first node and configured to provide a first reset voltage to the first node. The light-emitting element is connected to the first node. A working mode of the display panel comprise a first drive mode. A display frame in the first drive mode includes a valid frame and an invalid frame. In the first drive mode, a first reset voltage for the valid frame is different from a first reset voltage for the invalid frame.
An electroluminescent display apparatus includes a display panel including first and second pixel, a data voltage supply unit supplying the first pixel with a first data voltage of a first gate signal and supplying the second pixel with a second data voltage of a second gate signal in a vertical active period of a first frame and continuously supplying the second pixel with a sensing data voltage and a recovery data voltage of a third gate signal in a vertical blank period of the first frame, and a sensing circuit sensing an electrical characteristic of the second pixel based on the sensing data voltage in the vertical blank period. The recovery data voltage is supplied to the second pixel later than the sensing data voltage. The recovery data voltage supplied to the second pixel in the vertical blank period includes the first and second data voltages.
According to an embodiment of the disclosure, an electronic apparatus may include: a display configured to display an image; and a processor configured to: adjust, for each of sub areas having a specified size in an image quality degradation anticipation area of an image, a pixel value of at least one adjustment pixel among a plurality of pixels included in each sub area, and change the adjustment pixel into another pixel among the plurality of pixels, while maintaining a representative value of the plurality of pixels included in each sub area.
This application relates to the field of communications technologies, and provides ambient light and optical proximity detection methods, a photographing method, and a terminal, so that an entire display screen of the terminal is used to display a user interface, and this improves user experience. The method specifically includes: controlling, by a terminal, some areas of a display screen to display a black picture for a plurality of times; and when the areas display the black picture, obtaining approaching data of the external object detected by an optical proximity sensor to control turning on or off of the display screen.
A method can be applied to a terminal provided with a light sensor to determine a screen light intensity value. The method can include: obtaining a screen light intensity detection value detected by the light sensor, and obtaining a current environment temperature when the light sensor detects the screen light intensity detection value; determining a light intensity calibration coefficient corresponding to a value of the current environment temperature based on a corresponding relationship between a temperature and the light intensity calibration coefficient; and determining the screen light intensity value of the terminal based on the determined light intensity calibration coefficient and the screen light intensity detection value.
In general, systems, methods, and devices for modeling air leaks in lungs are provided. In an exemplary embodiment, the systems, methods, and devices provide a model to allow for simulation of negative and positive pressure ventilation modes in vitro, which may allow for evaluation and investigation of pathologies and interventions. In addition to ventilation functions the model includes submersion of the lung sample in fluid inside a chamber and cycling the fluid through a collection system to collect air leaked from the lung. The model can allow for quantification and visual observation of air leaks in real time.
Disclosed is a tablet with an improved Braille display. The Braille display employs a pin array that allows for the selective use of either six or eight pin cells. This is accomplished by turning off or on a pin pair adjacent to each cell. The spacing of the pins also allows capacitive sensors to be located adjacent to each Braille cell. These sensors are used to determine the location of the user's finger upon the display. The pin spacing further allows geometric shapes to be generated in additional to text.
A computer-implemented method performed by a centralized coordinated vehicle guidance system may include: obtaining analytics data for a plurality of vehicles or objects centrally communicating with or detected by the centralized coordinated vehicle guidance system; detecting, based on the analytics data, a predicted collision event involving multiple pairs of the plurality of vehicles or objects; determining trajectory adjustment information for a first vehicle of the plurality of vehicles involved in the collision event; and outputting the trajectory adjustment information to cause the first vehicle to modify its trajectory.
A vehicle such as an autonomous or self-driving vehicle has a navigation system for displaying, on a display screen, a user interface presenting a map showing multiple routes. The vehicle includes a traffic-prioritization processor configured to cooperate with the navigation system to present prices and travel times for the multiple routes via the user interface to enable a user of the vehicle to select one of the multiple routes based on both the prices and the travel times displayed on the display screen. The vehicle further includes a radiofrequency data transceiver configured to cooperate with the traffic-prioritization processor to communicate with one or more other vehicles or a central server to negotiate a traffic reprioritization for a user-selected route.
A method and apparatus according to the invention can include energizing a wireless communication device coupled to a processor of a vehicular entity thus establishing a secure channel or communication area around the vehicular entity;
exchanging information and data with other vehicular entities entering the established channel or communication area;
regulating some vehicle parameters of said vehicular entity for driving the departure and/or travelling of the vehicular entity according to the received information and data.
A method for providing vehicle information, which is carried out using a server, includes steps of: receiving vehicle attribute information including a vehicle type and GPS trajectory information from a vehicle, storing the vehicle attribute information and the GPS trajectory information for each vehicle type based on the vehicle attribute information, generating specialized traffic information associated with a specialized vehicle type needing the specialized traffic information and generating normal traffic information associated with a normal vehicle type, and providing the specialized vehicle type with directions information based on the specialized traffic information, when a current situation is a special situation, and otherwise providing the normal vehicle type with directions information based on the normal traffic information.
A method for locating a network device in a mesh network includes the steps of: generating a message from a network device; storing a step value and an initial step value in the message; initializing the step value with the initial step value; sending the message to the mesh network; receiving the message is received at a further network device; and determining whether the message is classified as received for the first time. If the message is classified by the further network device as being received for the first time, the following additional steps are performed: adding a delta step value to the step value; determining a distance of the further network device from the network device from the step value changed in this way and the initial step value; and indicating the distance for locating the network device for a user at the further network device.
A mechanized store uses a mobile device to authenticate the user. Items removed from one or more displays of the mechanized store by the user are tracked and a list of items removed by the user is updated. The list of items removed is linked with an account of the user.
Systems and methods are disclosed for associating a player loyalty account of a player with a stored value account. The player can accumulate loyalty points over time. The accumulated loyalty points can be converted to value, such as cash or coupons, associated with the stored value account. The value can be accessed by the player through the use of a stored value payment vehicle associated with the stored value account. The value added to the stored value account can be restricted such that the use of the value is limited to particular merchants or particular types of transactions.
A system includes a first game machine, a second game machine, and a session server. The session server includes a processor configured to at least receive, from the first game machine, a request from a player to enable restoration of a game, and in response to receiving the request to enable restoration of the game, register a session identifier in association with a player account of the player. The processor is also configured to store the session identifier in association with the player account to a session identifier database, and receive, from the second game machine and in response to a player request to restore the game, at least player account information associated with the player account. In addition, the processor is configured to retrieve the session identifier from the session identifier database in response to receiving the player account information, and determine, based upon the session identifier, whether to enable restoration of the game.
Security devices and methods for regulating access to an item secured within the security device are provided. In an example, the method includes: determining if a requesting user submitting a request to access the item is an authorized user; and in response to determining the requesting user is the authorized user, the method further includes one or more actions of: triggering a predefined wait period; allowing the requesting user access to the item and notifying at least one of a primary user, a designated user, or a third party service; or notifying the at least one of the primary user, the designated user, or the third party service that the requesting user is requesting access to the item, and receiving an approval or a denial of access to the item to the requesting user from at least one of the primary user, the designated user, or the third party service.
A method for holding piece goods to be collected, and/or for gathering together piece goods to be dropped off. At least one piece goods module has a plurality of separate piece goods compartments at a collection point. The piece goods compartments each have a closure device adjustable from a closure position preventing access to the piece goods compartment into an opening position, which opens up access to the piece goods compartment and back. The piece goods module is transported by a drone by air from a distribution base to a transfer point and/or vice versa. The piece goods module is transported by a courier vehicle from the transfer point to the collection point and/or vice versa. At the collection point the at least one piece goods module is secured captively to a docking station and/or is separated from the docking station which is connected to the piece goods module.
Technologies for determining driver efficiency include receiving, by a telematics server, accelerometer data from a telematics device located in a vehicle driven by a driver. The accelerometer data defines a pattern of acceleration of the vehicle over a time period. The telematics server determines a driver efficiency score of the driver based on the accelerometer data. The driver efficiency score is indicative of an average absolute acceleration of the vehicle over the time period. The determined driver efficiency score may be compared to a reference efficiency score and/or efficiency scores of other drivers to rank the drivers.
A management apparatus for a vehicle device, a vehicle and a server are provided. The management apparatus includes: a state determining unit, configured to determine a current state of the vehicle device; a first communication module, configured to transmit the current state of the vehicle device to at least one of a mobile terminal and a server and to receive a control instruction generated by the at least one of the mobile terminal and the server according to the current state of the vehicle device; and a controller, configured to control an action-executing unit of the vehicle device according to the control instruction to drive the vehicle device to execute an action.
The invention presents a method and system for check-in processes for passengers on return travel. The method involves, after arriving at a destination, electronically acquiring an originating hardcopy bag tag identifier (OP-BTI) associated with or printed on a printed bag tag from an originating airline carrier that is on a luggage item of a passenger to create a digital BTI data record linked to the originating airline carrier. The process involves accessing a B-type message using a unique identifier representative of the BTI data record from a computer system associated with an originating airline carrier linked to information of a passenger name record (PNR). The process includes retrieving check-in information of a return leg of travel of the passenger with a designated return travel carrier using information associated with the PNR, and checking in the passenger with the designated return travel carrier using the retrieved check-in information, during a check-in window.
An apparatus includes a memory and a processor. The memory stores a dictionary and a machine learning algorithm trained to classify text. The processor receives an image of a page, converts the image into a set of text, and identifies a plurality of tokens within the text. Each token includes one or more contiguous characters that are both preceded and followed by whitespace within the text. The processor identifies invalid tokens by removing tokens of the plurality of tokens that correspond to words of the dictionary. The processor calculates, based on a ratio of a total number of valid tokens to a total number of tokens, a score. In response to determining that the score is greater than a threshold, the processor applies the machine learning algorithm to classify the text into a category and stores the image and/or text in a database according to the category.
This document describes methods to assign a collective state to a group of traffic signal devices that are concurrently detected by multiple cameras. The states may be color states or other states. The system will process the images to identify states of each of the devices in the images. When the devices exhibit more than one state, the system will determine an overall state for the group by generating a confidence score for each of the states. The system will select, from the multiple states, the state having a confidence score that exceeds a threshold. The system will then use the selected state to assign an overall state to the group of traffic signal devices. The system may use the overall state to generate a signal that will cause the vehicle to perform an action such as a motion control action, or output of an audible or visual alert.
A vehicle control system includes: a service arrangement information acquisition unit which acquires service arrangement information including identification information of at least either one of a person in charge of a service who executes a predetermined service that targets a predetermined vehicle and a service vehicle used when executing the predetermined service; a surrounding object recognition unit which recognizes an object present in an area around the predetermined vehicle; and a service reception handling unit which executes predetermined processing for receiving the predetermined service in a case where the object is determined as the service vehicle or the person in charge of the service by an object authentication unit.
A vehicle system includes a lidar system that obtains an initial point cloud and obtains a dual density point cloud by implementing a first neural network and based on the initial point cloud. The dual density point cloud results from reducing point density of the initial point cloud outside a region of interest (ROI). Processing the dual density point cloud results in a detection result that indicates any objects in a field of view (FOV) of the lidar system. A controller obtains the detection result from the lidar system and controls an operation of the vehicle based on the detection result.
A method and an apparatus for generating a video are provided. The method may include performing, by a server, semantic analysis on an original video according to a timing characteristic of the original video, and segmenting the original video to obtain video segments with semantic information; obtaining, by the server, a video generation sequence model with a timing characteristic based on at least one previously configured video generation sequence model with a timing characteristic according to preference video information obtained from a client; and reorganizing, by the server, the video segments with the semantic information according to the video generation sequence model with the timing characteristic to obtain a target video of the client.
The present invention discloses an intelligent image sensing device for sensing-computing-cloud integration based on a federated learning framework. The device comprises: intelligent image sensors, edge servers and a remote cloud, wherein the intelligent image sensor is used for perceiving and generating images, and uploading the images to the edge server; the edge server is used as a client; the remote cloud is used as a server; the clients train a convolutional fuzzy rough neural network based on the received images and the proposed federated learning framework; and the intelligent image sensors download the weight parameters of the trained convolutional fuzzy rough neural network from the clients, and classify and recognize the images based on the trained weight parameters. The present invention searches a lightweight deep learning architecture through neuroevolution, and deploys the lightweight deep learning architecture in the image sensors to automatically discriminate and analyze the perceived images.
A system configuration suitable for carrying out video recognition by machine learning in a video system including an imaging device and a video processing device is provided.
One aspect of the video system according to the present invention includes an imaging device and a video processing device. The imaging device includes an imaging unit configured to generate video data by imaging, a front side NN unit including multiple layers of neural networks from an input layer to a predetermined intermediate hidden layer (hereinafter referred to as “intermediate hidden layer”) that are configured to perform recognition processing of the video data; and an imaging side control unit configured to transmit an output of the intermediate hidden layer of the front side NN unit (hereinafter referred to as “intermediate feature quantity”). The video processing device includes a video processing side control unit configured to acquire the intermediate feature quantity transmitted from the imaging side control unit, and a rear side NN unit including the multiple layers of the neural networks from a layer subsequent the intermediate hidden layer to an output layer, the rear side NN unit configured to perform the remaining recognition processing regarding the intermediate feature quantity acquired by the video processing side control unit.
The disclosed techniques are focused on processes for encoding an enhanced image with non-image data. Notably, the “non-image data” is distinct from “image data” in that the image data defines display characteristics of an image (e.g., display properties of a pixel) while the non-image data is unrestricted and can describe any data, even data different than display characteristics. An image is accessed, where the image includes at least one pixel that is associated with at least one color channel. Non-image data is encoded into the color channel. An index, which maps where the non-image data has been encoded in the color channel of the pixel, is generated or modified. As a result of encoding the non-image data into the color channel, an enhanced image is generated.
An editing system may dynamically and intelligently determine which data points to remove, replace, and/or modify from a point cloud space so that more features, color information, and/or detail of the point cloud are preserved after decimation. The system may receive data points that are distributed in space, and may select one or more elements of the data points on which to base the decimation. For instance, the system may decimate a first subset of the data points by a first amount based on a first difference in values defined for the one or more elements of the first subset of data points, and may decimate a different second subset of the data points by a different second amount based on a second difference in values defined for the one or more elements of the second subset of data points.
A personalized scene image processing method is provided for a terminal device. The method includes acquiring, according to a touch event triggered in a screen region of the terminal device, a trajectory of the touch event in the screen region; generating a virtual model, according to a projection of the trajectory of the touch event in a space coordinate system; reconstructing a model view of the virtual model mapped within a field of view of the terminal device, according to a position and posture of the terminal device in the space coordinate system; and overlaying a scene image acquired by the terminal device in the position and posture with the model view to obtain a personalized scene image.
An imaging apparatus includes: an image sensor that captures a subject image to generate image data; a first depth measurer that acquires first depth information indicating a depth at a first spatial resolution, the depth showing a distance between the imaging apparatus and a subject in an image indicated by the image data; a second depth measurer that acquires second depth information indicating the depth in the image at a second spatial resolution different from the first spatial resolution; and a controller that acquires third depth information indicating the depth at the first or second spatial resolution for each region of different regions in the image, based on the first depth information and the second depth information.
Z maps combined with a standardized stimulus in the form of a targeted arterial partial pressures of carbon dioxide provide surprisingly enhanced images for the assessment of pathological CVR. For example, the z-map assessment of patients with known steno-occlusive diseases of the cervico-cerebral vasculature showed an enhanced resolution of the presence, localization, and severity of the pathological CVR. Z-map have been found to be useful to reduce the confounding effects of test-to-test, subject-to-subject, and platform-to-platform variability for comparison of CVR images showing the importance of combining this analysis with the standardized stimulus.
An image processing apparatus includes a generation unit configured to generate a first distance image having a pixel value based on a distance from an outline of a region that indicates a predetermined part of the subject and is extracted from a first image, and having a resolution lower than a resolution of the first image, and generate a second distance image having a pixel value based on a distance from an outline of a region that indicates the predetermined part and is extracted from a second image, and having a resolution lower than a resolution of the second image, a first calculation unit configured to calculate first deformation information by registering the first distance image and the second distance image, and a second calculation unit configured to calculate second deformation information by registering the first image and the second image based on the first deformation information.
A method and device for detecting circulating abnormal cells. The method for detecting the circulating abnormal cells comprises: respectively segmenting and labelling, by using an image processing algorithm and a morphological algorithm, cell nuclei included in dark field microscope images of a plurality of probe channels (101); inputting the dark field microscope images, in which cell nuclei are labelled, of the plurality of probe channels into a pre-built circulating abnormal cell detection model to acquire the number of staining signals included in each labelled cell nucleus in the dark field microscope image of each probe channel (102); and for each labelled cell nucleus, on the basis of the number of the staining signals included in the labelled cell nucleus in the acquired dark field microscope image of each probe channel, determining whether the labelled cell nucleus belongs to a circulating abnormal cell (103). The method can effectively improve the reliability of detecting the circulating abnormal cells.
An apparatus includes one or more processors that function as an image acquisition unit configured to acquire a training image and a correct answer image, a generation unit configured to input the training image to a neural network to generate an output image, an error acquisition unit configured to subject each of the correct answer image and the output image to processing for adjusting a color signal value, and acquire an error between the correct answer image and the output image that have been subjected to the processing, and an update unit configured to update parameters of the neural network based on the acquired error.
Methods and systems for synthesizing contrast images from a quantitative acquisition are disclosed. An exemplary method includes performing a quantification scan, using a trained deep neural network to synthesize a contrast image from the quantification scan, and outputting the contrast image synthesized by the trained deep neural network. In another exemplary method, an operator can identify a target contrast type for the synthesized contrast image. A trained discriminator and classifier module determines whether the synthesized contrast image is of realistic image quality and whether the synthesized contrast image matches the target contrast type.
One example method involves operations for receiving a request to transform an input image into a target image. Operations further include providing the input image to a machine learning model trained to adapt images. Training the machine learning model includes accessing training data having a source domain of images and a target domain of images with a target style. Training further includes using a pre-trained generative model to generate an adapted source domain of adapted images having the target style. The adapted source domain is generated by determining a rate of change for parameters of the target style, generating weighted parameters by applying a weight to each of the parameters based on their respective rate of change, and applying the weighted parameters to the source domain. Additionally, operations include using the machine learning model to generate the target image by modifying parameters of the input image using the target style.
The subject technology receives, by a client device from a storage device, first image data captured by the client device at a previous time. The subject technology receives first metadata corresponding to at least a first image processing operation and a second image processing operation. The subject technology generates, in a first render pass, second image data based on the first metadata and the image processing operation performed on the first image data. The subject technology generates, in a second render pass, third image data based on the first metadata and the second image processing operation performed on the second image data. The subject technology generates second metadata comprising information corresponding to the third image data. The subject technology generates a composite AR content item comprising the second metadata, the third image data, and the first image data.
The data set receiving unit 13 of the information processing apparatus 1 of an aspect example receives a data set that includes at least BIM data. The route setting processor 151 sets a route, which is arranged inside and/or outside a virtual building represented by the BIM data, based on the data set received. The virtual image set generating processor 152 generates a virtual image set of the virtual building along the route, based on the received data set and the set route. The inference model creating processor 153 creates an inference model by applying machine learning with training data that includes at least the generated virtual image set to a neural network. The inference model created is used to identify data of a building material from data acquired by measuring a building.
A transcript of an audio conversation between multiple users (e.g., two users) is generated. The transcript is displayed in real time within a VR environment as the conversation takes place. A virtual selection tool is displayed within the VR environment to allow for a selection of different portions of the transcript. In addition, a virtual keyboard and or virtual panels with characters may be displayed and the virtual selection tool may be used to make selections from these displays as well. These selections are used to generate new text. The new text may form part of a user's notes of the conversation or an entry for a text field within the VR environment.
Systems and methods for processing primitive fragments in a rasterization phase of a graphics processing system wherein a rendering space is subdivided into a plurality of tiles. The method includes receiving a plurality of primitive fragments, each primitive fragment corresponding to a pixel sample in a tile; determining whether a depth buffer read is to be performed for hidden surface removal processing of one or more of the primitive fragments; sorting the primitive fragments into a priority queue and a non-priority queue based on the depth buffer read determinations; and performing hidden surface removal processing on the primitive fragments in the priority and non-priority queues wherein priority is given to the primitive fragments in the priority queue.
Systems and processes generate a viewing experience by determining location data and movement data of (a) at least one object and (b) at least one participant within an event area. A three-dimensional model of the event area, the participant and the object is determined based upon the location data and the movement data. A viewpoint of a spectator defines an origin, relative to the three-dimensional model, and a direction of the viewing experience. The viewing experience is generated for the viewpoint at least in part from the three-dimensional model to include one or more of augmented reality, mixed reality, extended reality, and virtual reality.
Various implementations disclosed herein include devices, systems, and methods that implement rendering processes that performs vector graphic rendering based on information received from a source application. Various implementations disclosed herein include devices, systems, and methods that implement foveated rendering using content received from a source by selectively drawing the content for only some regions based on gaze.
A system for Magnetic Resonance Imaging (MRI) is provided. The system may obtain at least one training sample each of which includes full MRI data. The system may also obtain a preliminary subsampling model and a preliminary MRI reconstruction model. The system may further generate a subsampling model corresponding to an MRI reconstruction model by jointly training the preliminary subsampling model and the preliminary MRI reconstruction model using the at least one training sample. The subsampling model may be the trained preliminary subsampling model, and the MRI reconstruction model may be at least a portion of the trained preliminary MRI reconstruction model.
The present disclosure relates to techniques for transitioning between imagery and sounds of two different environments, such as a virtual environment and a real environment. A view of a first environment and audio associated with the first environment are provided. In response to detecting a transition event, a view of the first environment combined with a second environment is provided. The combined view includes imagery of the first environment at a first visibility value and imagery of the second environment at a second visibility value. In addition, in response to detecting a transition event, the first environment audio is mixed with audio associated with the second environment.
A method for robotic inspection of a part, includes the steps of: supporting the part with a robot mechanism; obtaining part-related sensor input with a sensor positioned to inspect the part supported by the robot mechanism; and controlling movement of the robot mechanism relative to the sensor, wherein the controlling is done by a feedback control unit which receives the sensor input, and the feedback control unit is configured to control the robot mechanism based upon the sensor input.
An object of the present invention is to manage not only a delivery schedule of an article but also a collection schedule of a container to be collected appropriately and efficiently. Provided is an order receiving management device including an order receiving management server 11 that receives use date data 29 by distributing user-specific calendar screen data 23 from a user-specific calendar generation part 21 to a client terminal 3, and controls a schedule calculation part 31 so as to generate order receiving data 37 based on the use date data 29 with respect to an order-receiving data generation part 35.
Embodiments are directed toward a network-based venue management system comprising a venue management server and one or more location sensors coupled to a network. The sensors are arranged to detect the location of a customer within a venue, as the customer travels within the venue. The venue management server is arranged to receive location information from the sensors and to track the customer, providing real-time geo-location information to the customer and to venue staff.
Systems, methods apparatuses, and computer-readable media for analyzing vehicle accident claim information from a vehicle that is deemed a total loss, as well as historical data, to determine whether one or more parts from the vehicle are available for reuse is presented. In some examples, aspects may also relate to determining whether the parts available for reuse should be stored by the entity using the system (e.g., the insurance company) for future use in the repair of other vehicles, such as other vehicles insured by the insurance company, or should be sold. The determination to store or sell the part may be based, at least in part, on historical data of the entity.
Implementations of a computer implemented method and system to transform geolocation exchange unit specification assets or derivative unit securities or unitization structure capacity units with two waypoints or a destination waypoint or a series sequence of waypoints into multi-modal objects which are tradable as commodities such as wheat, oil, corn, stocks, foreign exchange, fixed income or other forward or securitized markets. The geolocation exchange unit specification asset portfolio may sell these units to authorized participants, who can subsequently sell these units to or repurchase these units from investors via a stock market exchange, futures exchange or general exchange. Likewise, the geolocation exchange unit specification asset portfolio can redeem these units from the authorized participants. The geolocation exchange unit specification asset portfolio invests in geolocation exchange units, which may be subject to margin requirements.
A system, method, and apparatus provide the ability to generate and deliver digital content in a headless content management system. A layout engine exposes a visual editing interface to a business user and accepts input to compose a layout consisting of components that define structural entities that control what to render. Marketing content is associated with the components. Each component is added, via the visual editing interface, to zones of the layout. Developer code may restrict a type of component that can be added to each zone. The layout and zones control a conceptual design for rendering the digital content. The layout engine receives a request for content from one of multiple different client applications that are executing in different hosting environments. The content is delivered, based on the layout, to the client application for rendering to a consumer.
A computing system is configured to analyze historic data generated by an optimization system to provide recommended weightings for placement of creatives on publisher's pages. The weightings may be generated by providing forecasting the likelihood that a particular creative will lead to greater conversion or revenue compared to other creatives. The creatives may be grouped into one or more phases based on the amount of statistical data available for analyzing the particular creatives such that new creatives are given sufficient weighting to receive impressions despite the lack of historical data for a creative. Performance of placed creatives may be tracked by the passing of URLs with information attached to identify the particular creative and placement.
A system and method of performing in-context of automated delivery of benefit-conveying (BC) code of an e-commerce website is provided. The system comprises means for identifying a BC code input field in a BC context of the e-commerce website, means for storing a plurality of BC code collections for supported e-commerce websites, and means for acquiring information about relevance-checked BC codes of the e-commerce web site. The system comprises means for displaying an UI panel in an vicinity of the identified BC code input field, with the UI panel configured to list information about the acquired relevance-checked BC codes in such a manner that an individual BC code from among the acquired BC codes can be selected through selecting a UI entry listing information about the individual BC code. The system comprises means for inputting the selected individual BC code into the identified BC code input field.
Various examples are directed to computer-implemented systems and methods for providing a unique market offer code and validation. A method includes generating an offer customized for an intended recipient, and sending the offer electronically to the intended recipient. The method further includes receiving a user selection of the offer, and displaying a landing web page on a graphical user interface (GUI) of a user device. A user selection of an action button on the landing web page is received, and a validation web page is displayed on the GUI, the validation web page including prompts for input of user information. The user information is evaluated to determine authenticity of the offer and to confirm identity of the user as the intended recipient. Upon determining that the user is not approved for the offer, access is provided to the user to an additional offer tailored to the user.
A recall and promotion processing system may include shopper devices, each associated with a corresponding shopper, and a recall-promotion processing server. The server may obtain historical purchase data associated with the shoppers, and determine whether a given recalled product was purchased by a given shopper based upon the historical purchase data. The server may, when the given recalled product was purchased by the given shopper, generate and communicate a recall notification and a digital promotion to the corresponding shopper device. The digital promotion may be redeemable toward a product for purchase based upon the given recalled product and may have a redeemable value associated therewith. The server may, when the given recalled product was purchased by the given shopper, obtain redemption data associated with the digital promotion for the shoppers, and adjust a subsequent redeemable value for a subsequent digital promotion based upon the redemption data.
The present invention relates to a driving method of a block chain-based health data management system. When personal health data such as health examination or prescription data and the like is uploaded, a genome portal: stores the personal health data as metadata together with genetic information; provides the personal health data so that a demand agency requiring the personal health data can use Zerocoin to purchase or read the personal health data through the genome portal; provides rewards in the form of mileage to individuals who share the data in the genome portal; ranks the individuals by the number of times the individuals have shared the data; automatically presents various personalized health solutions in the portal through AI according to the shared data; provides a rapidly growing personal genome prediction/diagnosis service through a portal system by using a blockchain-based MS decentralized identity (DID) in order to enhance the security of the email addresses and IDs of users; and ascribes value to personal health big data, such as genome data, medical diagnosis information, or social data, and so as to reduce the costs of personal genetic testing and diagnosis.
A valid combination of products is constructed from a set of products identified by a retailing backend system. The valid combination satisfies a condition of an offer. A product in the combination of product is a physical product located in a physical store. A social sentiment towards the product in social media data of a shopper is evaluated, and a rating of the product is computed using the evaluation. A location of the product in the store is obtained from the retailing backend system. The location of the product is overlaid on a view of the store, where the view is from a perspective of a location of the shopper, the shopper being physically situated in the store.
Store a subscription dataset for each tenant of a multi-tenant system, each of the subscription datasets having a common data format native to the system, the subscription datasets including billing data and not behavioral data. Determine primary features from a particular subscription dataset. Derive secondary features from the primary features. Generate a churn prediction model based on the primary features and the secondary features. Obtain a second subscription dataset, the second subscription dataset comprising billing data that is more recent than the particular subscription dataset. Identify, using the particular churn prediction model and the second subscription dataset, one or more subscribers as a churn-risk. Report the one or more subscribers identified as a churn-risk.
An adaptive authentication (AA) computer device used for improved payment transaction authentication services is provided. The AA computer device includes at least one processor in communication with at least one memory device and is configured to retrieve historical transaction data and authentication types for each historical transaction. The AA computer device is also configured to generate a model associating each of the authentication types with a corresponding set of values for transaction parameters. The AA computer device is further configured to receive pending transaction data including a cardholder identifier of a first cardholder, a merchant identifier, and a transaction amount. The AA computer device is further configured to determine an authentication type by applying the model to the transaction parameters derived from the pending transaction and transmit to the first cardholder an authentication request of the authentication type.
A process may cause a gated autonomous program protocol to be stored on a blockchain. The gated autonomous program protocol is configured to exchange a blockchain unit with a gated wrapped blockchain unit that is exchangeable among blockchain addresses that satisfy one or more gating requirements. The process may verify that an account associated with a particular blockchain address of the blockchain satisfies the one or more gating requirements. The process may cause an issuance of an on-chain verification proof to the particular blockchain address. The on-chain verification proof may be stored on the blockchain as an on-chain representation that the particular blockchain address is verified with the one or more gating requirements. The gated autonomous program protocol verifies the on-chain verification proof before approving a transaction request associated with the gated wrapped blockchain unit that is initiated by the particular blockchain address.
Various embodiments of the present disclosure are generally directed to processing conversions of digital assets to fiat currency. An example method includes obtaining a conversion rate for a digital asset via an API, providing the conversion rate via a client device, receiving a digital asset conversion request and executing a digital asset conversion within a configurable time period. Executing the digital asset conversion includes causing digital asset units to be debited from the digital asset user account and causing fiat currency units to be credited to a fiat currency user account. The method further includes dynamically providing a notification of execution of the digital asset conversion via the client device, updating account balance data objects associated with the digital asset user account and the fiat currency user account, and subsequent to executing the digital asset conversion, executing a fiat currency transaction (e.g., a settlement) with a digital asset exchange system.
Embodiments related to systems and methods comprising receiving payment data at an access device; receiving an identifier for a mobile device at the access device; and generating and sending an authorization request message to a payment processing network, wherein the payment processing network generates a verification token, which is then sent to the mobile device whereby the mobile device is thereafter used to conduct payment transactions.
A garment life cycle tracking system utilizes a Radio Frequency Identification, RFID, device to retrieve life cycle data about the garment. The RFID device may be scanned by an interactive device, such as a mobile phone, and the RFID identifier may be used to retrieve data from a database, such as through a website interface. A mobile phone or other computing device may have an application software that interfaces with the database or website. Life cycle data may include date of manufacture, former locations of purchase, date of purchase, cost of garment, date of return of garment, type of garment and the like. A customer may track a garment after returning a garment to see when and where the garment is subsequently purchased. This system may promote recycling of garments and reduce the environmental impact of garment production.
Systems and methods for hailing a vehicle for a ride or shipping a parcel. A user hails a vehicle with a gesture or app. A hailed vehicle carries the user to a destination or picks up a parcel from the user and performs shipping procedures.
A method and an apparatus for creating a workflow, the method being performed by a computing device, and including obtaining a log file generated while a user performs a task, parsing each of a plurality of events recorded in the log file, and creating an activity sequence to correspond to an order of the events, grouping a plurality of partial sequences extracted from the activity sequence, and creating a plurality of activity groups to correspond to each of a plurality of different repetitive tasks included in the task and creating the workflow of at least one activity group among the plurality of activity groups.
The invention concerns a system for distributing, delivering and collecting freight, with a number I of mobile freight stations, with I≥1, each having a first interface for automatically loading freight into freight vehicles from a freight storage of the mobile freight station and for automatically unloading freight from freight vehicles into the freight storage, wherein the freight vehicles are arranged and executed for automatically loading/unloading freight via the first interface and for automatically securing/fixing freight in a storage space of the freight vehicles, the mobile freight stations each have a number ni≤Ni, with i=1, . . . , I, of delivery robots, where Ni is the maximum number of delivery robots present in the ith freight station and ni is the number of delivery robots currently present in the ith freight station, and the I freight stations each have a loading device for automatically loading the Ni delivery robots with a respective freight from the freight storage and for automatically unloading a respective freight from the Ni delivery robots into the freight storage.
A processor-implemented data processing method includes encoding a plurality of weights of a filter of a neural network using an inverted two's complement fixed-point format; generating weight data based on values of the encoded weights corresponding to same filter positions of a plurality of filters; and performing an operation on the weight data and input activation data using a bit-serial scheme to control when to perform an activation function with respect to the weight data and input activation data.
An improved system architecture uses a pipeline including a Generative Adversarial Network (GAN) including a generator neural network and a discriminator neural network to generate an image. An input image in a first domain and information about a target domain are obtained. The domains correspond to image styles. An initial latent space representation of the input image is produced by encoding the input image. An initial output image is generated by processing the initial latent space representation with the generator neural network. Using the discriminator neural network, a score is computed indicating whether the initial output image is in the target domain. A loss is computed based on the computed score. The loss is minimized to compute an updated latent space representation. The updated latent space representation is processed with the generator neural network to generate an output image in the target domain.
A processor training a reinforcement learning model can include receiving a first dataset representing an observable state in reinforcement learning to train a machine to perform an action. The processor receives a second dataset. Using the second dataset, the processor trains a machine learning classifier to make a prediction about an entity related to the action. The processor extracts an embedding from the trained machine learning classifier, and augments the observable state with the embedding to create an augmented state. Based on the augmented state, the processor trains a reinforcement learning model to learn a policy for performing the action, the policy including a mapping from state space to action space.
A processor to perform inference on deep learning neural network models. In some embodiments, the process includes: a first tile, a second tile, a memory, and a bus, the bus being connected to: the memory, the first tile, and the second tile, the first tile including: a first weight register, a second weight register, an activations cache, a shuffler, an activations buffer, a first multiplier, and a second multiplier, the activations buffer being configured to include: a first queue connected to the first multiplier, and a second queue connected to the second multiplier, the activations cache including a plurality of independent lanes, each of the independent lanes being randomly accessible, the first tile being configured: to receive a tensor including a plurality of two-dimensional arrays, each representing one color component of the image; and to perform a convolution of a kernel with one of the two-dimensional arrays.
Systems, computer-implemented methods, and computer program products to facilitate synthesis of a quantum circuit are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a circuit generation component that generates, iteratively, quantum circuits from 1 to N two-qubit gates, wherein at least one or more iterations (1, 2, . . . , N) adds a single two-qubit gate to circuits from a previous iteration based on using added single 2-qubit gates that represent operations distinct from previous operations relative to previous iterations. The computer executable components can further comprise a circuit identification component that identifies, from the quantum circuits, a desired circuit that matches a quantum circuit representation.
Various embodiments of the present disclosure identify radio frequency identification tag(s) and/or location(s) thereof. Embodiments may perform such identification utilizing any number of antennas configured at various power levels and/or frequency channels, such as by incrementing and/or decrementing the power level of each antenna and measuring a number of tag reads at interval for each antenna. Confidence scores for each antenna may be generated and compared. Some example embodiments initiate an interrogation command associated with a RFID tag, cause activation of a plurality of antennas at a plurality of transmit power levels, identify a count of tag reads associated with each antenna, and determine a tag location associated with the RFID tag based on the count of tag reads for each antenna.
Systems and methods for determining radio frequency (RF) cabling configuration are provided. The systems include a central controller that includes two or more antenna ports that are coupled to corresponding antennas via respective RF cables. In embodiments, the central controller executes a calibration interrogation cycle to detect a misconfiguration of an RF cable that couples an antenna port of the central controller to an antenna port of a detector station that includes an antenna under test. While the central controller executes the calibration interrogation cycle, a RF sensor is disposed in a signal range of the antenna under test. The systems detect indications provided by the RF sensor to identify a misconfiguration of the RF cabling and provide guidance on how to re-configure the RF cabling.