US12237794B2
A method for protecting a motor from overheating, includes: running a motor in a given parameter P and detecting a real-time temperature R of the motor; comparing the real-time temperature R with a plurality of set temperatures, the plurality of set temperatures including an overheating protection temperature Rm, shutdown temperature Rmax and recovery operation temperature Rmin, Rmin
US12237793B2
A drive system includes a frequency converter, a drive unit, and a power supply. The drive unit includes an electric motor and a further component, including a sensor element, actuator element, and/or data storage element. The frequency converter supplies the further component of the drive unit with energy via at least the power supply. The frequency converter is adapted to obtain a first piece of information about the maximum available electrical energy of the power supply and to obtain a second piece of information about the electrical energy requirement of the further component of the drive unit. The frequency converter is adapted to check the plausibility of the first piece of information with respect to the second piece of information. The decision-making criterion for the plausibility check is formed by a logical comparison of the first piece of information with the second piece of information. The frequency converter is configured to adapt the system state of the drive system in accordance with the result of the plausibility check.
US12237787B2
A method for controlling a direct drive system, including: S1: outputting, by the actuator, a current to the winding of the stator corresponding to the actuator to cause the windings to drive the mover corresponding to the windings to move in a single direction along the guide rail; S2: sensing a position of the second position feedback means through the first position feedback means, and acquiring position information of the mover relative to the stator; and S3: changing a drive mode of the actuator according to the position information, so that the actuator adjusts, according to the drive mode, magnitude of the current outputted to the windings of the stator corresponding to the actuator. The above solution can reduce a number of power modules used in the direct drive system, so as to reduce overall manufacturing and use costs of the direct drive system.
US12237785B2
An electrical power conversion apparatus is provided in which a heat generation abnormality-state such as an abnormal state of a cooling device is determined earlier in its determination, so that it becomes possible to securely perform a protective operation even in the heat generation abnormality-state. A control device estimates a change rate of a temperature detection value on the basis of a switching-element loss calculation value of a semiconductor switching element(s) calculated at least based on an electric current detection value, and compares a temperature-detection change-rate calculation value calculated from a temperature detection value with a temperature-detection change-rate estimation value, so that a heat generation abnormality-state of the semiconductor switching element(s) is estimated.
US12237782B2
An hitting-electric device and a power generation device using the same according to the present invention may include a wind power collection unit including a fixed blade part, and a rotation blade part, accommodated in the fixed blade part and provided to be rotatable relative to the fixed blade part; a rotation shaft coupled to the rotation blade part and disposed extending downwardly, and provided with at least one trigger to which hitting-electric power is applied along an outer surface periphery; and an generation unit provided at a lower portion of the wind power collection unit and generating electricity by a hitting-electric power which the trigger hits.
US12237778B2
Input impedance networks and associated methods are disclosed. An input impedance network comprises a source-terminal-pair configured to couple to a power source, a recovered-power-terminal-pair configured to couple to a power sink, a transmission line coupled to the source-terminal-pair that comprises M sections, and N clamping circuits. Each of the N clamping circuits is configured to clamp at least one of voltage or current in one of the M sections, and a power recovery circuit is coupled to the N clamping circuits to enable recovered energy to be applied to the recovered-power-terminal-pair.
US12237773B2
In one embodiment, a method includes transmitting multi-phase pulse power from power sourcing equipment to a powered device in a data center, wherein the multi-phase pulse power comprises multiple phases of power delivered in a sequence of pulses defined by alternating low direct current voltage states and high direct current voltage states, and synchronizing the pulses at the power sourcing equipment with the pulses at the powered device.
US12237767B2
When an inductor component is adopted as an inductor for a DC-DC converter, high efficiency is achieved at a light load, and a large current is also handled. An inductor component includes a body containing metal magnetic powder containing an iron element, and an inductor provided in the body and having both ends exposed from the body. In a DC superposition characteristic curve of the inductor, a first steady region and a second steady region exist as a steady region, and a transition region exists between the first steady region and the second steady region.
US12237765B2
In a power converter, a switching network having switches that operate at a common frequency and duty cycle interconnects circuit elements. These circuit elements include capacitors that are in a capacitor network and a magnetic filter. When connected to the capacitors by a switch from the switching network, the magnetic filter imposes a constraint upon inter-capacitor charge transfer between the capacitors to maintain the filter's second terminal at a voltage. The switching network transitions between states. These states include a first state, a second state, and a third state. In both the first state and the third state, the first magnetic-filter terminal couples to the capacitor network. In the second state, which occurs between the first and third state, the switches ground the first magnetic-filter terminal.
US12237758B2
A multi-phase constant-on-time (COT) system includes a first point-of-load converter configured to provide a first current and a second point-of-load converter configured to provide a second current, and a bus configured to exchange information between the first point-of-load converter and the second point-of-load converter.
US12237752B2
An electric device has a driveshaft with at least one stator cylinder positioned between opposing, curvilinear shaped cams mounted on the driveshaft, where the center axis of the stator cylinder is parallel with but spaced apart from the driveshaft axis. A magnet assembly is disposed in each end of the stator cylinder, with one magnet assembly engaging one cam and the other magnet assembly engaging the other cam. Each magnet assembly includes a cam follower that can move along a curvilinear shaped cam. A magnet slide arm attached to the cam reciprocates magnets carried on the magnet slide arm through electromagnetic windings disposed around the stator cylinder. An electrical input delivered to the windings can reciprocate the arm, driving the cams to rotate the driveshaft. Alternatively, rotation of the driveshaft can be used to reciprocate the arm to induce electric current in the windings.
US12237748B2
In an embodiment, a motor is disclosed, comprising: a housing; a cover disposed on top of the housing; a stator disposed inside the housing; a rotor disposed inside the stator; a shaft coupled to the rotor; and a connector disposed on top of the cover, wherein the connector comprises: a connector body; and a shield terminal disposed on the connector body so as to be partially exposed, wherein the cover is formed of a metal material, and wherein the shield terminal is inserted into a hole in the cover so as to come into contact therewith. Accordingly, by using the shield terminal including a curved surface and the hole formed in the cover, a gripping force of the motor can be improved.
US12237741B2
An electrical machine including a rotor and a stator occupying a substantially hollow-cylindrical spatial region, the stator including a stator core with a stator winding and fluid ducts which extend in an axial direction from a first axial side to an opposite second axial side, wherein a fluid-distributing chamber with a coolant inflow is provided on the first axial side, the coolant inflow communicates with the fluid-distributing chamber and the fluid-distributing chamber communicates with the fluid ducts, a fluid-collecting chamber with a coolant outflow is provided on the second axial side, the fluid-collecting chamber communicates with the coolant outflow and the fluid-collecting chamber collects the coolant, the coolant inflow is arranged on the first axial side on a first circumferential side and the coolant outflow is arranged on the second axial side, a bypass duct is provided, and the fluid inlet is arranged on the second axial side.
US12237735B2
The present disclosure provides a potting method of a coreless motor, a potting tooling thereof, and a coreless motor. Wherein the potting method includes the steps of providing a stator assembly and a housing, wherein the housing is sleeved on an outer wall of the stator assembly; providing a potting tooling, wherein the potting tooling includes a first potting fixture and a second potting fixture; inserting the first potting fixture into one end of the housing in an axial direction and inserting the second potting fixture into the other end of the housing in an axial direction to form a potting space; injecting glue into the potting space to form an encapsulation layer to encapsulate the stator assembly on the inner wall of the housing. With the potting method of the present disclosure, so as to improve the stability of the stator assembly in the potting process.
US12237732B2
A device for positioning the ends of at least first pair of legs of hairpin conductors extending from a stator core with respect to a welder tool includes a first clamping element and a second clamping element that are independently moveable radially. The first clamping element has a first clamping surface and said second clamping element has a second clamping surface, wherein the clamping surfaces radially face each other. The clamping elements form a first radially inner receiving section between the first clamping surface and the second clamping surface, having a first radial width dimensioned to axially receive and clamp a first pair of legs during welding, and a second radially outer receiving section inside the first and second clamping elements, having a second radial width dimensioned to receive at least a further pair of legs during welding of the first pair of legs.
US12237724B2
A rotor for a rotating electric machine includes a rotor core provided with a pair of first magnets and a pair of second magnets that are located closer than the first magnets to an outer peripheral side of the rotor core. The rotor core includes a caulking portion disposed in a region between first and second imaginary lines in a radial direction of the rotor core. The first imaginary line is an arc passing through outer-peripheral-side end portions of respective long sides of rectangular-shaped cross sections of the first magnets. The second imaginary line is an arc passing through inner-peripheral-side end portions of respective long sides of rectangular-shaped cross sections of the second magnets. The arc of each of the first and second imaginary lines has a center of curvature that lies at an intersection of extensions of the long sides of the rectangular-shaped cross sections of the second magnets.
US12237723B2
An electric machine includes a stator rotatably supporting a rotor, the rotor includes a stacked rotor laminations forming a rotor core with cavities having magnets arranged in the cavities through at least two adjacent rotor laminations and parallel to a rotor central axis, each lamination including an outer edge having grooves or scallops arranged asymmetrically about the circumference to reduce torque ripple. At least one groove or scallop may be arranged along a q-axis and at least one groove or scallop may be arranged between a q-axis and a d-axis of the rotor core. The laminations may be substantially identical with a first group of laminations flipped or rotated about a diametric axis relative to a second group of laminations. An electrified vehicle includes an electric machine powered by a traction battery, the electric machine having a rotor core with stacked rotor laminations having a scalloped outer edge.
US12237722B2
A laminated rotor core for a rotor of a permanently excited electric machine and to a method for producing same are provided. The laminated rotor core consists of a plurality of stacked lamination rings, each lamination ring consisting of a plurality of circular segments. Each circular segment has multiple receiving openings, which are arranged in a V-shaped manner relative to each other in pairs, for permanent magnets and multiple passages for respective fixing elements. The laminated rotor core is mounted on a holding disc using the fixing elements, which run in the passages of the laminated rotor core.
US12237717B2
Aspects of the disclosure include a power supply system comprising at least one first input configured to be coupled to a primary power source, at least one second input configured to be coupled to a first and second secondary power source, an output, a first and second power supply coupled to the first and second inputs, and at least one controller configured to receive a load-power measurement associated with a required load power, determine whether the required load power is greater than secondary power available from the first secondary power source, and control, responsive to determining that the required load power is greater than the available secondary power, the first power supply to provide power derived from the primary and secondary power sources to the output, and the second power supply and second secondary power source to operate in a standby mode to prepare to provide power to the output.
US12237712B1
Various embodiments relate to mobile units. A mobile unit may include a number of electronic devices including a processor, a number of loads, and a modem. The mobile unit may further include a circuit board including the processor and logic configured to reset the processor, at least one load of the number of loads, and/or the modem responsive to receipt of a reset signal. The circuit board may also include a power switch-over circuit coupled to the processor and the logic and configured to switch power to at least some of the number of electronic devices from a primary battery to a secondary battery or from the secondary battery to the primary battery. Further, the circuit board may include a charge controller coupled to the secondary battery and configured to limit an amount of current conveyed to the secondary battery. Associated devices and methods are also disclosed.
US12237709B2
The present invention provides an electric power supply apparatus that supplies power to an external load, characterized by comprising: a generator capable of generating electric power by motive power of an engine; a container capable of housing a battery; a first detector configured to detect a remaining amount of the battery housed in the container; a determining unit configured to determine a maximum amount of electric power that can be output from the electric power supply apparatus, on the basis of a result of detection by the first detector; and a notifying unit configured to notify a user of the maximum amount of electric power determined by the determining unit.
US12237708B2
A charging apparatus includes a control unit configured to determine an average ion concentration, a surface ion concentration and a solid phase potential for anode particles and an electrolyte potential in an anode, using a predefined electrochemical reduced order model. The control unit is further configured to determine a side reaction rate from the solid phase potential and the electrolyte potential. The control unit is further configured to reduce the magnitude of the charging current applied to a secondary battery based on at least one of a cutoff voltage, the surface ion concentration and the side reaction rate.
US12237701B2
Systems, methods, and articles for a portable power case are disclosed. The portable power case is comprised of at least one battery and at least one PCB. The portable power case has at least one USB port and at least two access ports, at least two leads, or at least one access port and at least one lead. The portable power case is operable to supply power to an amplifier, a radio, a wearable battery, a mobile phone, and a tablet. The portable power case is operable to be charged using solar panels, vehicle batteries, AC adapters, non-rechargeable batteries, and generators. The portable power case provides for modularity that allows the user to disassemble and selectively remove the batteries installed within the portable power case housing.
US12237695B2
A system is disclosed. The system includes a first circuit that includes a first receiver configured to receive a wireless power input, a first conductor, and operably coupled to the first receiver, and a switch network operably coupled to the first conductor configured to rectify the wireless power input and generate a rectified voltage. The first circuit further includes a first field effect transistor operably coupled to the first conductor and configured to receive a portion of the wireless power input from the first conductor and output an output voltage back to the first conductor based upon a gate input. In one or more embodiments, the first circuit further includes a first controller configured to determine if the rectified voltage is greater than a voltage threshold and transmit a transmission of the gate input to the first field effect transistor if the rectified voltage is above the voltage threshold
US12237694B2
A power reception device includes: a power reception coil that receives power transmitted from a power transmission coil in a non-contact manner; and a control device that executes a short-circuit mode in which a plurality of switching elements provided between the power reception coil and a load are caused to perform switching operations to short-circuit between output terminals of the power reception coil. Further, when a phase of a current and a phase of a voltage in the power reception device are deviated from each other, the control device sets switching timings of the switching elements to the short-circuit mode in a manner that the phase of the voltage is shifted in a direction in which a power factor of power supplied to the load is deteriorated.
US12237691B2
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for wireless power transmission. A wireless power transmission apparatus may transmit multiple wireless power signals to a wireless power reception apparatus configured to combine the power from the multiple wireless power signals. The wireless power reception apparatus may provide a combined wireless power signal to a load such as a battery charger or electronic device. In some implementations, each set of primary coil and secondary coil may utilize low power wireless power signals (such as 15 Watts or less) in accordance with a wireless charging standard. By combining power from multiple low power wireless power signals, the wireless power reception apparatus may support higher power requirements of an electronic device. Multiple communication channels may be established between the wireless power transmission apparatus and the wireless power reception apparatus.
US12237683B2
A rapid shutdown system and a method for controlling the rapid shutdown system are provided. A disturbance is applied to a direct-current side of an inverter in the rapid shutdown system only when the inverter does not meet a starting condition, i.e., before the inverter starts. Once meeting the starting condition, the inverter normally operates. A shutdown device in the rapid shutdown system determines its state by determining whether the electrical signal at its output end meets the preset condition, and switches itself on or off in response to its determination.
US12237677B2
The disclosure relates to a power electronics device having at least two inverters and a transformer apparatus having a core arrangement, at least one primary winding and at least one secondary winding that wind around the core arrangement at least in sections.
US12237672B2
A control system may include a direct-current (DC) power bus for charging (e.g., trickle charging) internal energy storage elements in control devices of the control system. For example, the control devices may be motorized window treatments configured to adjust a position of a covering material to control the amount of daylight entering a space. The system may include a DC power supply that may generate a DC voltage on the DC power bus. For example, the DC power bus may extend from the DC power supply around the perimeter of a floor of the building and may be connected to all of the motorized window treatments on the floor (e.g., in a daisy-chain configuration). Wiring the DC power bus in such a manner may dramatically reduce the installation labor and wiring costs of an installation, as well as decreasing the chance of a miswire.
US12237668B2
A system and method for estimating fault current using a sliding observation window that is shorter than one cycle. The method may also include providing a pickup level that defines a current threshold for opening a switch in response to detecting the fault current; estimating the fault current from current measurement signals; accumulating time from a reset zero position during the time that the estimation of the fault current is greater than the pickup level; subtracting time from the accumulated time during the time that the estimation of the fault current is less than the pickup level after time has been accumulated from when the estimation of the fault current is greater than the pickup level; detecting the fault current if the accumulated time reaches a predetermined accumulation time; and opening the switch if the fault current is detected.
US12237650B2
A spark plug resistance element that includes at least one inorganic amorphous oxide and at least one first inorganic crystalline oxide having a relative dielectric permittivity of at most 15. A spark plug that includes at least one spark plug resistance element is also described.
US12237647B2
Some embodiments relate to a method for forming a vertical cavity surface emitting laser (VCSEL) structure. The method includes forming an optically active layer over a lower reflective layer and forming an upper reflector over the optically active layer. A first spacer is formed along sidewalls of the upper reflector. An oxidation process is performed with the first spacer in place to oxidize a peripheral region of the optically active layer. A first etch process is performed on the lower reflective layer and the oxidized peripheral region, thereby forming a lower reflector and an optically active region.
US12237638B2
Resonance between outer conductors is prevented. A connector includes: a plurality of shield terminals each having an inner conductor surrounded by an outer conductor; and a resonance restriction member that restricts resonance between the shield terminals by connecting the outer conductors to each other and holding the outer conductors at the same potential. Resonance between the shield terminals can be prevented by preventing a potential difference from being generated between the outer conductors.
US12237635B1
A pair of crimping pliers is provided. The crimping pliers include a large handle, a small handle, a connecting rod, and a clamp fixing plate that form a hinged four-rod mechanism. Two ends of the connecting rod are connected between a rear part of the large handle and a rear part of the small handle. The clamp fixing plate is connected between a front part of the large handle and a front part of the small handle. A rear part of the connecting rod is bent and extends towards a tail end of the large handle, thereby extending a force arm. A first returning spring is connected between a back side of a bent part of the clamp fixing plate and the large handle. A pawl is rotatable and installed at the large handle. The pawl matches and meshes with outer pawl teeth of the clamp fixing plate.
US12237630B2
A splitter for interconnecting a first connector with at least two second connectors includes a first electrically conductive layer that is connectable to the first connector and to at least one of the second connectors. The first layer has at least two electrically conductive terminals which protrude from the first layer. The electrically conductive terminals are arranged to provide electrical connection between a first contact of the first connector and an associated first contact of at least one of the second connectors.
US12237626B2
A wire harness includes a cable constituted of a plurality of electric wires bundled together so as to include a plurality of cable ends and a plurality of connectors mounted one-to-one on the plurality of cable ends, wherein each of the plurality of connectors includes a connector terminal connected to an end of the electric wire, a tubular housing body accommodating the connector terminal, and a flange formed to project from an outer circumferential surface of the housing body. On a fitting side for fitting with a mating connector, the flange has a rugged shape that differs between the plurality of connectors.
US12237610B2
The invention generally provides a connector recording system or platform that includes a recording system designed to interact with a connector system to read an indicia and then transfer, store, and display information associated with the positioning of the connector system in the installed component or device. The connector system includes a male housing assembly, a female housing assembly coupled to the male housing assembly in a connected state, and a connector position assurance assembly with the indicia and a locking member that is movable between locked and unlocked positions. In the locked position, the locking member secures the male housing assembly to the female housing assembly and the indicia can be read by the scanner to signal that the connector position assurance assembly is in the locked position. In the unlocked position, the indicia is in a state that does not allow the scanner to obtain information from the indicia.
US12237609B2
Tamper-resistant electrical outlet covers include a wall plate, at least one cover arm rotatably coupled to the wall plate, and a locking mechanism configured to maintain the cover arm in a closed position covering an electrical outlet when the locking mechanism is locked. The locking mechanism is unlocked to allow the cover arm to rotate to an open position exposing the electrical outlet.
US12237607B2
A joint connector 10 for electrically connecting a plurality of wires 11 includes a housing 29 and a joint terminal 12 to be disposed in the housing 29. The joint terminal 12 includes a plurality of branch portions 20 arranged along an arrangement direction, a plurality of wire connecting portions 17 respectively continuous with the plurality of branch portions 20 and to be connected to the plurality of wires 11, and a coupling portion 19 for electrically connecting the plurality of branch portions 20 by coupling the plurality of branch portions 20. The coupling portion 19 is in the form of a plate extending in the arrangement direction and is bent. The coupling portion 19 is engaged with the housing 29.
US12237606B2
An electrical connector includes: an insulative base having a top surface, a bottom surface, and plural holes extending through the top surface and the bottom surface; a group of contacts mounted to corresponding holes, each contact having an upper contacting arm and a side portion; and a standoff secured to the side portion.
US12237605B2
A shielded electrical connector system is disclosed. A male connector assembly includes a male terminal, a non-conductive internal male, and a conductive external male housing that receives an extent of the internal male housing. The male terminal includes a side wall arrangement defining a receiver and including at least one contact arm. An internal spring member resides within the male terminal receiver. A female connector assembly includes a female terminal with a receptacle that receives the male terminal and the spring member. Wherein in a connected position, the male terminal, the spring member, and the female terminal reside within an external female housing; the male terminal and the spring member reside within an internal female housing; the male terminal and the spring member reside within the internal male housing; and a major extent of both the male terminal and the spring member extend beyond the external male housing.
US12237603B2
Disclosed herein are systems and methods for coupling electrodes to electrical components that may be utilized in a variety of applications to collect data from the electrodes. In one embodiment, an electrode connection system to couple an electrode to an electrical component. The electrode connection system includes the electrical connector body comprising a PCB assembly cavity and an electrode channel. An electrode clamp coupled to the electrical connector body may include an engaging mechanism and at least one electrode clamp pad protrusion to couple an at least one electrode pad to an at least one connector pad. The PCB assembly may include at least one connector pad. The electrode may comprise at least one electrically active electrode pad. The electrical component may collect data from the electrode or stimulate tissue utilizing the electrode.
US12237602B2
It is aimed to prevent a reduction in connection reliability. A terminal fitting is to be mounted into a housing having a board accommodation space and is provided with a connection terminal including a resilient contact piece to be brought into contact with a circuit board inserted into the board accommodation space and a protection terminal separate from the connection terminal and attached to the connection terminal. The connection terminal is movable with respect to the protection terminal between a protection position where the resilient contact piece is accommodated in the protection terminal and a connection position where the resilient contact piece is exposed to outside of the protection terminal to be contactable with the circuit board.
US12237597B2
A connector includes a contact connected to a flexible conductor, a housing that is attached to a flexible substrate and retains the contact, and a protection sheet that is constituted of an insulating film having a pressure-sensitive adhesive layer formed on one surface thereof and is disposed between the housing and the flexible substrate such that the pressure-sensitive adhesive layer faces the flexible substrate, the protection sheet being disposed so as to cover at least a front surface part of the flexible substrate on which the flexible conductor is formed, and is adhered to the flexible substrate with the pressure-sensitive adhesive layer, the housing having a flat surface facing the flexible substrate, an adhesive layer bonding the housing to the protection sheet being disposed between the flat surface and the protection sheet.
US12237591B2
An antenna assembly includes a dielectric substrate, wherein a first surface of the dielectric substrate includes a ground plane and a closed clearance region located in the ground plane; a first antenna unit and a second antenna unit, the first antenna unit and the second antenna unit being spaced apart on the first surface of the dielectric substrate and located in the closed clearance region, and the first antenna unit and the second antenna unit being orthogonally arranged; a radio frequency chip, arranged on the dielectric substrate and connected with the first antenna unit and the second antenna unit respectively; and a metal resonant cavity, arranged on a second surface of the dielectric substrate, wherein in a direction perpendicular to the second surface, at least a part of a projection of the closed clearance region on the metal resonant cavity is within an outer contour of the metal resonant cavity.
US12237587B2
A phased array antenna includes a phase shifter unit, a waveguide unit and a connection unit, the phase shifter unit has two substrate surfaces and includes at least one phase shifter having two feeding regions; a side where at least one of the substrate surfaces is located is provided with the waveguide unit having a waveguide cavity corresponding to at least one of the feeding regions of each phase shifter; the connection unit corresponds to each waveguide unit and includes an insulation body, the insulation body is fixedly connected with the substrate surface and the waveguide unit on the same side as the insulation body; the insulation body has a first hollow-out portion, the waveguide unit contacts the substrate surface through the first hollow-out portion, a first port of the waveguide cavity is located on a contact surface of the waveguide unit in the first hollow-out portion.
US12237586B2
Apparatus and methods for dynamic management of antenna arrays are provided herein. In certain configurations, a radio frequency (RF) system includes an antenna array including a plurality of antenna elements. The RF system further includes a plurality of signal conditioning circuits operatively associated with the antenna elements, and an antenna array management circuit that generates a plurality of enable signals that individually control activation of the signal conditioning circuits to dynamically manage the antenna array. The array of antenna elements can be dynamically managed to control a trade-off between power consumption, off-beam capture, and communication range/rate.
US12237583B2
An antenna module and a communication device having the antenna module, and a communication system are provided. The communication system includes a plurality of communication devices, where an antenna module of a first communication device determines a first target radiation azimuth corresponding to location information of a peer communication device among the plurality of communication devices, based on the location information of the peer communication device, and determines a corresponding first antenna radiation azimuth according to the first target radiation azimuth, to point to the peer communication device. The peer communication device determines a second target radiation azimuth corresponding to the location information of the first communication device, based on the location information of the first communication device, and determines a corresponding second antenna radiation azimuth according to the second target radiation azimuth, to point to the first communication device.
US12237571B2
A space antenna may include an extendible boom movable between stored and deployed positions. An extendible hoop may surround the extendible boom and is movable between the stored and deployed positions. A front cord arrangement may be coupled to the extendible hoop and defines a curved shape in the deployed position, and a reflective layer may be carried thereby. A rear cord arrangement may be behind the front cord arrangement and coupled between the extendible hoop and the extendible boom. The rear cord arrangement may include a rear plurality of interconnected cords defining rear polygons. Tie cords may extend between the front cord arrangement and the rear cord arrangement. A top cord arrangement may be above the reflective layer and coupled between the hoop and the extendible boom.
US12237570B1
Tethered Unmanned Aircraft Antenna utilizing a Vertical Take Off and Landing (VTOL) Unmanned Aerial System (UAS) which may be provided by quadcopter drone (for example) constrained by a tether connected at one end to a maritime or land-based platform, the tether also being used as a RF antenna. The tether is capable of transmitting DC power to the UAS or drone at a desired antenna height and simultaneously supports RF transmission power with the help of a DC power isolation circuit. The tether is desirously lightweight and corona resistant.
US12237567B2
According to various embodiments of the disclosure, an electronic device may include: a first housing, a second housing, a printed circuit board (PCB), and a wireless communication circuit, wherein the first housing may include a first surface and a second surface perpendicular to the first surface at a first edge, and a first conductive area, and the first conductive area may include a first portion of a first slit extending from a point on the first surface to the first edge, a third surface of the second housing may include a second conductive area, and the second conductive area may include a second slit, wherein, in a first state, at least a portion of the first portion of the first slit may overlap the second slit when viewed in a second direction perpendicular to the first surface of the first housing, and wherein the wireless communication circuit may be configured to transmit and/or receive a signal of a first frequency band based on an electrical path including the first portion.
US12237563B1
An antenna adapter may be used for mounting an antenna to a vehicle or other object via the object's antenna mount, making antenna theft more difficult. The adapter is therefore configured to both receive the antenna and engage the antenna mount. The antenna adapter includes one or more elements that are configured to assist in removable engagement of the antenna adapter with the antenna, such as a groove and a set screw that screws through the antenna and into the groove of the adapter. The antenna adapter may also include another element that is configured to maintain the antenna at a particular radial orientation with respect to the antenna adapter when engaged therewith.
US12237560B2
The present disclosure provides a dual-band dual-polarization splitter connecting a cross-shaped waveguide power divider to with an E-plane waveguide magic T and an ortho-mode transition through an E/H-plane 90° curved waveguide to form a new type of coaxial waveguide ortho-mode transition, thereby implementing the structure of coaxial circular waveguide feeding in high and low frequencies at the same time, reducing the length of the high-frequency transmission line, and reducing the transmission loss. Meanwhile, the present disclosure implements dual-polarization transmission in each frequency band, and can flexibly switch between vertical polarization and horizontal polarization when the dual-polarization has been converted to the single-polarization.
US12237554B2
A clamping and holding apparatus for an article (1) fixed under preload by at least one clamping means (4), preferably for a container of variable volume, the clamping and holding apparatus having a clamping frame or carrier (3) assigned to the article (1), and also a clamping device (5), assigned to the clamping frame or carrier (3), for the clamping means (4), the clamping frame or carrier (3) being provided with guide or directing devices (6) for the clamping means (4) and being able to be connected by said clamping means to the article so as to provide a preload force, the clamping means (4) being composed of at least one endless belt composed of elastomer material which wraps around the article and at least parts of the clamping frame or carrier (3) and the wraparound length of which is variable by means of the clamping device (5).
US12237550B2
A system, such as for a fuel cell electric vehicle, includes a fuel cell stack (FCS) and a controller. The FCS is configured to provide, such as for vehicle propulsion, a stack power commensurate with a stack power request. The stack power is a product of a stack current of the FCS and a stack voltage of the FCS. The controller is configured to, upon the stack voltage meeting a predetermined threshold, control the FCS to increase the stack current to cause the FCS to provide an increased stack power commensurate with an increased stack power request.
US12237549B2
A fuel cell system includes: a fuel cell including: an anode, and a cathode configured to output cathode exhaust, wherein: the fuel cell is configured to generate waste heat; a reformer configured to partially reform a feed gas using the waste heat and output a hydrogen-containing stream; a reformer-electrolyzer-purifier (“REP”) including: an REP anode configured to receive a first portion of the hydrogen-containing stream, and an REP cathode; and an indirect reforming unit disposed on the anode, which is configured to further reform the hydrogen-containing stream and output a fuel turn gas.
US12237544B2
A battery cell assembly includes: a battery cell including a battery cell body and an electrode tab extending from the battery cell body in a first direction; a lead tab at least partially overlapping the electrode tab in the first direction and coupled to the electrode tab to provide an electrical connection therebetween; and a soldering material coupling the electrode tab and the lead tab to each other. At least one of the electrode tab and the lead tab includes: solid portions and openings that are alternately arranged in the first direction, or convex portions and concave portions that are alternately arranged in the first direction, and the soldering material is between adjacent ones of the solid portions or between adjacent ones of the convex portions.
US12237536B2
The present invention relates to a separator for a lithium secondary battery, and a lithium secondary battery including same. The separator includes a porous substrate, and a coating layer on at least one surface of the porous substrate, wherein the coating layer includes a heat-resistant binder including a (meth)acrylic copolymer including a first structural unit derived from (meth)acrylamide, and a second structural unit including at least one of a structural unit derived from (meth)acrylic acid or (meth)acrylate, and a structural unit derived from (meth)acrylamidosulfonic acid or a salt; an adhesive binder having a core-shell structure; and inorganic particles, wherein the adhesive binder has an average particle diameter of 0.2 μm to 1.0 μm, and the inorganic particles have an average particle diameter of 0.2 μm to 1.0 μm.
US12237524B2
A battery pack and an electronic device are proposed that suppress an increase in size of a battery pack, and decrease damage to a battery element due to an external impact.
A battery pack includes: a battery cell including a battery element; at least one holder facing an end of the battery element; and an impact absorbing structure formed at the holder.
US12237522B2
A battery pack comprising one or more battery modules and a support frame opposing the one or more battery modules in a first direction, the one or more battery modules including a plurality of battery cells stacked in the first direction to form a cell stack and a side cover opposing the cell stack in the first direction, wherein the side cover comprises a first inclined surface opposing the support frame and inclined with respect to the first direction.
US12237518B2
A cylindrical battery having a bottomed cylindrical outer can including a bottom surface part and a side surface part; a sealing body that closes an opening part of the outer can; and a gasket disposed between the outer can and the sealing body. The outer can has: a groove part that is formed such that a side surface section thereof extends from the outside to the inside and supports the sealing body with the gasket therebetween; and a shoulder part that is formed to face the groove part with the sealing body and the gasket therebetween and sandwiches the sealing body together with the groove part. At least a portion of the shoulder part extends radially inward of the sealing body from an inner end of the groove part, and an easily deformable part is formed on the shoulder part along the circumferential direction of the outer can.
US12237516B2
A case for a secondary battery, in which an electrode assembly having a structure, in which electrodes and separators are alternately disposed, is accommodated, includes: a first recess part and a second recess part, each of which has a recessed shape; a circumferential part configured to surround a circumference of each of the first recess part and the second recess part when the case is unfolded; and a connection part provided between the first recess part and the second recess part to connect the first recess part to the second recess part, wherein, when the case is unfolded, the connection part has a shape that is recessed from each of the first recess part and the second recess part in one direction.
US12237507B2
A nickel composite hydroxide includes nickel, cobalt, manganese, and an element M with an atomic ratio of Ni:Co:Mn:M=1−x1−y1−z1:x1:y1:z1 (wherein M is at least one element selected from a group consisting of a transition metal element other than Ni, Co, Mn, a II group element, and a XIII group element, 0.15≤0.25, 0.15≤y1≤0.25, 0≤z1≤0.1), the nickel composite hydroxide having a cobalt or manganese rich layer from a surface of a particle of the secondary particles toward an inside of the secondary particles and a layered low-density layer between the cobalt or manganese rich layer and a center of the particle of the secondary particles, and a thickness of the cobalt or manganese rich layer and low-density layer is 1% or more and 10% or less to a diameter of the secondary particles.
US12237503B2
A preparation method of zinc-carbon composite electrode material for zinc ion energy storage device, which includes preparing a zinc-carbon composite negative electrode material, preparing an electrode paste, and preparing a battery electrode; the zinc-carbon composite negative electrode material provided in the present invention can enhance a capacity of the zinc ion energy storage device, enhance a cycle stability of the device, has strong expandability, significantly improves the performance of the zinc ion energy storage device, increases the energy density and prolong the service life, and is easy to be popularized on a large scale.
US12237499B2
A negative electrode material for nonaqueous secondary batteries, the negative electrode material comprising carbonaceous particles (A) and silicon oxide particles (B), the carbonaceous particles (A) having a 10%-particle size displacement pressure of 10 MPa or less, the 10%-particle size displacement pressure being measured using a micro-compression testing machine by a specific measuring method, the silicon oxide particles (B) having a median diameter (D50) of 0.8 μm or more and 20 μm or less. It is preferred that the content of the silicon oxide particles (B) is less than 30% by weight of a total content of the carbonaceous particles (A) and the silicon oxide particles (B).
US12237481B2
A battery pack contains a plurality of battery cells that includes a first battery cell and a second battery cell; a first thermistor disposed closest to the first battery cell among the battery cells; a second thermistor disposed closest to the second battery cell among the battery cells. A case of the battery pack holds the battery cells, the first thermistor, and the second thermistor. The first battery cell is disposed such that at least one of the other battery cells is interposed between the first battery cell and a wall surface of the case in a direction orthogonal to a longitudinal direction of the first battery cell. The second battery cell is disposed such that none of the other battery cells is interposed between the second battery cell and the wall surface of the case in a direction orthogonal to a longitudinal direction of the second battery cell.
US12237479B2
A battery module array for use in a battery-powered system may include a plurality of battery modules and a battery management unit configured to control operation of the plurality of battery modules, and further configured to, in response to a critical condition occurring with respect to an affected battery module of the plurality of battery modules: establish a discharge firewall comprising the affected battery module and one or more additional battery modules of the plurality of battery modules proximate to the affected battery module and prioritize discharging of the affected battery module and one or more additional battery modules over discharging of those of the plurality of battery modules outside of the discharge firewall.
US12237476B2
A containment system for a rechargeable energy storage device (RESS) is described includes an enclosure having a first compartment adjoining a second compartment. The first compartment is arranged to house a plurality of power electronics devices, and the second compartment is arranged to house a plurality of battery cells. The second compartment includes a tub that defines a bottom portion, and a floor plate. The tub includes opposed end walls and opposed sidewalls. A top plate is arranged overtop of the first compartment and the second compartment. A first one of the end walls and the top plate define a first slot between the first compartment and the second compartment. A first removable panel is arranged to enclose the first compartment. The plurality of battery cells connect to the plurality of power electronics devices via a high-voltage DC power bus that is arranged to pass through the first slot.
US12237471B2
Provided are: a non-aqueous electrolyte solution that can improve the charged storage characteristics of a non-aqueous electrolyte battery under a high-temperature environment while containing FSO3Li; and a non-aqueous electrolyte battery having excellent charged storage characteristics under a high-temperature environment. The non-aqueous electrolyte solution contains FSO3Li and a specific amount of ions of a specific metal element.
US12237469B2
A battery includes an anode, a cathode, and a porous separator having a surface and percolating pores providing a porosity of from 20% to 80%. A passively impact resistant composite electrolyte includes an electrolyte and electrically non-conducting particles that enable shear thickening. The particles can have a polydispersity index of no greater than 0.1, an average particle size in a range of from 50 nm to 1 μm, and an absolute zeta potential of greater than ±40 mV. The shear thickening enabling particles can be from 10 wt. % to 40 wt. % of the total weight of the separator and shear thickening particles. Between 20-40 wt. % of the shear thickening enabling particles are located in the pores of the separator.
US12237461B2
A packaging material for batteries including a laminate in which at least a base material layer, a metal layer, and a sealant layer are laminated in order. The battery packaging material satisfies the relationships of: (A1−A2)≥60 N/15 mm; and (B1−B2)≥50 N/15 mm A1 is a stress in elongation by 10% in the MD direction and B1 is a stress in elongation by 10% in the TD direction in the laminate, and A2 is a stress in elongation by 10% in the MD direction and B2 is a stress in elongation by 10% in the TD direction in the base material layer.
US12237447B2
Color conversion layers, methods of making color conversion layers, monolithic color, micro-light-emitting diode displays and methods of making monolithic, color, micro-light-emitting diode displays are disclosed.
US12237442B2
Embodiments disclosed herein include electronic packages with vents to prevent pressure buildup below a die. In an embodiment, an electronic package comprises a package substrate and a die attached to the package substrate by interconnects. In an embodiment, an underfill is under the die and surrounds the interconnects. In an embodiment, a void is provided in the underfill, and a vent is in the underfill. In an embodiment, the vent is fluidically coupled to the void and extends to an edge of the underfill.
US12237439B2
A display device with improved light-emitting efficiency is disclosed. The display device includes a plurality of pixels, a light emitting device provided in each of the pixels, the light emitting device having first and second surfaces which are opposite to each other, first and second electrodes electrically and respectively connected to the first and second surfaces of the light emitting device, and a metal oxide pattern interposed between the second surface of the light emitting device and the second electrode. The metal oxide pattern includes first and second regions. The first region encloses the second region, and the second region has a contact hole exposing at least a portion of the second surface. The second electrode is coupled to the second surface through the contact hole, and the first and second regions have crystalline phases different from each other.
US12237429B2
The present invention discloses a manufacturing method of a solar cell, including: forming an electricity generation layer on a substrate; forming an ohmic contact layer on a surface of the electricity generation layer facing away from the substrate; forming a back electrode on a surface of the substrate facing away from the electricity generation layer; and forming a top electrode on a surface of the ohmic contact layer facing away from the electricity generation layer using a printing process. The present invention discloses a solar cell. The present invention solves the problem of low capacity of the solar cell at present.
US12237426B2
Provided is a floating gate based 3-terminal analog synapse device including a silicon channel layer; a gate oxide deposited on the silicon channel layer; a charge trap layer deposited on the gate oxide, wherein charges are injected into the charge trap layer; a barrier layer deposited on the charge trap layer, and having lower electron affinity than electron affinity of a material of the charge trap layer; and a gate metal layer deposited on an upper surface of the barrier layer, wherein a gate voltage is applied to the gate metal layer.
US12237423B2
Transistors using nitride semiconductor layers as channels were experimentally manufactured. The nitride semiconductor layers were all formed through a sputtering method. A deposition temperature was set at less than 600° C., and a polycrystalline or amorphous InxGayAlzN layer was obtained. When composition expressed with a general expression InxGayAlzN (where x+y+z=1.0) falls within a range of 0.3≤x≤1.0 and 0≤z<0.4, a transistor 1a exhibiting an ON/OFF ratio of 102 or higher can be obtained. That is, even a polycrystalline or amorphous film exhibits electric characteristics equal to those of a single crystal. Therefore, it is possible to provide a semiconductor device in which constraints to manufacturing conditions are drastically eliminated, and which includes an InGaAlN-based nitride semiconductor layer which is inexpensive and has excellent electric characteristics as a channel.
US12237420B2
Fin smoothing, and integrated circuit structures resulting therefrom, are described. For example, an integrated circuit structure includes a semiconductor fin having a protruding fin portion above an isolation structure, the protruding fin portion having substantially vertical sidewalls. The semiconductor fin further includes a sub-fin portion within an opening in the isolation structure, the sub-fin portion having a different semiconductor material than the protruding fin portion. The sub-fin portion has a width greater than or less than a width of the protruding portion where the sub-fin portion meets the protruding portion. A gate stack is over and conformal with the protruding fin portion of the semiconductor fin. A first source or drain region at a first side of the gate stack, and a second source or drain region at a second side of the gate stack opposite the first side of the gate stack.
US12237418B2
A semiconductor device includes a semiconductor layer. A gate structure is disposed over the semiconductor layer. A spacer is disposed on a sidewall of the gate structure. A height of the spacer is greater than a height of the gate structure. A liner is disposed on the gate structure and on the spacer. The spacer and the liner have different material compositions.
US12237417B2
A FinFET structure with a gate structure having two notch features therein and a method of forming the same is disclosed. The FinFET notch features ensure that sufficient spacing is provided between the gate structure and source/drain regions of the FinFET to avoid inadvertent shorting of the gate structure to the source/drain regions. Gate structures of different sizes (e.g., different gate widths) and of different pattern densities can be provided on a same substrate and avoid inadvertent of shorting the gate to the source/drain regions through application of the notched features.
US12237409B2
According to one embodiment, a semiconductor device includes first to third electrodes, a semiconductor member, a first conductive member, first and second insulating members, and a first nitride member. A position of the third electrode in a first direction from the first to second electrodes is between positions of the first and second electrodes in the first direction. The semiconductor member includes first and second semiconductor regions. The first semiconductor region includes first to fifth partial regions. The second semiconductor region includes first and second semiconductor portions. The second semiconductor portion includes first and second portions, and a third portion between the first and second portions. The first conductive member includes first and second conductive regions. The first insulating member includes a first insulating region. The second insulating member includes first and second insulating portions. The first nitride member includes a first nitride region.
US12237407B2
The present disclosure relates to semiconductor structures and, more particularly, to heterojunction bipolar transistors (HBTs) with a buried trap rich region and methods of manufacture. The structure includes: a heterojunction bipolar transistor comprising a collector region, a base region and an emitter region; and at least one non-single-crystal semiconductor region in the collector region of the heterojunction bipolar transistor.
US12237405B2
A method includes forming a plurality of fin structures extending along a first direction. The method includes forming a dummy fin structure disposed between two adjacent fin structures. The dummy fin structure also extends along the first direction and includes a deformable layer. The method includes recessing portions of each fin structure. The method includes forming source/drain structures over the recessed fin structures. The method includes deforming the deformable layer of the dummy fin structure to apply either a tensile stress or a compressive stress on the source/drain structures coupled to each of the two adjacent fin structures.
US12237399B2
A method of forming a semiconductor device includes forming a sacrificial layer over a first stack of nanostructures and an isolation region. A dummy gate structure is formed over the first stack of nanostructures, and a first portion of the sacrificial layer. A second portion of the sacrificial layer is removed to expose a sidewall of the first stack of nanostructures adjacent the dummy gate structure. A spacer layer is formed over the dummy gate structure. A first portion of the spacer layer physically contacts the first stack of nanostructures.
US12237396B2
Multi-gate devices and methods for fabricating such are disclosed herein. An exemplary method includes forming a gate dielectric layer around first channel layers in a p-type gate region and around second channel layers in an n-type gate region. Sacrificial features are formed between the second channel layers in the n-type gate region. A p-type work function layer is formed over the gate dielectric layer in the p-type gate region and the n-type gate region. After removing the p-type work function layer from the n-type gate region, the sacrificial features are removed from between the second channel layers in the n-type gate region. An n-type work function layer is formed over the gate dielectric layer in the n-type gate region. A metal fill layer is formed over the p-type work function layer in the p-type gate region and the n-type work function layer in the n-type gate region.
US12237384B2
A semiconductor device and a forming method thereof are provided. The semiconductor device includes a substrate, a gate structure and a self-aligned contact structure. The substrate includes a source region and a drain region; the gate structure is formed on the substrate and are located between the source region and the drain region; and the self-aligned contact structure is formed on the substrate and includes a first contact structure, a second contact structure and a third contact structure sequentially connected in a direction perpendicular to the substrate, the first contact structure is in contact with the source region or the drain region, and a cross-sectional area of the second contact structure in a direction parallel to the substrate is greater than that of the first contact structure and that of the third contact structure in the direction parallel to the substrate.
US12237383B2
An integrated circuit (IC) device includes a fin-type active region extending in a first lateral direction on a substrate, a gate line extending in a second lateral direction on the fin-type active region, an insulating spacer covering a sidewall of the gate line, a source/drain region at a position adjacent to the gate line, a metal silicide film covering a top surface of the source/drain region, and a source/drain contact apart from the gate line with the insulating spacer therebetween in the first lateral direction. The source/drain contact includes a bottom contact segment being in contact with a top surface of the metal silicide film and an upper contact segment integrally connected to the bottom contact segment. A width of the bottom contact segment is greater than a width of at least a portion of the upper contact segment in the first lateral direction.
US12237379B2
A method for manufacturing a nitride semiconductor device including: forming an N-type region in a nitride semiconductor layer; implanting ions of an acceptor element into a region under the N-type region in the nitride semiconductor layer; and forming a first P-type region under the N-type region by subjecting the nitride semiconductor layer to heat treatment and activating the acceptor element. The forming the N-type region includes implanting ions of a donor element into the nitride semiconductor layer such that concentration of the donor element in the N-type region is equal to or greater than concentration of the acceptor element in the first P-type region. The implanting ions of the acceptor element into a region under the N-type region includes implanting ions of the acceptor element such that concentration of the acceptor element in the first P-type region is 1×1019 cm−3 or more and 1×1021 cm−3 or less.
US12237375B2
A semiconductor structure includes a semiconductor substrate, a plurality of stacked units, a conductive structure, a plurality of dielectrics, a first electrode strip, a second electrode strip, and a plurality of contact structures. The stacked units are stacked up over the semiconductor substrate, and comprises a first passivation layer, a second passivation layer and a channel layer sandwiched between the first passivation layer and the second passivation layer. The conductive structure is disposed on the semiconductor substrate and wrapping around the stacked units. The dielectrics are surrounding the stacked units and separating the stacked units from the conductive structure. The first electrode strip and the second electrode strip are located on two opposing sides of the conductive structure. The contact structures are connecting the channel layer of each of the stacked units to the first electrode strip and the second electrode strip.
US12237373B2
A device includes a substrate, and a first semiconductor channel over the substrate. The first semiconductor channel includes a first nanosheet of a first semiconductor material, a second nanosheet of a second semiconductor material in physical contact with a topside surface of the first nanosheet, and a third nanosheet of the second semiconductor material in physical contact with an underside surface of the first nanosheet. The first gate structure is over and laterally surrounding the first semiconductor channel, and in physical contact with the second nanosheet and the third nanosheet.
US12237364B2
A display device includes: a first sub-pixel having a first emission area and a first sub-area adjacent to each other in a first direction; and a bank extending around a portion of the first emission area and the first sub-area. The bank includes: a first wall extending around the first sub-area; and a second wall adjacent to the first emission area in a second direction crossing the first direction. The second wall and the first wall are spaced apart from each other in the first direction.
US12237363B2
A light source module and a display device include a substrate configured to have a plurality of light-emitting regions arranged in an array manner, each light-emitting region is provided with two light-emitting groups, each light-emitting group includes a plurality of light-emitting branches arranged side by side, and two driving chips are disposed in parallel between the two light-emitting groups; and single-layer layout wiring arranged on the substrate, wherein the single-layer layout wiring couples the driving chips within the light-emitting regions to each other and electrically connects each of the driving chips to the light-emitting branches within one of the light-emitting groups.
US12237361B2
A transparent display includes a first transparent substrate, pixel structures, first electrodes, and second electrodes. The pixel structures are located on the first transparent substrate. Each pixel structure includes light-emitting elements. A pitch of adjacent light emitting elements in each pixel structure is 0.17 mm to 0.34 mm. A pitch of adjacent pixel structures is 3.4 mm to 15.4 mm. The first electrodes and the second electrodes are electrically connected to the pixel structures.
US12237360B2
A display device includes display devices each including a display area and a non-display area adjacent to the display area, the display area of each of the display devices including a pixel, and a substrate on which each of the display devices is disposed. Each of the display devices includes a thin film transistor layer disposed on the substrate and including a thin film transistor, and a connection line electrically connected to the thin film transistor and disposed in the non-display area on the substrate. Connection lines of display devices adjacent to each other among the plurality of display devices are disposed staggered with respect to each other.
US12237357B2
This disclosure relates to image sensors and electronic apparatuses including the same. An image sensor including: a pixel area including shared pixels, wherein each of the shared pixels includes at least two photodiodes that form a group and share a floating diffusion (FD) area; and a transistor (TR) area adjacent to the pixel area, wherein the TR area includes transistor sets corresponding to the shared pixels, wherein, when a first shared pixel and a second shared pixel are arranged adjacent to each other in a first direction, a first TR set corresponding to the first shared pixel and a second TR set corresponding to the second shared pixel share a source region of a first selection TR.
US12237354B2
Chip packages and methods for forming the same are provided. The method includes providing a substrate having upper and lower surfaces, and having a chip region and a scribe-line region surrounding the chip region. The substrate has a dielectric layer on its upper surface. A masking layer is formed over the substrate to cover the dielectric layer. The masking layer has a first opening exposing the dielectric layer and extending in the extending direction of the scribe-line region to surround the chip region. An etching process is performed on the dielectric layer directly below the first opening, to form a second opening that is in the dielectric layer directly below the first opening. The masking layer is removed to expose the dielectric layer having the second opening. A dicing process is performed on the substrate through the second opening.
US12237352B2
Provided is a solid-state imaging element including a support 1 having a photoelectric conversion unit 10 and an optical filter 20 provided on a light incident side with respect to the photoelectric conversion unit 10. The optical filter 20 has two or more kinds of pixels 21, 22, and 23 arranged in a patterned manner and a partition wall 25 disposed between the pixels. A refractive index of the partition wall with respect to light having a wavelength of 533 nm is 1.10 to 1.30, a width W1 of the partition wall is 80 to 150 nm, a refractive index of the pixels with respect to light having a wavelength of 1000 nm is 1.60 to 1.90, a difference between a thickness H1 of the partition wall and a thickness H2 of pixels adjacent to the partition wall is 200 nm or less, and a difference between the refractive index of the partition wall with respect to light having a wavelength of 533 nm and a refractive index of the pixels adjacent to the partition wall with respect to light having a wavelength of 1000 nm is 0.30 to 0.80.
US12237351B2
Implementations of semiconductor packages may include: a substrate having a first side and a second side and a die having an active area on a second side of the die. A first side of the die may be coupled to the second side of the substrate. The semiconductor package may also include a glass lid having a first side and a second side. The glass lid may be coupled over a second side of the die. The semiconductor package may include a first and a second molding compound and one or more cushions positioned between a first side of the glass lid and a portion of the first molding compound. The second molding compound may be coupled to the substrate and the around the die and the glass lid.
US12237348B2
Imaging devices and ranging devices are disclosed. In one example, an imaging device includes a semiconductor substrate, a first pixel array, a second pixel array, and a control unit. In the first pixel array, a first light receiving pixel on the semiconductor substrate has a stacked structure of a first electrode, a photoelectric conversion layer, and a second electrode (80). It photoelectrically converts light in a first wavelength region including the visible light region. In the second pixel array, a second light receiving pixel is provided at a position overlapping the first light receiving pixel in a thickness direction of the semiconductor substrate. It photoelectrically converts light in a second wavelength region including the infrared light region. The control unit drives and controls the second pixel array based on a signal photoelectrically converted by the first pixel array.
US12237346B2
According to an aspect, a detection device includes a plurality of optical sensors arranged on a substrate. Each of the optical sensors includes a first photodiode and a second photodiode that is coupled in series and in an opposite direction to the first photodiode.
US12237344B2
An OLED display device including a display area is provided. A first and second thin film transistors (TFTs) are arranged in the display area, the first TFT includes a first active layer, the second TFT includes a second active layer, a material of the first active layer is different from that of the second active layer. The OLED display device includes a substrate, the second active layer, a second gate of the second TFT, the first active layer, a first gate of the first TFT, a first source and drain of the first TFT, a second source and drain of the second TFT, a first data line in a same layer as the second source and drain, a first planarization layer on the first data line, and a second data line on the first planarization layer and electrically insulated from the first data line.
US12237320B2
Provided are a package structure and a method of forming the same. The method includes providing a first package having a plurality of first dies and a plurality of second dies therein; performing a first sawing process to cut the first package into a plurality of second packages, wherein one of the plurality of second packages comprises three first dies and one second die; and performing a second sawing process to remove the second die of the one of the plurality of second packages, so that a cut second package is formed into a polygonal structure with the number of nodes greater than or equal to 5.
US12237315B2
According to one embodiment, there is provided a semiconductor device including a support, multiple first chips, a first sealing portion, a second chip, multiple first terminals and a second terminal. The multiple first chips are stacked on the support. The first sealing portion seals multiple first chips and has a recessed portion including a bottom surface separated from multiple first chips on a surface opposite to the support. The second chip is disposed in the recessed portion and has a function different from a function of the first chips. The multiple first terminals correspond to multiple first chips, each of multiple first terminals extending in a stacking direction from a surface of the first chip opposite to the support and penetrating the first sealing portion. The second terminal is disposed on a surface of the second chip opposite to the support.
US12237309B2
A semiconductor package including a first semiconductor chip, a second semiconductor chip disposed on the first semiconductor chip, and a third semiconductor chip disposed on the second semiconductor chip. A first pad is disposed on a top surface of the second semiconductor chip, and includes a first portion and a second portion protruding in a vertical direction from the first portion. A width of the first portion in a first horizontal direction is greater than a width of the second portion in the first horizontal direction. A second pad is disposed on a bottom surface of the third semiconductor chip facing the top surface of the second semiconductor chip, and a solder ball is disposed as surrounding a sidewall of the second portion of the first pad between the first pad and the second pad.
US12237299B2
A stacked semiconductor device and systems and methods for producing the same are disclosed here. In some embodiments, the method includes aligning a first array of bond pads on an upper surface of a first semiconductor substrate with a second array of bond pads on a lower surface of a second semiconductor substrate. The method then includes annealing the stacked semiconductor device to bond the upper surface of the first semiconductor substrate to the lower surface of the second semiconductor substrate. The annealing results in at least one void between the upper surface and the lower surface that includes a layer of diffused metal. The layer of diffused metal extends from a first individual bond pad towards a second individual bond pad and forms an electrical or thermal short. The method then includes exposing the stacked semiconductor device to microwave radiation to excite a chemical constituent present in the void.
US12237296B2
A system for laser bonding of flip chip, and more particularly, to a system for laser bonding of flip chip for bonding a flip chip-type semiconductor chip to a substrate by using a laser beam is provided. According to the system for laser bonding of flip chip of the present disclosure, by performing laser bonding on a substrate while pressurizing semiconductor chips, even semiconductor chips which are bent or likely to bend may be bonded to the substrate without causing poor contact of solder bumps.
US12237278B2
Active protection circuits for semiconductor devices, and associated systems and methods, are disclosed herein. The active protection circuits may protect various components of the semiconductor devices from process induced damage—e.g., stemming from process charging effects. In some embodiments, the active protection circuit includes an FET and a resistor coupled to certain nodes (e.g., source plates for 3D NAND memory arrays) of the semiconductor devices, which may be prone to accumulate the process charging effects. The active protection circuits prevent the nodes from reaching a predetermined voltage during process steps utilizing charged particles. Subsequently, metal jumpers may be added to the active protection circuits to deactivate the FETs for normal operations of the semiconductor devices. Further, the FET and the resistor of the active protection circuit may be integrated with an existing component of the semiconductor device.
US12237271B2
A module is provided that includes a substrate having a first main surface, a component mounted on the first main surface, a first sealing resin disposed so as to cover the first main surface and the component, and a shield film covering at least an upper surface of the first sealing resin. The shield film includes a protective layer exposed to the outside and a conductive layer covered by the protective layer. The color of a surface of the conductive layer closer to the protective layer is different from the color of the protective layer. Moreover, the laser absorption coefficient of a material of the protective layer is higher than the laser absorption coefficient of a material forming the surface of the conductive layer closer to the protective layer. The module includes a marking section that is not covered by the protective layer and from which the conductive layer is exposed.
US12237262B2
A semiconductor package is provided. The semiconductor package includes an encapsulating layer, a semiconductor die formed in the encapsulating layer, and an interposer structure covering the encapsulating layer. The interposer structure includes an insulating base having a first surface facing the encapsulating layer, and a second surface opposite the first surface. The interposer structure also includes insulating features formed on the first surface of the insulating base and extending into the encapsulating layer. The insulating features is arranged in a matrix and faces a top surface of the semiconductor die. The interposer structure further includes first conductive features formed on the first surface of the insulating base and extending into the encapsulating layer. The first conductive features surround the matrix of the insulating features.
US12237256B2
A semiconductor package includes a redistribution substrate and a semiconductor chip thereon. The redistribution substrate includes a ground under-bump pattern, signal under-bump patterns laterally spaced apart from the ground under-bump pattern, first signal line patterns disposed on the signal under-bump patterns and coupled to corresponding signal under-bump patterns, and a first ground pattern coupled to the ground under-bump pattern and laterally spaced apart from the first signal line pattern. Each of the signal and ground under-bump patterns includes a first part and a second part formed on the first part and that is wider than the first part. The second part of the ground under-bump pattern is wider than the second part of the signal under-bump pattern. The ground under-bump pattern vertically overlaps the first signal line patterns. The first ground pattern does not vertically overlap the signal under-bump patterns.
US12237255B2
The embodiments are directed to technologies for variable pitch vertical interconnect design for scalable escape routing in semiconductor devices. One semiconductor device includes a circuit die, and an array of circuit die interconnects located on the circuit die. The array includes a first triangular octant of interconnects that are organized in rows and columns, each column incrementing its number of interconnects from a first side of the first triangular octant to a second side of the first triangular octant. A pitch size between the columns increases in a first repeating pattern from the first side to the second side.
US12237248B2
A semiconductor device includes at least one first semiconductor element having a first electrode, a second semiconductor element having a second electrode, a first lead terminal connected to the first electrode of the at least one first semiconductor element, a second lead terminal connected to the second electrode of the second semiconductor element, a first resin with which the first lead terminal and the second lead terminal are sealed, and a second resin with which the at least one first semiconductor element and the second semiconductor element are sealed.
US12237242B2
A semiconductor device package comprises an electrically conductive carrier, a semiconductor die disposed on the carrier, an encapsulant encapsulating part of the carrier and the semiconductor die, an electrically insulating and thermally conductive interface structure, in particular covering an exposed surface portion of the carrier and a connected surface portion of the encapsulant, wherein the interface structure comprises a glass transition temperature in a range between −40° C. to 150° C.
US12237240B2
A semiconductor package includes a package substrate, an interposer provided on the package substrate, a plurality of semiconductor devices on the interposer to be spaced apart from each other, the semiconductor devices being electrically connected to the package substrate through the interposer, and a molding layer on the interposer covering the semiconductor devices and exposing upper surfaces of the semiconductor devices, the molding layer including at least one groove extending in one direction between the semiconductor devices, the groove having a predetermined depth from an upper surface of the molding layer.
US12237238B2
In an embodiment, a device includes: a substrate having a first side and a second side opposite the first side; an interconnect structure adjacent the first side of the substrate; and an integrated circuit device attached to the interconnect structure; a through via extending from the first side of the substrate to the second side of the substrate, the through via being electrically connected to the integrated circuit device; an under bump metallurgy (UBM) adjacent the second side of the substrate and contacting the through via; a conductive bump on the UBM, the conductive bump and the UBM being a continuous conductive material, the conductive bump laterally offset from the through via; and an underfill surrounding the UBM and the conductive bump.
US12237232B2
A semiconductor structure and a method of forming the same are provided. In an embodiment, a method includes receiving a workpiece comprising a substrate, an active region protruding from the substrate, and a dummy gate structure disposed over a channel region of the active region. The method also includes forming a trench in a source/drain region of the active region, forming a sacrificial structure in the trench, conformally depositing a dielectric film over the workpiece, performing a first etching process to etch back the dielectric film to form fin sidewall (FSW) spacers extending along sidewalls of the sacrificial structure, performing a second etching process to remove the sacrificial structure to expose the trench, forming an epitaxial source/drain feature in the trench such that a portion of the epitaxial source/drain feature being sandwiched by the FSW spacers, and replacing the dummy gate structure with a gate stack.
US12237219B2
Described examples provide microelectronic devices and fabrication methods, including fabricating a contact structure by forming a titanium or titanium tungsten barrier layer on a conductive feature, forming a tin seed layer on the barrier layer, forming a copper structure on the seed layer above the conductive feature of the wafer or die, heating the seed layer and the copper structure to form a bronze material between the barrier layer and the copper structure, removing the seed layer using an etching process that selectively removes an exposed portion of the seed layer, and removing an exposed portion of the barrier layer.
US12237218B2
A method of fabricating a contact structure includes the following steps. An opening is formed in a dielectric layer. A conductive material layer is formed within the opening and on the dielectric layer, wherein the conductive material layer includes a bottom section having a first thickness and a top section having a second thickness, the second thickness is greater than the first thickness. A first treatment is performed on the conductive material layer to form a first oxide layer on the bottom section and on the top section of the conductive material layer. A second treatment is performed to remove at least portions of the first oxide layer and at least portions of the conductive material layer, wherein after performing the second treatment, the bottom section and the top section of the conductive material layer have substantially equal thickness.
US12237217B2
Methods of exposing conductive vias of semiconductor devices may involve positioning a barrier material over conductive vias extending from a backside surface of a substrate to at least substantially conform to the conductive vias. A self-planarizing isolation material may be positioned on a side of the barrier material opposing the substrate. An exposed surface of the self-planarizing isolation material may be at least substantially planar. A portion of the self-planarizing isolation material, a portion of the barrier material, and a portion of at least some of the conductive vias may be removed to expose each of the conductive vias. Removal may be stopped after exposing at least one laterally extending portion of the barrier material proximate the substrate.
US12237206B2
The present invention relates to a substrate edge etching apparatus including: a substrate support assembly having a horizontally rotatable chuck base, chuck pins disposed on top of the chuck base, a purge gas inlet hole extending from an underside center of the chuck base to an interior of the chuck base, and a purge gas outlet hole extending radially from the purge gas inlet hole and then extending upwardly to penetrate top of the chuck base; a spin motor having a hollow tube-shaped driving shaft adapted to rotate the substrate support assembly; and a purge gas supply assembly connected to the driving shaft through a magnetic bearing in a state of not rotating, extending vertically from the underside center of the chuck base in a state of being spaced apart from an underside of the chuck base.
US12237205B2
The present invention relates to a substrate support assembly for a substrate treatment apparatus, including: a chuck base disposed opposite to a substrate when the substrate is installed, rotatable around a rotating shaft, and having an installation accommodation portion formed in the lower portion near the outer peripheral surface thereof in a circumferential direction thereof; chuck pins disposed on top of the chuck base and movable along directions away from and approaching the substrate; a mechanism unit disposed in the installation accommodation portion and connected to the chuck pins to move the chuck pins; and a driving unit for transmitting power to the mechanism unit.
US12237190B2
A supporting shelf module includes a plurality of plastic supporting plates parallelly arranged in a height direction, and at least one pair of metal-made connectors located at two opposite ends of the supporting plates in the height direction. The connectors in one pair are correspondingly located in two horizontal planes perpendicular to the height direction. A wafer container is also disclosed, which includes a container body having at least two sets of the supporting shelf modules mounted therein, at least two top retaining brackets and at least two bottom retaining grooves provided on an inward side of a top and a bottom panel of the container body, respectively. The supporting shelf module has upper ends engaged with the top retaining brackets and lower ends engaged with and limited to the bottom retaining grooves in an engaging direction. Thus, the tolerance problem of the conventional wafer shelf can be solved.
US12237186B2
Methods and apparatus for cleaning tooling parts in a substrate processing tool are provided herein. In some embodiments, a method of cleaning tooling parts in a substrate processing tool includes placing one or more dirty tools on a holder in a bonding chamber of a multi-chamber processing tool; transferring the holder from the bonding chamber to a cleaning chamber of the multi-chamber processing tool; cleaning the one or more dirty tools in the cleaning chamber to produce one or more cleaned tools; inspecting the one or more cleaned tools in an inspection chamber of the multi-chamber processing tool; and transferring the one or more cleaned tools to the bonding chamber.
US12237178B2
A substrate processing apparatus includes: a processing container to which a supercritical fluid is supplied, the processing container being configured to dry a substrate by replacing a drying liquid collected on the substrate with the supercritical fluid; a discharge line configured to discharge a mixed fluid containing the supercritical fluid and the drying liquid from an interior of the processing container; and a density detector configured to detect a density of the mixed fluid flowing through the discharge line.
US12237174B2
Provided is an etching technique providing higher uniformity of etching amount and a higher yield of etching processing. An etching method for etching a film layer as a processing object containing nitride of transition metal, the film layer being disposed on a surface of a wafer, includes a step of supplying reactive particles containing fluorine and hydrogen but containing no oxygen to a surface of the film layer to form a reaction layer on the surface of the film layer, and a step of eliminating the reaction layer by heating the film layer.
US12237171B1
Methods and systems for depositing vanadium nitride layers onto a surface of the substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process, depositing a vanadium nitride layer onto a surface of the substrate. The cyclical deposition process can include providing a vanadium halide precursor to the reaction chamber and separately providing a nitrogen reactant to the reaction chamber. The cyclical deposition process may desirably be a thermal cyclical deposition process.
US12237170B2
The present disclosure relates to a bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors, and ultra high purity versions thereof, methods of making, and methods of using these bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursors in a vapor deposition process. One aspect of the disclosure relates to an ultrahigh purity bridging asymmetric haloalkynyl dicobalt hexacarbonyl precursor of the formula Co2(CO)6(R3C≡CR4), where R3 and R4 are different organic moieties and R4 is more electronegative or more electron withdrawing compared to R3.
US12237164B2
Provided is a method of manufacturing an electrode plate for a plasma processing apparatus for forming a plurality of gas holes having a straight portion exceeding 12 mm in length in a thickness direction of an electrode plate main body in a penetrating state and in parallel to each other, the method including: a prepared hole forming step of forming a prepared hole with a diameter of 50% or more and 80% or less of a diameter of a hole forming the straight portion with a first drill from one surface of the electrode plate main body; and a straight portion forming step of forming the straight portion to overlap the prepared hole with a second drill.
US12237160B2
A multi-atomic object crystal is transported from a first leg to a second leg of an atomic object confinement apparatus through a corresponding junction. Voltage sources in electrical communication with electrodes of the apparatus are controlled to confine the crystal in the first leg. The voltage sources are controlled to cause transport of the crystal along the first leg to proximate the junction and then to cause generation of a time-dependent potential at the junction that is configured to cause the crystal to traverse a transport path through the junction from the first leg to the second leg via a dynamic potential well. An order of atomic objects within the multi-atomic object crystal is changed as the multi-atomic object crystal traverses the transport path.
US12237158B2
A substrate processing system comprises an etch chamber configured to perform an etch process on a substrate, the etch chamber comprising an optical sensor to generate one or more optical measurements of a film on the substrate during and/or after the etch process. The system further comprises a computing device operatively connected to the etch chamber, wherein the computing device is to: receive the one or more optical measurements of the film; determine, for each optical measurement of the one or more optical measurements, a film thickness of the film; determine an etch rate of the film based on the one or more optical measurements using the determined film thickness of each optical measurement of the one or more optical measurements; and determine a process parameter value of at least one process parameter for a previously performed process that was performed on the substrate based on the etch rate.
US12237157B2
Measuring a plasma state using a probe device in the case of performing plasma processing on a substrate by introducing process gas into a processing container accommodating the substrate and by producing pulsed plasma using an electromagnetic wave pulse obtained by processing an electromagnetic wave generated from an electromagnetic wave oscillator using a pulsing device. An AC voltage to the pulsed plasma is applied via the probe device; transmitting a signal from the pulsed plasma based on the AC voltage via the probe device and measuring data including a current value; and obtaining a state of the pulsed plasma by analyzing the measured data. The frequency of the AC voltage deviates from a frequency of the electromagnetic wave pulse so that the number of data required for the measurement of the pulsed plasma within one cycle of the electromagnetic wave pulse is obtained within allowable time.
US12237154B2
A bottom ring is configured to support a moveable edge ring. The edge ring is configured to be raised and lowered relative to a substrate support. The bottom ring includes an upper surface that is stepped, an annular inner diameter, an annular outer diameter, a lower surface, and a plurality of vertical guide channels provided through the bottom ring from the lower surface to the upper surface of the bottom ring. Each of the guide channels includes a first region having a smaller diameter than the guide channel, and the guide channels are configured to receive respective lift pins for raising and lowering the edge ring.
US12237150B2
A method for plasma ion processing is described, including flowing a gas into porous material; and exposing the gas to a pulsed electric field whilst the gas is in the pores. The pulsed electric field ionises the gas to generate a plasma. The method may additionally include exposing the porous material to a gas so as to generate functionality. The method may additionally include exposing the functionalised porous material to a functional species so as to covalently attach said functional species to the surfaces of the pores.
US12237147B2
A method for measuring an electron signal or an electron induced signal may be provided. The method may include providing a threshold number of events or a threshold event rate for a pixel on a detector. The method may include collecting from the detector the threshold number of events or determining that the threshold event rate is achieved, wherein a signal at the detector is an electron signal or an electron induced signal from a sample. The method may include modulating an intensity of an electron source directed to the sample in response.
US12237146B2
A method for determining a depth of a hidden structural element of an object, the method may include (i) obtaining contrast information regarding a contrast between (a) hidden structural element detection signals that are indicative of electrons emitted from the hidden structural element, and (b) surroundings detection signals that are indicative of electrons emitted from a surroundings of the hidden structural element; wherein the hidden structural element detection signals and the surroundings detection signals are detected as a result of a scanning of a region of the object, with an illuminating electron beam; wherein the region comprises the hidden structural element and the surroundings; and (ii) determining the depth of the hidden structural element based, at least in part, on the contrast information.
US12237145B2
System and method for preventing blurring of an image in a scanning direction caused by a signal processing delay of a detector. of a charged particle beam device. The charged particle beam device is configured to calibrate first image data generated based on a detection signal output from a detector when the sample is two-dimensionally scanned with the charged particle beam, to generate second image data, in which the the second image data is generated using n first signal profiles each of which corresponds to a signal strength distribution in a first direction and which are extracted from the first image data, and a power spectral density P(f) (f: spatial frequency) of a window function corresponding to the signal processing delay of the detector.
US12237144B2
Disclosed herein is an apparatus comprising: a first electrically conductive layer, a second electrically conductive layer; a plurality of optics element s between the first electrically conductive layer and the second electrically conductive layer, wherein the plurality of optics elements are configured to influence a plurality of beams of charged particles; a third electrically conductive layer between the first electrically conductive layer and the second electrically conductive layer; and an electrically insulating layer physically connected to the optics elements, wherein the eclectically insulating layer is configured to electrically insulate the optics elements from the first electrically conductive layer, and the second electrically conductive layer.
US12237143B2
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
US12237142B2
Variations in charged-particle-beam (CPB) source location are determined by scanning an alignment aperture that is fixed with respect to a beam defining aperture in a CPB, particularly at edges of a defocused CPB illumination disk. The alignment aperture is operable to transmit a CPB portion to a secondary emission surface that produces secondary emission directed to a scintillator element. Scintillation light produced in response is directed out of a vacuum enclosure associated with the CPB via a light guide to an external photodetection system.
US12237141B2
The purpose of the present invention, relating to lanthanide boride, which is known as a low work function material, is to provide a novel low work function material with low chemical reactivity, in particular a low work function material of which the material surface, after being exposed to atmospheric gases, can be cleaned at a heating temperature lower than in the prior art. The present invention is a laminate containing a lanthanide boride film formed on a substrate, the surface of said film being covered by a thin film, wherein the thin film is a monatomic layer of a hexagonal boron nitride thin film.
US12237138B2
A monolithic graphite heater for heating a thermionic electron cathode includes first and second electrically conductive arms, each one of the first and second electrically conductive arms having an electrode mount at a proximal end, a thermal apex at a distal end, and a transitional region between the electrode mount and the thermal apex; a cathode mount electrically and mechanically coupling each thermal apex to form a maximum Joule-heating region at or adjacent the cathode mount and decreasing Joule-heating along each transitional region; and a press-fit aperture formed in the cathode mount, the press-fit aperture sized to receive at least a portion of the thermionic electron cathode for facilitating thermionic emission produced therefrom in response to operative heat power generation provided by the maximum Joule-heating region.
US12237137B2
Aspects include a method for treating a polycrystalline material, the method comprising: exposing a surface of the polycrystalline material to a plasma thereby changing the surface of the polycrystalline material from being characterized by a starting condition to being characterized by a treated condition; wherein: the surface comprises a plurality of crystallites each having the composition MB6, M being a metal element; the plasma comprises ions, the ions being characterized by an average ion flux selected from the range of 1.5 to 100 A/cm2 and an average ion energy that is less than a sputtering threshold energy; the starting condition of the surface is characterized by a first average work function and the treated condition of the surface is characterized by a second average work function; and the second average work function is less than the first average work function.
US12237120B2
A disabler cover plate includes a generally flat longitudinal surface, an upper hook extending approximately 90° from a top of an underside of the flat longitudinal surface, a lower hook extending approximately 90° from a bottom of the underside of the flat longitudinal surface, and a bump out on the underside of the flat longitudinal surface, the bump out positioned to depress and maintain pressure on a button on a face of a PBS-3 fixture.
US12237119B2
A radio frequency switch connector includes: a metal case; an insulator defining an inserting hole and received in the metal case; an elastic terminal retained to the insulator and having a first soldering portion; and a fixed terminal retained in the insulator and having a second soldering portion, wherein the first soldering portion and the second soldering portion are aligned with each other in a first direction so as to define an imaginary center line in the first direction, the base of the outer case is asymmetrical at two sides of the imaginary center line so as to shift a weight of the radio frequency switch connector.
US12237116B2
A capacitor (2) includes a capacitor main body (4) and a base (6). The capacitor main body includes an opening sealing member (14) attached to an opening of an outer package case (10), and a terminal lead (16-1, 16-2) led out from a first insertion through hole portion (17-1, 17-2) of the opening sealing member. The base is disposed on the side of the opening sealing member of the capacitor main body, and has a second insertion through hole portion (18-1, 18-2). For example, the base includes a first protruding portion (20) surrounding the second insertion through hole portion, so that the second insertion through hole portion of the base forms an insertion through hole. The opening distance on the side of the substrate mounting face of the insertion through hole is larger than the opening distance on the side of the capacitor main body of the insertion through hole.
US12237115B1
A hard start capacitor replacement unit has a plurality of capacitors in a container sized to fit in existing hard start capacitor space. The capacitors are 4 metallized film capacitors wound in a single cylindrical capacitive element. The container has a common terminal and capacitors value terminals for the plurality of capacitors, which may be connected singly or in combination to provide a selected capacitance. An electronic or other relay connects the selected capacitance in parallel with a motor run capacitor. The hard start capacitor replacement unit is thereby adapted to replace a wide variety of hard start capacitors.
US12237109B2
A magnetic circuit element, used in combination with an adjoining core covering a solenoid having an axis, includes a plate having a soft magnetic material with a face configured to contact an axial end face of the core to form a magnetic path in combination with the core to conduct a magnetic flux. The plate forms a disk shape defining an opening around the axis and is dimensioned to extend the face from an inner periphery to an outer periphery of the axial end face of the core.
US12237107B2
A mounting jig for manufacturing a tiling display device can include a supporting member, a plurality of jig magnets fixed to the supporting member, a hinge structure configured to rotate the plurality of jig magnets, and a guard rail configured to rotate in response to a rotation of the plurality of jig magnets, to reduce damage caused during detachment or attachment. The tiling display device includes a plurality of display devices disposed in the form of tiles. Each of the plurality of display devices includes a plurality of display elements, a plurality of circuits, a plurality of lines and a plurality of parts. The plurality of display elements can be a light emitting diode (LED) or a micro-LED including an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting layer.
US12237104B2
A magnetic-component module includes a substrate, a header on the substrate, a core, a winding including a trace on the header, and an overmold material encapsulating the header, the core, and the trace.
US12237103B2
A core for an electrical apparatus includes a plurality of electrical steel sheets having a ferromagnetic or ferrimagnetic coating applied to both sides of the electrical steel sheets. The electrical steel sheets are arranged in a stack to form a laminated stack. The ferromagnetic or ferrimagnetic coating is applied to both sides of the electrical steel sheets. The coating may comprise MnZn ferrites, NiZn ferrites, MgMnZn ferrites, CoNiZn ferrites, Co ferrites, Ni ferrites, Yttrium iron garnets (Y3Fe5O12) or other ferromagnetic or ferrimagnetic coating materials.
US12237094B2
Systems, devices, and methods of Fourier ptychographic imaging by computationally reconstructing a high-resolution image by iteratively updating overlapping regions of variably-illuminated, low-resolution intensity images in Fourier space.
US12237078B2
A system and method for collecting plasma includes drawing whole blood from a donor, combining anticoagulant with the whole blood from the donor, separating the whole blood into a plasma product and a second blood component and sending the plasma product to a collection container. A controller determines a total blood volume for a donor based on donor weight, height and gender. The system comprises a touchscreen for receiving a confirming user input and a scanning device configured to scan a bar code associated with a donor. The system and method operate a plurality of draw and return phases.
US12237073B2
A learning data creation apparatus, a method, a program, and a medical image recognition apparatus are provided. The learning data creation apparatus includes a first processor, and a memory that stores learning data for machine learning. The first processor acquires a first medical image from a modality, detects each of a target region and a reference region from the acquired first medical image, determines whether or not the detected target region and the reference region are in contact, measures a size of the target region based on a size of the reference region in a case where a contact is determined, and stores, in the memory, as the learning data, a pair of the first medical image including the target region of which the size is measured, and the measured size of the target region.
US12237065B2
A phototherapy apparatus with interactive user interface for treating biological tissue of an animal or human target. The user interface comprises intuitive graphic menus which allow the clinicians or practitioners to define the properties of the biological tissue through easily observable physical characteristics such as weight, skin color, and hair color of the patient. The central control unit of the phototherapy apparatus then automatically optimizes the parameters of the light source according to the properties of the biological tissue and generates an appropriate treatment protocol to produce the optimum phototherapy result.
US12237054B2
The present invention provides a model for high-throughput screening of endocrine disruptors and a method for screening the same. In the present invention, primary structural alerts, secondary structural alerts and tertiary structural alerts of compounds are extracted according to a nuclear receptor, and then the primary structural alerts, the secondary structural alerts and the tertiary structural alerts form a nuclear receptor high-throughput screening model; hierarchical structural alert matching is carried out on target compounds through the nuclear receptor high-throughput screening model, and ligand-receptor binding mode analysis and semi-quantitative prediction of binding activity and disrupting activity are performed. According to the present invention, the defect in prior art that potential nuclear receptor-mediated endocrine disruptors cannot be effectively screened in high throughput is overcome, high-throughput screening of potential nuclear receptor-mediated endocrine disruptors can be performed, and receptor competitive activity and A-Anta activity of the nuclear receptor-mediated endocrine disruptors can be determined.
US12237051B2
A system for indexing, updating, and search haplotypes for genetic genealogical discovery in genotype databases. The system includes a pool of genetic indexes, a haplotype ingestion engine, and a haplotype query engine. The haplotypes of a number of individuals in a genotype database are indexed by a pool of multiple panels, and each panel pool can be dynamically updated by the insertion or deletion of individual haplotypes. A genetic genealogical search of a query haplotype against the database is achieved by first projecting the query onto a subset of panels in the pool, then conducting long match queries over each panel, and finally aggregating the identified long matches into Identical-by-Descent segments, i.e., DNA matches, between the query and the haplotypes in the database.
US12237045B2
An operating method of a controller includes transmitting an extended status check command to a nonvolatile memory device, toggling a read activation signal /RE to correspond to the number of planes inside the nonvolatile memory device, after transmitting the extended status check command, and receiving status information of planes of the nonvolatile memory device through data lines according to a data strobe signal DQS corresponding to the read activation signal /RE.
US12237042B2
Provided is data receiving circuit, data receiving system and memory device. The data receiving circuit includes: first amplification circuit, configured to receive data signal, first reference signal and second reference signal, perform first comparison on the data signal and the first reference signal in response to sampling clock signal and output first signal pair, and perform second comparison on the data signal and the second reference signal and output second signal pair; second amplification circuit, configured to receive enable signal and feedback signal, selectively receive the first signal pair or the second signal pair as input signal pair based on the feedback signal during period in which the enable signal is at first level, receive the first signal pair during period in which the enable signal is at second level, amplify voltage difference of the first signal pair, and output first output signal and second output signal.
US12237039B2
An electronic device comprising: a clock pin; at least one data pin; a storage device, configured to store at least one program; a processing circuit, coupled to the data pin. A device ID setting method is performed when the processing circuit executes the program stored in the storage device. The device ID setting method comprises; (a) recording connections between pins of a first electronic device and pins of the electronic device by the electronic device, wherein the first electronic device comprises at least one data pin; and (b) applying the connections between the pins of the first electronic device and the pins of the electronic device as a device ID of the first electronic device by the electronic device.
US12237038B2
A local sensing amplifier and a memory are provided. The local sensing amplifier is connected to a global signal line and is connected to a sense amplifier array by means of a local signal line and a complementary local signal line. The local sensing amplifier transmits a signal on the local signal line to the global signal line when a read control signal is received, and to transmit a signal on the global signal line to the local signal line when a write control signal is received. The local sensing amplifier includes a precharge circuit connected to a preset voltage source, the local signal line and the complementary local signal line. The preset voltage source provides a first voltage in a read-write interval and provide a second voltage in an idle period. The precharge circuit transmits first voltage to the local signal line and the complementary local signal line.
US12237034B2
A memory controller includes an error correction code (ECC) circuit configured to receive a data burst and generate first ECC data or second ECC data, and a processor configured to control operations of the ECC circuit. The ECC circuit includes an ECC select circuit configured to select and output one of first ECC conversion data and second ECC conversion data, based on an ECC select signal from outside the memory controller, and an ECC conversion circuit configured to generate the first ECC data by encoding the data burst, based on the first ECC conversion data, or generate the second ECC data by encoding the data burst, based on the second ECC conversion data. The second ECC conversion data is set to be capable of correcting an error generated in one or more preset protected bits among bits included in each of pieces of partial data included in the data burst.
US12237013B2
Some embodiments include an integrated assembly having a vertical stack of alternating first and second levels. A panel extends through the stack. The first levels have proximal regions adjacent the panel, and have distal regions further from the panel than the proximal regions. The distal regions include conductive structures. The conductive structures have a first thickness. The proximal regions include insulative structures. The insulative structures have a second thickness at least about as large as the first thickness. Some embodiments include methods of forming integrated assemblies.
US12237005B2
A nonvolatile memory device includes a memory cell array having nonvolatile memory cells therein, which are electrically connected to a plurality of word lines and a plurality of bit lines. A write driver and row decoder are provided, which are electrically connected to the plurality of bit lines and the plurality of word lines, respectively. Control logic is configured to transfer a first voltage to the write driver and a second voltage to the row decoder. The control logic includes: (i) a normal standby mode circuit configured to operate in a normal standby mode, and (ii) a deep standby mode circuit configured to operate in a deep standby mode. To save power, the layout areas of a plurality of elements within the deep standby mode circuit are smaller than layout areas of elements within the normal standby mode circuit, so that current flowing within the deep standby mode circuit during the deep standby mode is less than current flowing within the normal standby mode circuit during the normal standby mode.
US12237002B2
Methods, systems, and devices for biasing a memory cell during a read operation are described. For example, a memory device may bias a memory cell to a first voltage (e.g., a read voltage) during an activation phase of a read operation. After biasing the memory cell to the first voltage, the memory device may bias the memory cell to a second voltage greater than the first voltage (e.g., a write voltage) during the activation phase of the read operation. After biasing the memory cell to the second voltage, the memory device may initiate a refresh phase of the read operation. Based on a value stored by the memory cell prior to biasing the memory cell to the first voltage, the memory device may initiate a precharge phase of the read operation.
US12237000B2
In a sense amplifier circuit, a first transistor is electrically connected between a first bitline and a first node, a first inverter includes a first input terminal and a first output terminal connected to the first node, and a second inverter includes a second input terminal connected to a second node and a second output terminal. A second transistor is electrically connected between the first output terminal and the second node, and a third transistor is electrically connected between the second output terminal and the first node. A precharge circuit transfers a first voltage to the first and second nodes during a first period, and transfers a second voltage higher than the first voltage to the first and second nodes during a second period.
US12236995B2
A memory device includes a memory cell array having a plurality of memory cells connected to wordlines and bitlines, a target row refresh logic configured to perform a refresh operation on at least one of target rows of the memory cell array in response to a refresh management mode command, a weak pattern detector that is activated according to a register update bit value included in the refresh management mode command and that outputs a risk level for each of the target rows, and a mode register circuit that updates at least one mode register value according to the risk level.
US12236991B1
A memory device includes a memory cell array, an address manager and a refresh controller. The memory cell array includes a plurality of memory cells coupled to a plurality of word-lines. The address manager samples access addresses provided from a memory controller to generate sampling addresses and determines a capture address from among the access addresses, based on a time interval between refresh commands from the memory controller. The refresh controller refreshes target memory cells from among the plurality of memory cells based on one of a maximum access address from among the sampling address and the captured address.
US12236988B2
A magnetic multilayer film for a magnetic memory element includes an amorphous heavy metal layer having a multilayer structure in which a plurality of first layers containing Hf alternate repeatedly with a plurality of second layers containing a heavy metal excluding Hf; and a recording layer that includes a ferromagnetic layer and that is adjacent to the heavy metal layer, the ferromagnetic layer having a variable magnetization direction.
US12236986B2
A heat-assisted magnetic recording head includes a laser, a near-field transducer, a primary waveguide, a secondary waveguide, and a photodiode. The laser is configured to emit electromagnetic radiation. The near-field transducer is configured to focus and emit an optical near-field. The primary waveguide configured to receive the electromagnetic radiation and propagate the electromagnetic radiation toward and proximal to the near-field transducer. The secondary waveguide configured to receive a portion of the electromagnetic radiation from the primary waveguide. The photodiode configured to receive the portion of the electromagnetic radiation from the secondary waveguide and emit a signal that represents a magnitude of the electromagnetic radiation that the laser emits.
US12236983B1
Various systems and methods are presented regarding interrupting a write operation to enable a read operation to be performed on a digital tape system. An initial write operation to the tape can be paused, a read operation performed on a previously written data file conducted, and upon completion of the read operation, the write operation can be recommenced. Interrupt points can be positioned within respective data blocks. Based upon knowledge of the amount of data written during the initial write operation, a position P can be determined (relative to the location of the nearest prior interrupt point) such that when the tape is advanced to place the tape head in a position to recommence the write operation after the read operation has been performed, the tape can be positioned such that the tape head is at position P. Accordingly, interruption of the write operation enables random access of the tape.
US12236981B1
Disclosed herein is a method for facilitating collaborative live music creation, in accordance with some embodiments. Accordingly, the method may include receiving a musical segment information associated with a musical segment, obtaining the musical segment and a second musical segment, obtaining a time reading of a time reference, synchronizing the second musical segment and the musical segment with the time reference based on the time reading, initiating a playback of the musical segment and the second musical segment based on the synchronizing, generating a prompt, obtaining a response corresponding to the prompt, generating a second musical segment information of the second musical segment based on the synchronizing and the response, and transmitting the second musical information of the second musical segment.
US12236967B2
An audio signal, having first and second regions of frequency spectrum, is coded. Spectral peaks in the first region are encoded by a first coding method. For a segment of the audio signal, a relation between energy of bands in the first and second regions is determined. A relation between the energy of the band in the second region and energy of neighboring bands in the second region is determined. A determination is made whether available bits are sufficient for encoding at least one non-peak segment of the first region and the band in the second region. Responsive to first and second relations fulfilling a respective predetermined criterion and a sufficient number of bits, encoding the band in the second region using a second coding method different from the first coding method, and otherwise, subjecting the band in the second region to BandWidth Extension BWE or noise fill.
US12236965B2
Methods, apparatus and articles of manufacture to identify sources of network streaming services are disclosed. An example method includes receiving a first audio signal that represents a decompressed second audio signal, identifying, from the first audio signal, a parameter of an audio compression configuration used to form the decompressed second audio signal, and identifying a source of the decompressed second audio signal based on the identified audio compression configuration.
US12236964B1
A system and method for enhancing or restoring audio data utilizing an artificial intelligence module, and more particularly utilizing deep neural networks and generative adversarial networks. The system and method are both able to train the artificial intelligence module to provide for different format and other characteristic-specific transforms for determining how to restore audio to source quality and even beyond. The present invention includes the steps of acquiring source data, pre-processing the source data, implementing the artificial intelligence module, indexing the data, applying transforms, and optimizing the data for a particular audio modality.
US12236961B2
The present disclosure provides methods, devices and computer program products for encoding and decoding of a vector of parameters in an audio coding system. The disclosure further relates to a method and apparatus for reconstructing an audio object in an audio decoding system. According to the disclosure, a modulo differential approach for coding and encoding a vector of a non-periodic quantity may improve the coding efficiency and provide encoders and decoders with less memory requirements. Moreover, an efficient method for encoding and decoding a sparse matrix is provided.
US12236957B1
Systems and methods for presence ground truth approximation and utilization are disclosed. For example, a system detects the presence of a predefined subject, such as a person associated with a given user profile, and/or determines that authentication criteria for performing an action in association with the user profile has been satisfied. A period of time to associate data is determined, and data of one or more data types is labeled as being associated with the speaker identification event. That data may be formatted and input into one or more models to train those models to more accurately detect presence and/or determine whether authentication of a user profile should succeed.
US12236941B2
A method and apparatus for personalizing a speech recognition model is disclosed. The apparatus may obtain feedback data that is a result of recognizing a first speech input of a user using a trained speech recognition model, determine whether to update the speech recognition model based on the obtained feedback data, and selectively update, dependent on the determining, the speech recognition model based on the feedback data.
US12236936B2
A system includes one or more memory devices storing instructions, and one or more processors configured to execute the instructions to perform steps of providing automated natural dialogue with a customer. The system may generate one or more events and commands temporarily stored in queues to be processed by one or more of a dialogue management device, an API server, and an NLP device. The dialogue management device may create adaptive responses to customer communications using a customer context, a rules-based platform, and a trained machine learning model.
US12236928B2
The present invention is directed to a mounting device for a fish finding apparatus and, more particularly, to a motorized mounting device which includes an adjustable length pole used to mount a sonar transducer or other device an angler may be interested in mounting to the end of the pole that enters the water. The pole is used to spin the transducer or other apparatus in a clockwise and counterclockwise direction with a switch that is adapted to be operated by the angler's foot or a wireless remote. The mounting device is configured to be secured to a boat or mounted on a boat troll motor whereby the adjustable pole is secured and spins independent of the troll motor shaft.
US12236922B2
The invention relates to improvements to the harmonica holder, which allows the musician to play the harmonica and another instrument at the same time. The inventor's control arm and extender tubes allows the musician to adjust the position of the harmonica (in the horizontal and vertical plains). After adjustment, the control arm allows the musician to quickly raise the harmonica up to the adjustment position, which locks the harmonic in place and eliminates the need to re-set the harmonica each time it is used. To unlock the harmonica and drop it completely out of the way for singing or to remove the harmonica from the musician's head area, the musician would simply tap the end of the control arm up, to disengage it. The pull down loop (attached to the harmonica cross member) allows the musician to quickly change harmonicas from one key to another.
US12236920B2
A method, system, and computer program product for generating augmented reality sessions based on eye behavior of a user is provided. The method detects a set of eye characteristics of a user. In response to detecting the set of eye characteristics, presentation of an augmented reality session is initiated using an augmented reality device. The method detects a change to at least one eye characteristic of the set of eye characteristics of the user. In response to detecting the change, the method determines the change to the at least one eye characteristic indicates a reduced cognitive state of the user. The augmented reality state being presented to the user is modified in response to determining the change indicates the reduced cognitive state.
US12236919B2
A method of efficiently processing packet loss in an image display apparatus and the image display apparatus is provided. The method includes receiving an image divided into a plurality of segments, identifying a segment which a user is looking at, from among the plurality of segments, determining whether there is a loss in at least one data packet in the segment, which the user is looking at, from among the plurality of segments, and requesting to retransmit a lost data packet in the segment that the user is looking at, based on a result of the determining.
US12236907B2
The invention discloses an optoelectronic system may include an array of pixel circuits connected to optoelectronic devices. There can be different types of optoelectronic devices (for example, red, green and blue). These devices can be sensors, or light emitting devices or other types of devices. These devices may be optimized differently and to program the pixel circuits, a configuration of dataline for columns and address lines for rows is used.
US12236903B2
A display device and a backlight control method of the display device are provided. When a duration of an image occlusion period is shorter than a preset duration, a backlight driving circuit is controlled to respectively provide a first pulse current and a second pulse current in a first light emitting period and a second light emitting period in each frame period, so as to drive a backlight unit to provide a first backlight and a second backlight. Here, the first pulse current is greater than the second pulse current.
US12236902B2
A method and apparatus therefor comprises: receiving an image data and a power metadata, wherein the power metadata includes information relating to a power consumption or an expected power consumption; determining, based on the power metadata, an amount and a duration of a drive modification that may be performed by a target display in response to the power consumption or the expected power consumption; and performing a power management of the target display based on the power metadata to modify a driving of at least one light-emitting element associated with the target display relative to a manufacturer-determined threshold, based on a result of the determining, wherein the power metadata includes at least one of a temporal luminance energy metadata, a spatial luminance energy metadata, a spatial temporal fluctuation metadata, or combinations thereof.
US12236895B2
A display panel and a display device are provided. The display panel includes pixel circuits arranged in an array and scan lines. Each pixel circuit in a N-th row of pixel circuits includes a driving transistor, a writing transistor, and a sensing transistor. A N-th scan line is configured to control charging of the N-th row of pixel circuits, a (N+1)-th scan line is configured to control the charging of a (N+1)-th row of pixel circuits, a gate of the writing transistor in each pixel circuit of the N-th row of pixel circuits is electrically connected to the N-th scan line, and a gate of the sensing transistor in each pixel circuit of the N-th row of pixel circuits is electrically connected to the (N+1)-th scan line.
US12236891B2
This application provides a shift register, a gate drive circuit, a display panel, and an electronic device. The shift register includes: a node control module, electrically connected to a first level signal receive end that receives a low level, a second level signal receive end that receives a high level, a first clock signal end, a second clock signal end, a first node, and a second node; an input module, electrically connected to the second clock signal end, a trigger signal input end, and the second node; a voltage regulator module, electrically connected to the second node, a third node, and the second clock signal end; and an output module, electrically connected to the first level signal receive end, the second level signal receive end, a drive signal output end, the first node, and the third node.
US12236890B2
A shift register includes a first control sub-circuit, a second control sub-circuit, a pull-up control sub-circuit and an output control sub-circuit, wherein the first control sub-circuit is configured to provide a signal of a third power supply terminal or a clock signal terminal to a first node and a third node under the control of a signal input terminal, the clock signal terminal and a second node; the pull-up control sub-circuit is configured to provide a signal of a second power supply terminal to the first node under the control of the third node; the second control sub-circuit is configured to provide a signal of the signal input terminal to the second node and a fourth node under the control of the clock signal terminal and the first power supply terminal.
US12236887B2
A display apparatus includes light emitting elements that are driven by current and a voltage control unit that controls a driving voltage for driving the light emitting elements based on a temperature of the display apparatus. The voltage control unit performs control such that an amount of change in the driving voltage per unit time does not exceed a predetermined limited range. The predetermined limited range is determined based on a relationship between the change in the driving voltage and a change in a light emission luminance of the light emitting elements.
US12236881B2
A pixel circuit includes an OLED that emits light with a luminance corresponding to a current flowing from an anode to a cathode, and a transistor that causes a current corresponding to a voltage between a gate node and a source node. The control circuit supplies a potential to the gate node via a data line in a writing period of a first frame, supplies a potential Vel for setting the transistor to be in an OFF state to the gate node via the data line in a first initialization period, and executes a reset operation in an odd-numbered row and a non-reset operation in an even-numbered row in a second initialization period. The reset operation is an operation of supplying a potential Vorst, and the non-reset operation is an operation of setting the potentials of the data line and anode to a potential between the potential Vel and Vorst.
US12236879B2
A display panel includes: first to N-th active pixels, N being an integer greater than 3; and a dummy pixel arranged adjacent to the N-th active pixel in a same pixel column, the dummy pixel including: a dummy driving transistor including a gate electrode connected to a first node, a first electrode connected to a data line configured to transmit a data voltage, and a second electrode connected to a second node; a plurality of dummy compensation transistors connected in parallel to each other between the first node and the second node; a dummy initialization transistor including a gate electrode configured to receive an initialization gate signal, a first electrode configured to receive an initialization voltage, and a second electrode connected to the first node; and a dummy storage capacitor including a first electrode configured to receive a first supply voltage and a second electrode connected to the first node.
US12236875B2
Provided are a pixel driving circuit, a display panel and a driving method thereof and a display device. The display panel includes multiple light-emitting elements and multiple pixel driving circuits. A pixel driving circuit includes a pulse width modulation module and a data signal terminal, the pulse width modulation module includes a sweep signal terminal and is configured to control light emission duration of a light-emitting element. The display panel further includes multiple sweep signal lines and multiple data signal lines. The multiple sweep signal lines extend along a first direction and are arranged along a second direction, and a sweep signal line is electrically connected to the multiple sweep signal terminals. The multiple data signal lines extend along the second direction and are arranged along the first direction, and a data signal line is electrically connected to the multiple data signal terminals.
US12236867B2
A pixel driving circuit is provided. The pixel driving circuit includes a storage capacitor (Cst) having a first capacitor electrode (Ce1) and a second capacitor electrode (Ce2); a driving transistor (Td) configured to generate a driving current; and a switch (SW) configured to control connection or disconnection between a gate electrode of the driving transistor (Td) and the first capacitor electrode (Ce1).
US12236858B2
A display substrate and a display apparatus are disclosed. The display substrate includes: a base substrate including a first and second display regions; a light transmittance of the first display region is greater than that of the second display region; first sub-pixels in the first display region. At least one first sub-pixel includes a first pixel circuit and a first light emitting device; the first pixel circuit includes a storage capacitor and a driving transistor; and a data writing sub-circuit configured to write a data voltage signal to a gate electrode of the driving transistor in response to a first and second scan signals; a reset sub-circuit configured to provide an initialization voltage signal to a first electrode of the first light emitting device in response to the second scan signal; and a luminescent control sub-circuit configured to transmit a driving current to the first light emitting device.
US12236856B2
In a display driver circuit, a push-pull circuit is coupled to an internal circuit, a first external power terminal, a second external power terminal and a target node respectively, and can control the on-off of the first external power terminal, the second external power terminal and the target node in response to a target control signal transmitted by the internal circuit. The switching circuit is coupled to the target node and the I/O interface of the display driver circuit respectively, and can transmit an electric potential of the target node to the I/O interface of the display driver circuit, that is, a first power signal transmitted from the first external power terminal to the target node or a second power signal transmitted from the second external power terminal to the target node is further output to the I/O interface.
US12236853B2
A pixel includes a first transistor generating current from a first power source line to a second power source line through a light-emitting element, a second transistor between a third power source line and a gate electrode of the first transistor, a third transistor between a data line and a gate electrode of the second transistor and controlled by a first signal, a fourth transistor between a fourth power source line and a first node and controlled by a second signal, a first capacitor between the gate electrode of the first transistor and the first node, and a second capacitor between the gate electrode of the second transistor and a sweep voltage line providing a sweep voltage that linearly changes from a first voltage level to a second voltage level, and nonlinearly changes from the second voltage level to a third voltage level when the third transistor is on.
US12236852B2
A light emitting display apparatus includes an analyzing circuit for analyzing at least one of image change amount and current change amount by analyzing input image data, and generating a driving frequency control signal according to analysis results, a control signal generator for generating driver control signals for changing a period of outputting data voltages according to the driving frequency control signal, transmitting a gate control signal of the driver control signals to a gate driver, and transmitting data control signals of the driver control signals to a data driver, and a data aligning circuit for generating image data by rearranging the input image data transmitted from the analyzing circuit according to a structure of a light emitting display panel, and outputting the image data to the data driver.
US12236850B2
To reduce image artifacts induced by temperature variations associated with display pixels of an electronic display, processing circuitry may process temperature sensing data to obtain an average temperature and a temperature distribution of the electronic display. Based on the processed temperature data, the processing circuit may adjust a reference voltage applied to the display pixels to compensate for the average temperate. To further correct for the image artifacts, the processing circuitry may transform image data to luminance domain. Based on the processed temperature data, the processing may adjust luminance vales of the image data to compensate for the temperature distribution.
US12236849B2
A display device comprises a gate driver configured to receive a first gate driving voltage, configured to receive a second gate driving voltage that is greater than the first gate driving voltage, and configured to transmit a gate signal to a pixel, a data driver configured to transmit a data voltage to the pixel, and an electrostatic protection circuit configured to receive the first gate driving voltage and the data voltage, and including a first electrostatic diode including a first gate terminal connected to the first gate driving voltage, a first terminal connected to the first gate driving voltage, a second terminal connected to the data voltage, and a first lower gate terminal connected to a lower bias voltage.
US12236840B2
A display apparatus, an electronic apparatus, and an operating method thereof are provided. The display apparatus includes: a communication interface; a memory storing one or more instructions; and a processor configured to execute the one or more instructions stored in the memory, wherein the processor is further configured to, receive, from an electronic apparatus connected through a first communication protocol, electronic apparatus identification information for identifying the electronic apparatus and unique identification information generated by the electronic apparatus, based on receiving an input for accepting authentication in accordance with the electronic apparatus identification information, store the unique identification information received from the electronic apparatus, based on receiving an authentication request from the electronic apparatus connected through a second communication protocol, control the communication interface to transmit the stored unique identification information to the electronic apparatus, and receive a result of authentication performed based on the transmitted unique identification information, from the electronic apparatus.
US12236837B2
A power supply circuit, a driving method thereof, a printed circuit board, a display module and a display apparatus are disclosed, which relates to a technical field of displaying. The power supply circuit includes a first power management chip and a second power management chip configured to be respectively connected with a display panel and provide different driving signals to the display panel, and the driving signals are configured for driving the display panel to display.
US12236825B2
A redundant pixel layout for a display comprises a display substrate and an array of pixels disposed on or over the display substrate. Each pixel comprises a first subpixel and a redundant second subpixel. The first subpixel includes a first subpixel controller electrically connected to controller wires and a first light emitter electrically connected to a first-light-emitter wire. The first light emitter is controlled by the first subpixel controller through the first-light-emitter wire. The second subpixel includes a second-subpixel-controller location connected to the controller wires and a second-light-emitter location comprising a second-light-emitter wire. The first light emitter is adjacent to the second-light-emitter location and the first light emitter and the second-light-emitter location are closer together than are any two pixels in the array of pixels.
US12236819B1
Various implementations disclosed herein include devices, systems, and methods for augmenting a physical writing surface. In various implementations, a device includes a display, a non-transitory memory and one or more processors coupled with the display and the non-transitory memory. In various implementations, a method includes presenting, via the display, a pass-through representation of a physical writing surface that corresponds to an application installed on the device. In some implementations, the method includes detecting a difference between the physical writing surface and an electronic record stored in association with the application. In some implementations, the method includes overlaying an element on the pass-through representation of the physical writing surface based on the difference between the physical writing surface and the electronic record.
US12236818B2
Provided is a display drive system, including: a plurality of drive units and a control unit. The plurality of drive units are connected to a lamp panel, and at least one of the plurality of drive units is configured to drive, during a display stage, the lamp panel to emit light. The control unit is connected to the plurality of drive units, and is configured to detect an operating state of the drive units driving the lamp panel to emit light. In response to detecting that a first drive unit is abnormal, the lamp panel is driven, by a second drive unit, to emit light, wherein the first drive unit is at least one of the drive units driving the lamp panel to emit light, and the second drive unit is at least one of the plurality of drive units other than the first drive unit.
US12236813B2
The present disclosure provides a display panel, a driving method thereof and a display device, belongs to the field of display technology, and can at least partially solve the problem that the transmission bandwidth required by the conventional rotational display device is large during the display. The display panel of the present disclosure includes: the pixel units arranged in an array, each pixel unit including at least two sub-pixels; and a plurality of pixel driving chips in one-to-one correspondence with the plurality of pixel units, the pixel driving chip being configured to provide a driving signal to a corresponding pixel unit.
US12236802B2
Systems and methods are disclosure for using sensors to deliver educational content to vehicle users during critical events. One method comprises: receiving, by a first computing device having at least one processor and from a user device of a vehicle user via a wireless data connection, a notification of a critical event for a vehicle of the vehicle user and a vehicle identification of the vehicle; receiving, from the user device via the first wireless data connection, user input soliciting educational content to remedy the critical event; determining, based on the received user input, a first set of search parameters; for each of the search parameters in the first set of search parameters, selecting educational content for a first list of educational content from a second list of educational content; and displaying, on the user device, the first list of educational content based on the first set of search parameters.
US12236800B2
An injection device and an injection device trainer for training a user to use an injection device. Each one of the injection device and the injection device trainer can include: a body portion; an actuator positioned towards a proximal end of the body portion, the actuator moveable from a proximal position to a distal position; a shield positioned towards a distal end of the body portion, the shield moveable between: an initial position; a retracted position that is more proximal relative to the body portion than the initial position; and an extended position that is more distal relative to the body portion than the initial position; and a locking member rotatable between a first orientation in which the locking member resists movement of the actuator from the proximal position to the distal position; and a second orientation in which the locking member permits the actuator to move from the proximal position to the distal position.
US12236796B2
Apparatuses, systems, interfaces, and implementing methods including constructing training programs or routines and predictive training programs and routines implemented in a VR, AR, MR or XR environments, preparing non-predictive and/or predictive tools for use in predictive and/or non-predictive training programs or routines implemented in the VR/AR/MR/XR environments, converting non-computer assisted training programs into predictive and/or non-predictive training programs implemented in a VR and/or AR/MR/XR environments, and implementing avatars to assist trainees in performing training programs routines or any aspects thereof.
US12236795B2
A method includes selecting a landing waypoint on a runway and selecting a starting waypoint based on a location/heading of an aircraft relative to the runway. The method includes selecting additional waypoints between the starting waypoint and the landing waypoint. The starting and additional waypoints include latitude, longitude, and altitude variables. A sequence of waypoints from the starting waypoint to the landing waypoint via the additional waypoints indicates a desired location for the aircraft to traverse. The method includes generating location constraints for the starting and additional waypoints and generating an objective function for optimizing at least one of the variables. Additionally, the method includes generating a solution for the objective function subject to the location constraints. The solution includes latitude, longitude, and altitude values for the variables. The method further includes controlling the aircraft to traverse the starting and additional waypoints according to the latitude, longitude, and altitude values.
US12236785B2
A parking assist system wherein the system includes a sensor device configured to detect parking space data and transmit it to a post device, wherein the sensor device includes an energy storage device, and a communication device. The communication device may include a camera. The system includes a post device in communication with the sensor device, the system configured to collect parking space data transmitted from a sensor device and communicate parking space occupancy to a driver, wherein the post device includes a vertical post, an energy storage device, a communication device, and a light-emitter. The system may utilize one or more machine-learning algorithms and generate one or more machine-learning models to detect parking space occupancy.
US12236772B2
Techniques are described for handling duress input. For example, techniques are described for handling duress input provided to a mobile application that controls a monitoring system located at a fixed property.
US12236770B2
A method includes establishing, by a data logging device, a sleep mode. The method further includes receiving, by a processing module of the data logging device, a second activation command that causes the data logging device to transition to a standby mode. The method further includes receiving, by the processing module, a third activation command that causes the data logging device to transition to a ready mode. The method further includes receiving, by the processing module, a fourth activation command that causes the data logging device to transition to a logging mode. In the logging mode, the method further includes obtaining, by the processing module, a log command. In response to the log command, the method further includes obtaining, by the processing module, a measure of an environmental condition. The method further includes storing the measure of the environmental condition in memory of the data logging device.
US12236769B1
A decomposition alarm device has an enclosure having a conventional smoke detector shape, a first side of the enclosure having a mounting tab to mount the enclosure on a vertical surface, and a front face of the enclosure having a sound grille to allow sound from inside the enclosure to exit the enclosure. The device is calibrated to detect the presence of a decomposing body and emit an audible and visual alarm. This device prevents the remains of a decomposing body going unnoticed by other inhabitants in a household or building.
US12236761B2
A monitoring system according to the present disclosure includes a cable (20) comprising an optical fiber, a reception unit (31) configured to receive an optical signal including a pattern corresponding to a state of a monitoring target (10) from at least one optical fiber included in the cable (20) and to detect the pattern from the received optical signal, and a control unit (32) configured to detect the state of the monitoring target (10) based on the pattern.
US12236760B2
A kiosk maintains a list of pre-paid orders. A first authentication process enables a consumer to select their order on the kiosk so as to receive the product or service that was remotely paid for via a mobile application. Authentication of the consumer selecting the order is performed based upon sending an order authentication notification to the mobile application that completed the order. If the user of the mobile application provides a positive authentication reply, the kiosk is unlocked to fulfill the order. The consumer may alternatively be authenticated by providing a personal identification number (PIN) that is associated with the order or associated with a user of the mobile application. Authentication using the PIN enables a consumer to interact with the kiosk to receive the previously ordered product or service without having to access their mobile phone or mobile application that was used to place the order.
US12236747B2
A detection system of the present disclosure stores positions and the amount of game tokens that a game participant places on a game table based on a measurement result by a bet chip measuring device in the same persons for each game participant or player positions of the game table. A management control device compares an actual winning rate and a total return amount with figures obtained by a probability statistic calculation at the time of an end of the number of games to determine whether there is a significant difference therebetween and specifies any one of the game participant or the player position, the game table, or a room having the game table where the significant difference is occurring.
US12236726B2
An incident management system for managing an incident response may be provided. The incident management system may include an incident management (IM) computing device and a vehicle. The IM computing device may include a processor and memory, the processor may be programmed to receive a notification that an incident has occurred, the notification including sensor data and sub-system data. The processor may analyze the data to determine an incident response, the determination including categorizing the incident based on damage determined from the data. The processor may also identify a responding party based on the incident response and the category of the incident. The processor may further parse the data to generate a set of critical data. The critical data may be based on the responding party. The processor may transmit a message to the responding party including the critical data and the location of the vehicle.
US12236724B2
A reprogramming tool includes a connector that is to be detachably coupled to a diagnostic connector with which a vehicle is provided. The diagnostic connector includes a vehicle-side first terminal and a vehicle-side second terminal. The vehicle-side first terminal is always coupled to a battery of the vehicle. The vehicle-side second terminal is coupled to the battery in a case where a power state of the vehicle is a state in which an ignition is ON. The connector of the reprogramming tool includes a tool-side first terminal and a tool-side second terminal. The tool-side first terminal is to be coupled to the vehicle-side first terminal of the diagnostic connector. The tool-side second terminal is to be coupled to the vehicle-side second terminal of the diagnostic connector. The reprogramming tool includes a short-circuit mechanism configured to short-circuit the tool-side first terminal and the tool-side second terminal.
US12236721B2
When a computer of an ADK determines that a condition for performing self-diagnosis processing is met, or when performance of self-diagnosis processing is notified from a VP even if the condition for performing self-diagnosis processing is not met, the computer performs processing including: a step of performing self-diagnosis processing; a step of notifying the performance of the self-diagnosis processing to the VP; and a step of transmitting a result of diagnosis obtained through the self-diagnosis processing by the ADK to a central ECU when the self-diagnosis processing is completed.
US12236718B2
Provided is a system and method for creating a luggage manifest. The method includes: obtaining, by at least one processor, image data representative of at least one image of printed passenger information associated with an airline travel carrier on an originating hardcopy bag tag or a printed instrument including at least a portion of the passenger information on the originating hardcopy bag tag to create a digital passenger information (DPI) data record linked to the airline travel carrier, wherein the originating hardcopy bag tag is issued for a checked-in luggage item of a passenger, and wherein the DPI data record includes an International Air Transport Association (IATA) license plate number, a passenger name record (PNR) number, an airline code, an airline name, a name of the passenger, or any combination thereof; accessing, by the at least one processor, passenger return flight information from a computer system associated with the airline travel carrier, based on the DPI data record; and, checking in, by the at least one processor, the luggage item, the passenger, or a combination thereof for a return flight with a designated return airline travel carrier associated with the accessed passenger return flight information.
US12236704B2
A person state detection apparatus (10) according to the present disclosure includes an acquisition unit (11) for acquiring a two-dimensional image obtained by capturing a person, a skeletal structure detection unit (12) for detecting a two-dimensional skeletal structure of the person based on the acquired two-dimensional image, an estimation unit (13) for estimating a height of the person standing upright in a two-dimensional image space based on the detected two-dimensional skeletal structure, and a state detection unit (14) for detecting the state of the person based on a height of an area where the person is present in the two-dimensional image.
US12236688B2
A method for tracking occluded objects includes encoding locations of a plurality of objects in an environment, determining a target object, receiving a first end point corresponding to a position of the target object before occlusion behind an occlusion object, distributing a hypothesis between both sides of the occlusion object during occlusion from a subsequent frame of the sequence of frames, receiving a second end point corresponding to a position of the target object after emerging from occlusion from another subsequent frame of the sequence of frames, and determining a trajectory of the target object when occluded by the occlusion object by performing inferences using a spatio-temporal probabilistic graph based on the current frame and the subsequent frames of the sequence of frames. The trajectory of the target object when occluded is used as a learning model for future target objects that are occluded by the occlusion object.
US12236687B2
This disclosure relates to vehicle exterior imaging systems that capture and display views of the exterior environment to vehicle operators. An exemplary vehicle exterior imaging system may include a glass panel including a combiner positioned between a first layer of glass and a second layer of glass, a first exterior side-view imager assembly configured to capture images of a vehicle exterior environment, and a projector assembly configured to project an output image onto the glass panel. The output image is based on the images captured by the first exterior side-view imager assembly. The glass panel may be part of either a windshield or a door window, and the projector assembly may be mounted either outside or inside of a housing of the first exterior side-view imager assembly.
US12236680B2
A digital assistance for assisting a wearer of a hearing device to correctly arrange the hearing device with respect to an ear of the wearer, includes: a control configured to enable a preview of a first image to be displayed, wherein the first image is generated by a camera; wherein the control is also configured to enable a capturing of the first image, the first image showing at least the ear of the wearer with the hearing device arranged in and/or at the ear of the wearer; and wherein the digital assistance also comprises a comparator configured to perform a comparison between (1) the first image showing the at least the ear of the wearer with the hearing device and (2) a reference image.
US12236679B2
Crop detection is performed in image data obtained by capturing an image of a farm field. Then, a row is determined in the image data on the basis of a result of the crop detection. The row is a line in which a crop is planted.
US12236677B2
A processing platform may receive a plurality of images. The processing platform may determine respective asset types of the plurality of assets based on a computer vision technique. The processing platform may determine respective estimated values of the plurality of assets based on the respective asset types. The processing platform may provide information identifying the respective estimated values of the plurality of assets to two or more recipients. The processing platform may receive allocation information. The processing platform may determine a selected allocation of the plurality of assets for the two or more recipients based on the allocation information and using a second model. The processing platform may perform one or more actions based on the selected allocation.
US12236670B1
The present invention is related to the field of quality control technology, specifically disclosing a classification method for product quality accidents and its system based on convolutional neural networks. The method consists of: collecting the sample data of product quality accidents, and grading the severity of accidents for each product with the quality accident; then extracting the image feature elements of various products with quality accidents and a valid feature element screening is performed; after that, a product quality accident classification model can be generating through training various valid feature elements and then the product quality accident is classified. The present invention can reduce the subjective errors due to human judgment, and thus the objectivity and consistency of the quality accident assessment results can be improved.
US12236660B2
A method for 2D semantic keypoint detection and tracking is described. The method includes learning embedded descriptors of salient object keypoints detected in previous images according to a descriptor embedding space model. The method also includes predicting, using a shared image encoder backbone, salient object keypoints within a current image of a video stream. The method further includes inferring an object represented by the predicted, salient object keypoints within the current image of the video stream. The method also includes tracking the inferred object by matching embedded descriptors of the predicted, salient object keypoints representing the inferred object within the previous images of the video stream based on the descriptor embedding space model.
US12236653B2
A vision sensor includes a pixel array comprising pixels arranged in a matrix, an event detection circuit, an event rate controller, and an interface circuit. Each pixel is configured to generate an electrical signal in response to detecting a change in incident light intensity. The event detection circuit detects whether a change in incident light intensity has occurred at any pixels, based on processing electrical signals received from one or more pixels, and generates one or more event signals corresponding to one or more pixels at which a change in intensity of incident light is determined to have occurred. The event rate controller selects a selection of one or more event signals corresponding to a region of interest on the pixel array as one or more output event signals. The interface circuit communicates with an external processor to transmit the one or more output event signals to the external processor.
US12236652B2
An image sensor is positioned such that a field-of-view of the image sensor encompasses at least a portion of a rack storing items. The image sensor generates angled-view images of an object. A pixel position of a body part of a person is determined in at least a subset of the received image frames, thereby determining a set of pixel positions of the body part. An aggregated body part position is determined based on the set of pixel positions. If the aggregated body part position is determined to correspond to a position associated with the object, a trigger signal is provided indicating an interaction event has occurred.
US12236649B2
Aspects of the disclosure provide methods and apparatuses for point cloud compression and decompression. In some examples, an apparatus for point cloud compression/decompression includes processing circuitry. The processing circuitry determines to use a prediction mode for coding (encoding/decoding) information associated with a current point in a point cloud. In the prediction mode, the information associated with the current point is predicted based on one or more neighbor points of the current point. The processing circuitry calculates, using integer operations, a distance-based weighted average value based on distances of the one or more neighbor points to the current point, and determines the information associated with the current point based on the distance-based weighted average value.
US12236645B2
A data encoding method includes determining a value of a syntax element of point cloud data of a point cloud. The point cloud data includes attribute values of the point cloud and the syntax element indicates a search range of the attribute values during prediction encoding. The method further includes performing prediction processing on the attribute values according to the search range to obtain residuals of the attribute values, and encoding the residuals and a difference between the value of the syntax element and a constant value to generate code stream data. The constant value is a positive number.
US12236644B2
In a method for operating a household cooking appliance, a camera records a pixel-based image from a cooking chamber of the household cooking appliance. The image is evaluated with exclusion of brightness values of associated pixels thereof.
US12236643B1
A method and system for calibrating a lens. The method includes defining a plurality of omni-symmetrical regions within the lens, determining one or more localized lens parameters associated with each of the plurality of omni-symmetrical regions, and defining a localized set of calibration parameters for each of the plurality of omni-symmetrical region. The localized set of calibration parameters may then be employed in a computational image application.
US12236642B2
Embodiments provide image display systems and methods for a camera calibration using a two-sided diffractive optical element (DOE). More specifically, embodiments are directed to determining intrinsic parameters of a camera using a single image obtained using a two-sided DOE. The two-sided DOE has a first pattern on a first surface and a second pattern on a second surface. Each of the first and second patterns may be formed by repeating sub-patterns that are lined when tiled on each surface. The patterns on the two-sided DOE are formed such that the brightness of the central intensity peak on the image of the image pattern formed by the DOE is reduced to a predetermined amount.
US12236635B1
This application provides a digital person training method and system, and a digital person driving system. According to the method, human-body pose estimation data in training data is extracted, and the human-body pose estimation data is input into an optimized pose estimation network to obtain human-body pose optimization data. Generation losses of position optimization data and acceleration optimization data in the human-body pose optimization data are calculated based on a loss function of the optimized pose estimation network, so as to minimize errors between position estimation data and acceleration estimation data and a real value. In this way, the optimized pose estimation network is driven to update a network parameter to obtain an optimal driving model that is based on the optimized pose estimation network. The errors between the position estimation data and the acceleration estimation data and the real value are minimized.
US12236633B2
A method and an apparatus for retrieving a target are provided. The method may include: obtaining at least one image and a description text of a designated object; extracting image features of the image and text features of the description text by using a pre-trained cross-media feature extraction network; and matching the image features with the text features to determine an image that contains the designated object.
US12236630B2
Systems and methods for depth detection and virtual modeling using surgical robots during a surgical procedure are described. The robotic surgical systems include robotic arms with interchangeable surgical tools. An endoscope at the end of one of the robotic arms includes a depth sensor for detecting a distance from the camera to patient anatomy. The depth data and image data are used to generate a feature model of the patient anatomy for reference by a surgeon. The feature model is displayed to the surgeon in an augmented reality view with preoperative and intraoperative images mapped thereon for reference and guidance of a surgical procedure.
US12236629B2
A request signal that indicates a quality for a determination of an orientation of a road user is received. The orientation of the road user is determined based on a) image data when the request signal indicates the quality is below a predetermined quality for the determination of the orientation of the road user, or b) on LIDAR data and image data when the request signal indicates the quality is the predetermined quality.
US12236625B2
The present disclosure relates generally to image processing, and more particularly, toward techniques for structured illumination and reconstruction of three-dimensional (3D) images. Disclosed herein is a method to jointly learn structured illumination and reconstruction, parameterized by a diffractive optical element and a neural network in an end-to-end fashion. The disclosed approach has a differentiable image formation model for active stereo, relying on both wave and geometric optics, and a trinocular reconstruction network. The jointly optimized pattern, dubbed “Polka Lines,” together with the reconstruction network, makes accurate active-stereo depth estimates across imaging conditions. The disclosed method is validated in simulation and used with an experimental prototype, and several variants of the Polka Lines patterns specialized to the illumination conditions are demonstrated.
US12236622B2
An image signal processor includes a statistic data generating unit for receiving an image signal from an external device, an image processing unit for receiving the image signal, and a direct memory access (DMA) module connected to the statistic data generating unit and the image processing unit. The statistic data generating unit performs first image pre-processing on the image signal and generates first statistic data based on the image signal subjected to the first image pre-processing. The DMA module stores the first statistic data therein and provides the stored first statistic data to the image processing unit. The image processing unit performs second image pre-processing on the image signal and performs image processing on the image signal based on the first statistic data.
US12236621B2
A head image registration uses a plurality of combined 2D and depth images, for example RGBD images, of a head recorded from different positions. Landmark points are determined for each of the combined images. The registration is performed as a coarse registration based on the landmark points followed by a fine registration based on full point clouds. Based on the registration, a head model may be generated.
US12236620B2
A three-dimensional reconstruction method, comprising: performing slide calculation on an acquired current image frame to obtain to-be-processed windows; performing point feature extraction and line feature extraction on the to-be-processed windows, and determining corresponding features in each to-be-processed window; performing iterative quadtree splitting for circles on each target to-be-processed window to obtain circular regions of interest corresponding to each target to-be-processed window; performing feature screening on features in the target circular regions of interest to obtain target features corresponding to each target circular region of interest; and performing three-dimensional reconstruction corresponding to the current image frame by using the target features. By introducing line features in the feature extraction stage of three-dimensional reconstruction, the line segment features in the three-dimensional reconstruction scenes can be better perceived, and the reconstruction efficiency of simple regular three-dimensional models can be accelerated.
US12236617B2
Measuring speed of a vehicle in a road environment. During calibration, multiple images are captured of a calibration vehicle traveling at a known ground speed. A calibration image feature is located in the image of the calibration vehicle. An optical flow of the calibration image feature is computed to determine a model between an image speed of the calibration image feature and the known ground speed of the calibration vehicle. During speed measurement, multiple images are captured of a target vehicle traveling along a road surface at unknown ground speed. A target image feature may be located in an image of the target vehicle. An image speed may be computed of the target image feature. The model may be applied to determine the ground speed of the target vehicle from the image speed of the target image feature.
US12236613B2
A method and a device for generating a control signal for a controllable device are provided. The controllable device has an optical position detection system. At least two images of at least one spatial region are generated with at least one optical detection device of the optical position detection system. Markers are identified in the images and the control signal is generated when a relative position between at least two markers changes. In addition, a marker array and a controllable system are provided.
US12236606B2
The first objective comparison of automated and human segmentation of magnetic resonance images, or MRI, using a blinded controlled assessment study. Computers connected over a network divide duties including computerized segmenting of the images, manual segmenting of the images, comparison of the computer segmented images and the manually segmented images, and scoring of the images for accuracy. The scores are evaluated to update configuration parameters of a neural network.
US12236603B2
Systems and methods to identify and/or reduce or eliminate sample motion artifacts are disclosed. Sample motion artifacts may be reduced or eliminated using scan patterns where an acquisition time difference between when perimeter pixels in adjacent tiles are acquired is reduced, as compared to a conventional raster scan to reduce or eliminate discontinuities that would otherwise appear at tile boundaries in an image. In some embodiments, test images acquired using relatively small test scan patterns or intensities of test points acquired at different times may be compared to determine whether sample motion has occurred. In some embodiments, intensity of adjacent pixels at a tile boundary are compared. In some embodiments, intensity of one or more single pixels is monitored over time to determine whether sample motion has occurred over a period of time. In some embodiments, a flattening or reshaping tool may be used to suppress sample motion during imaging.
US12236602B2
A method performed by a computing system comprises receiving a fluoroscopic image of a patient anatomy while a portion of a medical instrument is positioned within the patient anatomy. The fluoroscopic image has a fluoroscopic frame of reference. The portion has a sensed position in an anatomic model frame of reference. The method further comprises identifying the portion in the fluoroscopic image and identifying an extracted position of the portion in the fluoroscopic frame of reference using the identified portion in the fluoroscopic image. The method further comprises registering the fluoroscopic frame of reference to the anatomic model frame of reference based on the sensed position of the portion and the extracted position of the portion.
US12236596B2
As an aspect of the present disclosure, a method of processing an image may be proposed. The method is a method of processing an image, which is performed by an electronic device including one or more processors and one or more memories in which instructions to be executed by the one or more processors are stored, and may include obtaining a first mixed image of a sample including a first biomolecule labeled with a first fluorescent material and a second biomolecule that has not been labeled, obtaining a second mixed image of the sample including the first biomolecule labeled with the first fluorescent material and the second biomolecule labeled with a second fluorescent material, and generating an unmixed image of the second biomolecule based on the first mixed image and the second mixed image.
US12236595B2
Systems and methods for analyzing pathologies utilizing quantitative imaging are presented herein. Advantageously, the systems and methods of the present disclosure utilize a hierarchical analytics framework that identifies and quantify biological properties/analytes from imaging data and then identifies and characterizes one or more pathologies based on the quantified biological properties/analytes. This hierarchical approach of using imaging to examine underlying biology as an intermediary to assessing pathology provides many analytic and processing advantages over systems and methods that are configured to directly determine and characterize pathology from underlying imaging data.
US12236594B2
A computer-implemented method and system of digitally segmenting teeth in a digital model comprises generating a panoramic image from a 3D digital model of a patient's dentition, labeling, using a first trained neural network, the panoramic image to provide a labeled panoramic image, mapping the labeled panoramic image to corresponding coarse digital surface triangle labels in the 3D digital model to provide a labeled 3D digital model, and segmenting the labeled 3D digital model to provide a segmented 3D digital model. A computer-implemented method and system of generating a panoramic image comprises determining, using a trained neural network, digital tooth bounding region(s) corresponding to digital teeth from a 2D depth map of a patient's dentition, connecting digital tooth bounding region(s) by a spline, determining sampled digital surface points from the sampled spline points; and determining associated digital surface points corresponding to each sampled digital surface point.
US12236592B2
Described herein are means for systematically determining an optimal approach for the computer-aided diagnosis of a pulmonary embolism, in the context of processing medical imaging. According to a particular embodiment, there is a system specially configured for diagnosing a Pulmonary Embolism (PE) within new medical images which form no part of the dataset upon which the AI model was trained. Such a system executes operations for receiving a plurality of medical images and processing the plurality of medical images by executing an image-level classification algorithm to determine the presence or absence of a Pulmonary Embolism (PE) within each image via operations including: pre-training an AI model through supervised learning to identify ground truth; fine-tuning the pre-trained AI model specifically for PE diagnosis to generate a pre-trained PE diagnosis and detection AI model; wherein the pre-trained AI model is based on a modified CNN architecture having introduced therein a squeeze and excitation (SE) block enabling the CNN architecture to extract informative features from the plurality of medical images by fusing spatial and channel-wise information; applying the pre-trained PE diagnosis and detection AI model to new medical images to render a prediction as to the presence or absence of the Pulmonary Embolism within the new medical images; and outputting the prediction as a PE diagnosis for a medical patient.
US12236586B2
Systems and methods using machine learning for classifying images as being sufficient for medical diagnosis. An example of the method includes: receiving a dataset comprising a plurality of medical images; receiving, from a first single source, a respective label for each one of the plurality of medical images, the respective label being a positive response versus a negative response; dividing each one of the plurality of medical images into a plurality of medical image segments; associating each one of the plurality of medical image segments with an image segment label based on the respective label for the respective medical image being divided; and training a machine learning model using: the plurality of medical images, the respective label for each one of the plurality of medical images, the plurality of medical image segments, and the respective image segment label of each one of the plurality of medical image segments.
US12236578B2
An information processing device according to the present disclosure including: a mesh division unit (102) that divides at least part of first and second images captured at different times of a target area for detecting chips generated from a workpiece, into a plurality of mesh regions, the images each being an inside image of a machine tool; and an information processing unit (103) that performs processing to associate (a) information on a first chip corresponding to a specific mesh region among the plurality of the mesh regions corresponding to the first image, (b) information on a second chip corresponding to the specific mesh region among the plurality of the mesh regions corresponding to the second image, (c) a first time related to the first image, and (d) a second time related to the second image.
US12236572B2
An inspection system for inspecting a display device including pixels includes a camera for capturing the display device and providing a sensing image signal and an inspection device for receiving the sensing image signal and outputting a compensation signal for compensating for luminance of a defective pixel. The inspection device includes an image detector outputting a sensing input signal corresponding to the sensing image signal, a defect coordinate detector detecting the defective pixel based on the sensing input signal and outputting defect coordinates indicating a position of the defective pixel, an image analyzer analyzing consistency of the defect coordinates based on the sensing image signal and the sensing input signal and outputting final coordinates, and a defect compensation calculator outputting a compensation signal for adjusting luminance of compensation pixels adjacent to the defective pixel from among the pixels based on the final coordinates.
US12236564B2
In various examples, apparatuses, systems, and techniques to perform offline image signal processing of source image data to generate target image data. In at least one embodiment, data collection using exposure and calibration setting of an image sensor is performed to generate source image data, which is then processed by using offline image signal processing to generate target data.
US12236563B2
An electronic device may include an electronic display to display an image based on processed image data. The electronic device may also include image processing circuitry to generate the processed image data. The image processing circuitry may receive input image data corresponding to an image in a first perspective and warp the input image data from the first perspective to a second perspective, generating warped image data. Additionally, the image processing circuitry may determine one or more occluded regions in the second perspective and determine fill-data corresponding to the occluded regions. The processed image data may be generated by combining the warped image data and the fill-data.
US12236560B2
Various implementations disclosed herein include devices, systems, and methods for per-pixel filtering. In some implementations, a method includes obtaining an image data frame. In some implementations, the image data frame includes a plurality of pixels. In some implementations, the method includes generating a respective pixel characterization vector for each of the plurality of pixels. In some implementations, each pixel characterization vector includes an object label indicating an object type that the corresponding pixel of the plurality of pixels represents. In some implementations, the method includes modifying corresponding pixel data of the plurality of pixels having a first object label. In some implementations, the method includes synthesizing a first modified image data frame that includes modified pixel data for the plurality of pixels having the first object label and unmodified pixel data for the plurality of pixels not having the first object label.
US12236557B2
A display apparatus controlling method includes accepting input of a first image signal representing a first image, generating a second image signal by applying a first process of rotating the first image to the first image signal in accordance with the amount of rotation of the display apparatus calculated based on an output signal from an inertial sensor fixed to the display apparatus, and displaying on a display surface a display image corresponding to a second image based on the second image signal.
US12236552B2
Disclosed is an image analysis apparatus for analyzing a camera image. The image analysis apparatus for analyzing a camera image segments an input fisheye camera image into segmented images with a preset size field of view and superimposes the segmented images so that some regions overlap, performs dewarping on each of the segmented images, then combines the segmented images on which the dewarping is performed using a preset combination method, generates an analysis image, and detects objects included in the analysis image. In this case, the image analysis apparatus removes a result recognized as a duplicate from a detection result of the object by post-processing.