基于生成对抗网络模型的齿轮参数过采样方法
摘要:
本发明提供一种基于生成对抗网络模型的齿轮参数过采样方法,按以下步骤进行:S1:确定需要采样的齿轮参数并采集相应数据;S2:通过神经网络构建一个生成器和一个判别器;S3:输入噪声序列信号到生成器中,得到生成数据;S4:将生成的数据与原始采样数据输入判别器进行分类判断;S5:利用Softmax层进行线性变换,得到最终分类结果;S6:将分类结果与设定值比较得到分类误差,当大于预设目标,则更新生成器中各个神经元的权重生成新的数据;小于预设目标,则更新判别器中各个神经元的权重重新分类判断;S7:将生成器生成的数据和原始采样数据融合。其效果是:生成的数据与原始采样数据具有类似的分布,为齿轮性能分析提供了足够的数据资源。
0/0