一种基于相位一致性和轻量卷积神经网络的煤矸识别方法
摘要:
本发明公开了一种基于相位一致性和轻量卷积神经网络的煤矸识别方法,包括如下步骤:使用摄像装置采集煤矸石的图片样本;对图片样本进行预处理,预处理操作包括:图像扩充优化、图像归一化和划分样本集;使用相位一致性的方法对样本集中的训练集进行特征提取;使用Keras构建用来识别煤矸的卷积神经网络;将提取的的特征图与原图像分别输入卷积神经网络进行模型训练,最后全连接进行分类识别;softmax分类层输出识别结果;将样本集中的测试集输入经过模型训练的卷积神经网络验证其性能,输出识别结果。本方案不受综采工作面温度的影响,且相位一致性的特征提取在矿下光照影响极大的环境下更优,维护成本更低,降低了安全隐患。
0/0