一种异构数据与深度学习的风电集群功率预测方法及设备
摘要:
本发明提出一种异构数据与深度学习的风电集群功率预测方法及设备,该方法通过构建风电集群功率预测网络模型,通过特征提取网络对异构数据进行特征提取,将提取的特征基于注意力机制进行关键信息预测后,采用多模态融合策略融合生成多模态融合特征,根据生成的多模态融合特征进行风电集群功率预测。通过本发明,能够提高预测风电集群功率的精准性和稳定性,有利于电网系统运行调度及系统优化工作。
0/0