Brushless direct current vibration motor having cogging plates for optimized vibrations
Abstract:
Disclosed is a brushless DC vibration motor. An eccentric weight of a rotor is securely sandwiched between a back yoke and a permanent magnet, being heavier to provide an increased vibrational force. A bearing coupling portion with upper and lower stopping protrusions prevents detachment of a bearing. A bracket is formed with grooves, instead of through holes, to strongly support a cogging plate of which pieces are connected with each other to form a single body for easy-placement on the bracket. An optimized area of the cogging plate can suppress the rotor not to rise during starting of the motor, resulting in no frictional noise, and a high stopping speed and uniform horizontal level of the rotating rotor.
Public/Granted literature
Information query
Patent Agency Ranking
0/0