-
公开(公告)号:CN118446928A
公开(公告)日:2024-08-06
申请号:CN202410529213.7
申请日:2024-04-29
申请人: 东北大学 , 中信金属股份有限公司 , 湖南华菱湘潭钢铁有限公司
摘要: 本发明公开了一种基于CycleGan模型的IF钢金相照片晶界强化方法,属于材料性能预测技术领域,包括数据采集;数据处理;数据划分:将数据集按照数据划分策略划分为训练集和测试集;搭建CycleGan模型:利用两组传统生成对抗网络,分别优化最小化损失,得到两个域之间的两个数据转换函数模型;IF钢金相照片晶界强化:利用最终的CycleGan模型,对原始金相照片处理,去除金相试样表面存在的划痕,补全残缺的晶界。本发明采用上述方法,基于CycleGan模型,对不同域的两个数据集训练,得到模型结构,实现两个数据的相互转换,对于明晰IF钢晶界起到有利效果。
-
公开(公告)号:CN116822367A
公开(公告)日:2023-09-29
申请号:CN202310812967.9
申请日:2023-07-03
申请人: 东北大学
IPC分类号: G06F30/27 , G06N3/0442 , G06F18/214 , G06F119/14 , G06F119/08
摘要: 本发明公开了一种基于LSTM模型的IF钢力学性能预测方法,S1、选取样本;S2、补充空缺数据;S3、异常值剔除:使用格拉布斯准则对S2中得到的数据集中力学性能异常IF钢钢卷对应的参数数据剔除,得到数据集;S4、训练LSTM模型:将S3中得到的数据集按比例划分为训练数据和预测数据,将关键参数作为输入变量,将力学性能作为输出变量,将输入变量和输出变量用于训练LSTM模型,得到LSTM预测模型。本发明采用上述步骤,LSTM预测模型中既包含IF钢成分对IF钢性能的影响,也包含热轧和冷轧工艺参数对IF钢性能的影响,有助于LSTM模型实现高精度的力学性能预测,优化工艺参数。
-
公开(公告)号:CN118314234A
公开(公告)日:2024-07-09
申请号:CN202410529215.6
申请日:2024-04-29
申请人: 东北大学
IPC分类号: G06T11/00 , G06N3/0464 , G06N3/0455 , G06N3/048 , G06V10/44 , G06V10/77 , G06N5/01 , G06N20/20 , G06N3/08
摘要: 本发明公开了一种改进自编码器网络的C‑Mn钢显微组织图像生成方法,属于钢铁显微组织图像预测技术领域,包括获取C‑Mn数据集;对C‑Mn数据集进行预处理及扩充;对自编码器进行改进;构建编码器与解码器网络模型;应用编码器模型进行特征提取;构建PCA模型;构建XGBoost模型;将自设定的成分工艺数据依次输入到训练完毕的XGBoost模型、PCA模型及解码器模型中,得到预测的显微组织预测图像。本发明通过在传统的自编码器结构中引入稠密卷积块构成DCB‑AE网络,通过基于DCB‑AE网络的数据降维与升维方法解决了传统AE网络对于大尺度图像拟合的问题,此外,结合机器学习模型提高了显微组织图像生成模型的泛化能力。
-
-