一种基于LSTM模型的IF钢力学性能预测方法

    公开(公告)号:CN116822367A

    公开(公告)日:2023-09-29

    申请号:CN202310812967.9

    申请日:2023-07-03

    申请人: 东北大学

    摘要: 本发明公开了一种基于LSTM模型的IF钢力学性能预测方法,S1、选取样本;S2、补充空缺数据;S3、异常值剔除:使用格拉布斯准则对S2中得到的数据集中力学性能异常IF钢钢卷对应的参数数据剔除,得到数据集;S4、训练LSTM模型:将S3中得到的数据集按比例划分为训练数据和预测数据,将关键参数作为输入变量,将力学性能作为输出变量,将输入变量和输出变量用于训练LSTM模型,得到LSTM预测模型。本发明采用上述步骤,LSTM预测模型中既包含IF钢成分对IF钢性能的影响,也包含热轧和冷轧工艺参数对IF钢性能的影响,有助于LSTM模型实现高精度的力学性能预测,优化工艺参数。