一种铝合金铸件氧化膜缺陷的定量表征及评价方法

    公开(公告)号:CN117491375B

    公开(公告)日:2024-03-22

    申请号:CN202410002204.2

    申请日:2024-01-02

    IPC分类号: G01N21/88 G06T7/00 G06T7/62

    摘要: 本发明属于铸件检测技术领域,具体涉及一种铝合金铸件氧化膜缺陷的定量表征及评价方法。包括:随机选取铝合金铸件进行本体取样,获得多个断口;在超景深数码显微镜下依次观察试样断口,表征每个断面上氧化膜的数量、长度、面积及相对应断面面积;进行数据统计与分析,获得铝合金铸件氧化膜缺陷的缺陷率、最大长度、平均缺陷面积占比;分别计算得到第一分值Q1、第二分值Q2、第三分值Q3,获得综合判据总分值Q来判断铝合金铸件氧化膜缺陷的严重程度,评价铸件质量优劣。解决了铝合金铸件氧化膜缺陷无法检测的问题,完善了铝合金铸件质量检测,避免了铸件批次不合格,有利于减少试验资源浪费、推进工艺优化、减少开发成本。

    一种铝合金再生用三室熔化炉

    公开(公告)号:CN117628900A

    公开(公告)日:2024-03-01

    申请号:CN202410085492.2

    申请日:2024-01-22

    IPC分类号: F27B14/06 F27B14/10 F27B14/14

    摘要: 本发明公开了一种铝合金再生用三室熔化炉,包括:塔式上料室,设有用于承载铝料的承载面;铝液精炼室,与塔式上料室连通;铝液加热室,设于铝液精炼室一侧;隔板,设于铝液精炼室和铝液加热室之间,所述隔板底部形成有过流通道,上部形成有过气通道;循环泵,与铝液精炼室连通;铝屑添加容器,与循环泵的输出端连通,用于引导输入的铝液形成涡流,底部设有输出管,上端设有铝屑输入管;过渡管,一端与输出管连通,外周套设有加热线圈;回液输出管,一端与过渡管连通,另一端与铝液加热室连通。本发明加热室的炉门几乎不需要打开,精炼时只需要打开精炼室的门,可减少加热室的热量散失;从而能够方便上料,减少能源损失,节约能源。

    一种车用高强耐腐蚀6系铝合金型材生产方法

    公开(公告)号:CN114178338A

    公开(公告)日:2022-03-15

    申请号:CN202111407951.7

    申请日:2021-11-25

    摘要: 本发明属于铝合金生产工艺领域,涉及一种车用高强耐腐蚀6系铝合金型材生产方法,包括以下步骤:步骤1.将配制好的铝合金原料置于熔炼炉中熔炼;步骤2.将步骤1中得到的液态铝合金进行静置并制成铝合金铸棒;步骤3.将步骤2得到的铝合金铸棒进行均质化;步骤4.将步骤3得到的铝合金铸棒加热;步骤5.将步骤4中加热后的铸棒进行表面冷却,随即挤压得到铝合金型材;步骤6.将步骤5得到的铝合金型材进行时效处理,采用水冷方式进行淬火;本发明通过改进铝合金铸棒均质化工艺和挤压工艺,使铝合金中的过饱和过渡元素分布更加均匀,析出相更加细小,可生产出一种车用高强耐腐蚀的6系铝合金型材。

    一种铝合金液导流装置及导流方法

    公开(公告)号:CN110976786A

    公开(公告)日:2020-04-10

    申请号:CN201911210537.X

    申请日:2019-12-02

    IPC分类号: B22D1/00

    摘要: 本发明属于冶金技术领域,提供了一种铝合金液导流装置及导流方法,包括升降装置、导流槽、漏斗、导流管,导流槽的出液口的上方安装漏斗,导流槽的出液口的下方连接导流管,铝合金液从导流槽经过出液口、导流管流出,可在铝合金液导流过程中无明显湍流和铝液飞溅现象,减少了二次夹渣的产生,且可以在放出铝合金液的期间,向所述漏斗加入一定量的清渣剂、细化剂、变质剂中的至少一种,能够在线精炼、细化和变质,同时没有抽真空装置,管道的清理和维护更方便,使用成本低。

    一种亚共晶铝合金熔体可制造性评价方法

    公开(公告)号:CN116312900B

    公开(公告)日:2023-07-28

    申请号:CN202310553689.X

    申请日:2023-05-17

    IPC分类号: G16C60/00

    摘要: 一种亚共晶铝合金熔体可制造性评价方法,包括以下步骤:将铝合金熔体浇注到带有热电偶的坩埚中,记录熔体凝固过程中的温度变化,导出温度和时间的数据;获得熔体凝固过程中的温度随时间的变化曲线;获取由初晶阶段的理论初晶温度、实际初晶温度和再辉温度围成的面积值PCA,以及由实际共晶温度至480℃之间的曲线与X轴围成的面积值EUA,在分别以EUA为横坐标、PCA为纵坐标的预定EUA‑PCA坐标系中,基于所述PCA和EUA所对应的坐标区域,进行所述铝合金熔体的可制造性判断。由此,可对入厂铝液实时快速反应熔体质量,判断熔体可制造性好坏。