P型动态阈值晶体管、制备方法及提高工作电压的方法

    公开(公告)号:CN105845733A

    公开(公告)日:2016-08-10

    申请号:CN201610236397.3

    申请日:2016-04-15

    Abstract: 本发明提供一种P型动态阈值晶体管、制备方法及提高工作电压的方法,包括衬底结构,PMOS器件及PN结器件;PN结器件的N区与PMOS器件的体接触区连接,PN结器件的P区与PMOS器件的栅连接。在N型本征区中进行两次P型重掺杂分别形成PMOS器件的源、漏区和PN结器件,再进行N型重掺杂形成PMOS器件的体接触区;在沟道区上方依次形成栅氧化层、多晶硅层,对多晶硅层进行P型重掺杂形成栅;通过通孔和金属将PMOS器件的栅和PN结器件的P区相连。本发明通过在栅体连接通路上形成一个反偏PN结,来提升体接触区电压、降低阈值电压、提高驱动电流,实现工作电压的提高,扩展了P型动态阈值晶体管在低功耗电路设计领域的应用价值。

    表征随机存储器单元抗电流噪声容限的方法及测试结构

    公开(公告)号:CN104200836A

    公开(公告)日:2014-12-10

    申请号:CN201410417988.1

    申请日:2014-08-22

    Abstract: 本发明提供一种表征随机存储器单元抗电流噪声容限的方法及测试结构,所述存储器单元的表征抗电流噪声容限的方法步骤为:扫描单元第一存储节点的电压,得到该扫描电压与供电电流关系曲线;反扫描第二存储节点的电压,得到该扫描电压与供电电流关系曲线;将两条曲线叠加得一相交于三点的曲线;计算两侧点分别与中间点的电流差值,取两者较小值,其值即为单元的最大抗电流噪声容限值;本发明还提供本表征单元抗电流噪声容限的测试结构。本发明的表征静态随机存储器单元抗电流噪声容限的方法及测试结构具有直观、测量精确,适用性强等优点。

    P型动态阈值晶体管、制备方法及提高工作电压的方法

    公开(公告)号:CN105845733B

    公开(公告)日:2019-09-13

    申请号:CN201610236397.3

    申请日:2016-04-15

    Abstract: 本发明提供一种P型动态阈值晶体管、制备方法及提高工作电压的方法,包括衬底结构,PMOS器件及PN结器件;PN结器件的N区与PMOS器件的体接触区连接,PN结器件的P区与PMOS器件的栅连接。在N型本征区中进行两次P型重掺杂分别形成PMOS器件的源、漏区和PN结器件,再进行N型重掺杂形成PMOS器件的体接触区;在沟道区上方依次形成栅氧化层、多晶硅层,对多晶硅层进行P型重掺杂形成栅;通过通孔和金属将PMOS器件的栅和PN结器件的P区相连。本发明通过在栅体连接通路上形成一个反偏PN结,来提升体接触区电压、降低阈值电压、提高驱动电流,实现工作电压的提高,扩展了P型动态阈值晶体管在低功耗电路设计领域的应用价值。

    一种SOI MOSFET总剂量辐照模型的建模方法

    公开(公告)号:CN107305593A

    公开(公告)日:2017-10-31

    申请号:CN201610252163.8

    申请日:2016-04-21

    Abstract: 本发明提供一种SOI MOSFET总剂量辐照模型的建模方法,包括:建立一受控电流源,所述受控电流源并联于一MOSFET器件的源、漏端之间,其电流大小受所述MOSFET器件的栅端、源端、体端、漏端及总剂量控制;建立一受控电压源,所述受控电压源串联于所述MOSFET器件的栅端,其电压大小受总剂量控制;将所述受控电流源、所述受控电压源及所述MOSFET器件进行封装,以形成所述SOI MOSFET总剂量辐照模型。本发明的SOI MOSFET总剂量辐照模型的建模方法可同时仿真NMOS和PMOS,可以仿真阈值电压的漂移,还可仿真各个尺寸、各个辐射剂量的MOSFET特性,大大提高仿真准确性。

    SOI动态阈值晶体管
    15.
    发明授权

    公开(公告)号:CN104362174B

    公开(公告)日:2017-05-17

    申请号:CN201410675314.1

    申请日:2014-11-21

    Abstract: 本发明提出了一种SOI动态阈值晶体管,包括半导体衬底、第一多叉指栅极结构、第二多叉指栅极结构、体接触区、源区、漏区及第一接触孔;栅极通过第一接触孔与体接触区相连接。通过采用体接触区公用的方法,可以提高体接触区利用率,降低寄生电容,同时,采用多边连接的方式,可以实现较低的栅电阻。当器件处于截止状态时,器件阈值较高,泄露电流低,当器件处于开启状态时,由于体效应的影响,器件阈值电压降低,电流增大。因此器件可以具有陡峭的亚阈值斜率和较大的饱和电流,同时,器件工作电压低,十分适用于低功耗应用。采用本发明的设计方法,可以改善寄生电阻电容,在射频应用领域具有一定的应用价值。

    N型动态阈值晶体管、制备方法及提高工作电压的方法

    公开(公告)号:CN105742366A

    公开(公告)日:2016-07-06

    申请号:CN201610237320.8

    申请日:2016-04-15

    Abstract: 本发明提供一种N型动态阈值晶体管、制备方法及提高工作电压的方法,包括衬底结构,NMOS器件及PN结器件;PN结器件的P区与NMOS器件的体区连接,PN结器件的N区与NMOS器件的栅连接。在P型本征区中进行N型重掺杂分别形成NMOS器件的源、漏区和体区,同时形成PN结器件;在沟道区上方依次形成栅氧化层、多晶硅层,对多晶硅层进行N型重掺杂形成栅;通过通孔和金属将NMOS器件的栅和PN结器件的N区相连。本发明通过在栅体连接通路上形成一个反偏PN结,来提升体区电压、降低阈值电压、提高驱动电流,实现工作电压的提高,扩展了N型动态阈值晶体管在低功耗电路设计领域的应用价值。

    一种抗单粒子效应的静态随机存储器单元

    公开(公告)号:CN105321553A

    公开(公告)日:2016-02-10

    申请号:CN201410276164.7

    申请日:2014-06-19

    Abstract: 本发明提供一种抗单粒子效应的静态随机存储器单元,所述存储单元至少包括:第一交叉耦合型反相器,由第一上拉管和第二上拉管组成;第二交叉耦合型反相器,由第一下拉管和第二下拉管组成;传输管,由第一存取管、第二存取管、第三存取管及第四存取管组成。本发明的静态随机存储器单元可以有效延长存储单元翻转所需要的反馈时间,在恢复时间不变的情况下可以提高存储单元的抗单粒子翻转能力;本发明的抗单粒子静态随机存储器单元所采取的工艺与数字逻辑工艺完全兼容,具有寄生电容小、功耗低、天然的抗单粒子闩锁能力的同时,不会增大额外工艺成本。

    半刷新机制的单端口静态随机存储器单元

    公开(公告)号:CN104795100A

    公开(公告)日:2015-07-22

    申请号:CN201510232374.0

    申请日:2015-05-08

    Abstract: 本发明提出了一种半刷新机制的单端口静态随机存储器单元,至少包括:单稳态锁存器及连接于所述单稳态锁存器的传输门;所述单稳态锁存器包括上拉管及下拉管;所述传输门包括第一获取管及第二获取管。本发明相对传统静态随机存储器单端口单元而言,其单元晶体管数量减少1/3,从而可以提高单元存储密度;相对传统动态随机存储器单元而言,某电平可以稳定保持,故可以减少刷新次数;此外,本单元不要求晶体管之间尺寸匹配;这样可以有利于减少先进工艺下由于单元内部晶体管尺寸失配而造成电学性能下降问题;另外,其工艺与传统普通CMOS逻辑工艺相兼容,故可以降低成本。

    一种应用于静态随机存储器电路的灵敏放大器

    公开(公告)号:CN104681054A

    公开(公告)日:2015-06-03

    申请号:CN201510107430.8

    申请日:2015-03-11

    Abstract: 本发明提供一种应用于静态随机存储器电路的灵敏放大器,所述灵敏放大器至少包括:获取电路,用于感知输入信号电压差;连接于所述获取电路的隔离电路,用于隔离所述输入信号及差分输出信号,削弱所述输入信号及所述差分输出信号的耦合作用;连接于所述隔离电路的辅助电路,用于稳定所述差分输出信号的初始电压;连接于所述隔离电路的锁存电路,用于锁存所述隔离电路的输出信号,放大并输出所述差分输出信号;连接于所述锁存电路的偏置电路,用于为所述锁存电路提供偏置。本发明可以有效缩短灵敏放大器读取时间,从而提高存储器读速度。另外,基于0.13微米SOI CMOS工艺,其仿真结果显示:当灵敏放大器输出电压高电平为70%VDD时,所需时间为93pS。

    N型动态阈值晶体管、制备方法及提高工作电压的方法

    公开(公告)号:CN105895702B

    公开(公告)日:2019-09-13

    申请号:CN201610236469.4

    申请日:2016-04-15

    Abstract: 本发明提供一种N型动态阈值晶体管、制备方法及提高工作电压的方法,包括衬底结构,NMOS器件及PN结器件;PN结器件的P区与NMOS器件的体接触区连接,PN结器件的N区与NMOS器件的栅连接。在P型本征区中进行N型重掺杂分别形成NMOS器件的源、漏区和PN结器件,再进行P型重掺杂形成NMOS器件的体接触区;在沟道区上方依次形成栅氧化层、多晶硅层,对多晶硅层进行N型重掺杂形成栅;通过通孔和金属将NMOS器件的栅和PN结器件的N区相连。本发明通过在栅体连接通路上形成一个反偏PN结,来提升体接触区电压、降低阈值电压、提高驱动电流,实现工作电压的提高,扩展了N型动态阈值晶体管在低功耗电路设计领域的应用价值。

Patent Agency Ranking