一种面向RD时频数据的深度学习模型评测系统及方法

    公开(公告)号:CN113762359A

    公开(公告)日:2021-12-07

    申请号:CN202110950679.0

    申请日:2021-08-18

    Abstract: 本发明一种面向RD时频数据的深度学习模型评测系统及方法,其过程包括验证集扩充、多IOU阈值F1计算、多IOU阈值mAP计算、FLOPs计算、评测指标集成计算。评测方法主体为验证集扩充方法及基于集成策略的模型评测方法,通过图像融合与检验机制对验证集进行扩充,解决面向RD时频数据短缺问题,可以在不引入明显噪声信息、不泄露目标标签信息、不改变数据分布情况下得到更大规模的验证集,使得验证集更好地表征整体数据的特征,更好地评测模型的泛化性能;用多IOU阈值的F1得分、多IOU阈值的mAP、FLOPs的加权得分表示深度学习模型的整体能力,可以更准确地表征模型在单点最优、全局平均最优、时间性能方面的能力,从而为面向RD时频数据的深度学习模型评测提供有力技术支撑。

Patent Agency Ranking