-
公开(公告)号:CN103440490A
公开(公告)日:2013-12-11
申请号:CN201310423429.7
申请日:2013-09-16
申请人: 南京大学
IPC分类号: G06K9/46
摘要: 本发明涉及SAR影像时空相似性分析下的城市不透水面提取方法,首先对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列;其次,采用动态时间弯曲(DTW)作为像素级SAR影像时间序列的相似性度量,计算采样混合像元与纯净像元的DTW值作为相似性提取的最大阈值,利用基于时间序列相似度的空间上下文分析方法,充分顾及相同地物像元时间序列较好的相似性和的空间的邻近性特征,以典型地物纯净像元的时间序列曲线为模板窗口,采用滑动窗口技术,分别计算模板窗口与滑动窗口内对应的时间序列曲线的DTW值,并采用像元的空间邻近规则从而确定中心像元的地物类型。该方法能够改善地物提取破碎现象,提高城市不透水面的信息提取精度。
-
公开(公告)号:CN102542035A
公开(公告)日:2012-07-04
申请号:CN201110442351.4
申请日:2011-12-27
申请人: 南京大学
IPC分类号: G06F17/30
摘要: 本发明公开了基于扫描线法的多边形栅格化并行转换方法,属于地理信息系统领域。其包括输入命令行参数;MPI并行初始化,获取总的进程数和当前进程数,采用对等式并行模式,各进程分别解析命令行参数,分别收集引导符后的参数值,利用OGROpen方法读取矢量数据源,判断是否为0号进程;采用数据并行策略,划分栅格数据集合矢量多边形,然后分发各个进程,每个进程同时进行多边形的栅格化;写栅格数据,各进程分别更新栅格分块,并输出转换后的栅格数据。利用本发明进行大数据量的多边形栅格化的操作,可以得到较高的效率和满意的转换结果,充分提高了高性能服务器的多核/多处理器对多边形栅格化的转换处理速度,极大地缩小了多边形栅格化的转换时间。
-
公开(公告)号:CN102073879A
公开(公告)日:2011-05-25
申请号:CN201010568737.5
申请日:2010-12-02
申请人: 南京大学
IPC分类号: G06K9/66
摘要: 本发明公开了一种基于半监督学习的海岸海洋遥感影像特征地类的识别方法,属于半自动遥感影像识别领域。其步骤为:为每一类特征地物选取标记样本;构建面向对象的遥感影像的分割结果;计算出所有样本像元隶属于各特征地类的初估概率值,计算出样本数据在归为各个特征地类分量的概率;使用特征空间规则对概率图像进行修正;判定其所属特征地类,实现特征地类的识别,并输出识别结果图。本发明结合了先验知识与数据的统计特性,能够用地学先验知识引导数据挖掘过程,实践证明,该算法够能有效地进行遥感影像分类,得到比较满意的结果,并具有高效率、高精度的特点,能够直接应用于国家各级基础地理信息数据库遥感专题信息的维护与更新。
-
公开(公告)号:CN117575014B
公开(公告)日:2024-08-16
申请号:CN202311285655.3
申请日:2023-10-07
申请人: 南京大学
摘要: 本发明涉及一种基于图卷积神经网络的土地利用结构模式层次挖掘方法,包括如下步骤:获取土地利用数据;构建图结构;生成标签输入模型;通过图卷积神经网络模型,对所述标签输入模型进行训练,生成图嵌入;利用空间约束多元聚类方法对所述图嵌入进行划分,得到从分区到各级子分区的层次分区结构;对每一年的土地利用数据,分别以土地利用类型的频率特征构建各区域的区域级图元,根据某区域不同年份的区域级图元的变化反映该区域土地利用结构的时空变化。本发明构建图元时考虑了多阶邻域的影响,能够根据土地利用空间结构的不同进行分区,可以有效挖掘层次土地利用结构模式及其动态特征。
-
公开(公告)号:CN115393704A
公开(公告)日:2022-11-25
申请号:CN202210695358.5
申请日:2022-06-20
申请人: 南京大学
IPC分类号: G06V20/10 , G06V10/26 , G06V10/54 , G06V10/764
摘要: 本发明公开一种面向对象的稻虾田遥感自动化监测方法,本自动化监测方法包括以下步骤:S1、获取分析单元;S2、选取稻虾田样本;S3、判定分割对象是否为稻虾田和S4、得到检测结果。本发明基于对象单元实现了大范围的稻虾田监测,避免了基于像素分析中的“椒盐效应”等问题,提高了监测精度,具体实施中自动提取样本且无需人工调整参数,提高了监测的自动化程度。
-
公开(公告)号:CN115129802A
公开(公告)日:2022-09-30
申请号:CN202210782643.0
申请日:2022-07-05
申请人: 南京大学
摘要: 本发明公开了一种基于多源数据和集成学习的人口空间化方法,该方法包括以下步骤:S1、获取多源数据并进行融合,构建人口空间化数据库;S2、从所述人口空间化数据库中构建用于模型拟合的指标体系,通过集成学习模型计算的特征重要性筛选出有效指标;S3、结合所述有效指标与社区人口之间的关系,构建Pop‑XGBoost人口空间化模型;S4、预测人口空间分布,并将格网人口模拟数据汇总至社区尺度,与真实的社区人口统计数据对比,验证结果精度。通过结合多源数据融合技术、指标筛选技术和集成学习技术等构建人口空间化模型,准确高效地实现高精度人口空间化预测。
-
公开(公告)号:CN108985306B
公开(公告)日:2020-03-31
申请号:CN201810731268.0
申请日:2018-07-05
申请人: 南京大学
IPC分类号: G06K9/46
摘要: 本发明涉及一种基于改进边界代数法的相交多边形提取方法,包括以下步骤:对所有图层中的多边形顺序进行编号;计算包含所有图层的MBR,数组hDstDS、pIDArray和RLEGroup分别存放栅格单元的属性值、多边形ID和游程;对所有多边形使用边界代数算法依次进行栅格化,在栅格化过程中赋予各多边形的属性值均为1;在数组hDstDS中获取当前多边形MBR包含的栅格单元,并逐行读取获取其属性值,并根据不同的属性值进行相应处理;从数组RLEGroup存储的游程中提取相应的相交多边形组,即每个游程中的数组pGroup即对应一个相交多边形组。本发明计算复杂度低,尤其适用于规模化的多边形数据集的相交多边形提取。
-
公开(公告)号:CN109003316A
公开(公告)日:2018-12-14
申请号:CN201810730005.8
申请日:2018-07-05
申请人: 南京大学
IPC分类号: G06T11/00
摘要: 本发明涉及一种基于多边形复杂度的并行栅格化数据划分方法,包括以下步骤:遍历所有多边形,计算每个多边形的最小外接矩形包含的栅格数目并归一化;计算各多边形的复杂度PC,并按从小到达的顺序进行排序形成队列;每次从队列首端和末端分别取出一个多边形,将其依次分配给所有的进程,直至所有的多边形分配完毕;各进程分别对被分配的多边形的最小外接矩形依次进行栅格化,其栅格化的结果以矩形栅格组存在,记录所述矩形栅格组的左上角点坐标以及该矩形栅格组的X方向和Y方向的栅格长度;各进程分别将其栅格化后得到的矩形栅格组写入到目标栅格中。本发明可以保证负载均衡并提高栅格化并行处理的效率。
-
公开(公告)号:CN103440489B
公开(公告)日:2017-01-11
申请号:CN201310423428.2
申请日:2013-09-16
申请人: 南京大学
IPC分类号: G06K9/46
摘要: 本发明涉及一种像素级SAR影像时间序列的水体提取方法,该方法首先,对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列,生成时间序列文本数据;其次,采样选取纯净水体像元和混合水体像元的时间序列,选取DTW作为时间序列的相似性度量,计算其DTW值作为最大阈值;然后计算所有像元的像素级SAR影像时间序列与纯净水体像元时间序列的DTW值,采用最大阈值方法分割SAR影像,获取二值图像;最后,采用8邻域搜索方法对二值图像进行操作以提高水体识别精度。该方法能够准确提取稳定的水资源分布范围,提取结果不受山体阴影、雨季积水及部分植被的影响,能够满足水体制图的要求。
-
公开(公告)号:CN103440490B
公开(公告)日:2016-10-19
申请号:CN201310423429.7
申请日:2013-09-16
申请人: 南京大学
IPC分类号: G06K9/46
摘要: 本发明SAR影像时空相似性分析下的城市不透水面提取方法,首先对SAR影像数据集进行预处理,经过高精度匹配,构建像素级SAR影像时间序列;其次,采用动态时间弯曲(DTW)作为像素级SAR影像时间序列的相似性度量,计算采样混合像元与纯净像元的DTW值作为相似性提取的最大阈值,利用基于时间序列相似度的空间上下文分析方法,充分顾及相同地物像元时间序列较好的相似性和的空间的邻近性特征,以典型地物纯净像元的时间序列曲线为模板窗口,采用滑动窗口技术,分别计算模板窗口与滑动窗口内对应的时间序列曲线的DTW值,并采用像元的空间邻近规则从而确定中心像元的地物类型。该方法能够改善地物提取破碎现象,提高城市不透水面的信息提取精度。
-
-
-
-
-
-
-
-
-