-
公开(公告)号:CN113069126B
公开(公告)日:2022-06-03
申请号:CN202110329766.4
申请日:2021-03-26
Applicant: 吉林大学
IPC: A61B5/388
Abstract: 本发明公开了一种节肢动物振动感应检测系统及方法,包括固定组件,支撑板,第一振动激励组件连接于支撑板,并用于产生第一类振动;第一振动接收器设置在支撑板上,并用于采集第一类振动信号;第二振动激励组件用于产生第二类振动;第二振动接收器靠近节肢动物,并用于采集第二类振动信号;振动检测器与固定组件间隔设置,振动检测器可调节方向并测量不同区域的振动强弱度;测量电极用于接触节肢动物的感受器,并用于记录节肢动物的胞内或/和胞外的生物电信号;数据处理器分别电连接第一振动接收器、第二振动接收器、振动检测器、以及测量电极。解决了现有技术中没有对于节肢动物的感受器进行微振动形式的刺激后的生物电信号测量的系统的问题。
-
公开(公告)号:CN109781244A
公开(公告)日:2019-05-21
申请号:CN201910137443.8
申请日:2019-02-25
Applicant: 吉林大学
IPC: G01H11/06
Abstract: 本发明公开了一种数控机床刀具振动信号检测系统及检测方法,包括振动信号采集装置、数据处理模块和分析判断模块;所述振动信号采集装置固定于数控机床刀台上,用于检测刀具振动信息并输出相应的检测信号至数据处理模块;所述数据处理模块用于对所述检测信号进行差分放大处理后输出待分析数据至分析判断模块;所述分析判断模块用于根据预先存储的数据类别对当前采集的待分析数据进行判断分类,当判断为异常振动数据类别时输出预警信号。通过封装固定在机床上的刚性振动信号采集装置,非接触式采集机床刀具的运行状态信息,并且基于预先训练识别的数据类别实现对刀具振动信号的故障检测及预警,具有灵敏度高、非接触式检测、测量识别精度高等优点。
-
公开(公告)号:CN109752077A
公开(公告)日:2019-05-14
申请号:CN201811643359.5
申请日:2018-12-30
Applicant: 吉林大学
IPC: G01H11/06 , G01M13/028
Abstract: 本发明公开了一种振动状态可视化检测装置、制作方法及应用,其中,振动状态可视化检测装置包括相互并联电连接的超敏振动传感器与电致变色器;所述超敏振动传感器,当感知到外部的机械振动时,根据所述机械振动的强度的不同,电阻会发生改变,进而引起所述超敏振动传感器的端电压的改变;所述电致变色器,根据所述端电压的大小产生深浅不同的颜色。本发明通过超敏振动传感器感知外部的机械振动,并根据振动强度大小由电致变色器展现出不同程度的非透明导电层的颜色,以实现对主轴振动状态实时可视化监测。
-
公开(公告)号:CN113069126A
公开(公告)日:2021-07-06
申请号:CN202110329766.4
申请日:2021-03-26
Applicant: 吉林大学
IPC: A61B5/388
Abstract: 本发明公开了一种节肢动物振动感应检测系统及方法,包括固定组件,支撑板,第一振动激励组件连接于支撑板,并用于产生第一类振动;第一振动接收器设置在支撑板上,并用于采集第一类振动信号;第二振动激励组件用于产生第二类振动;第二振动接收器靠近节肢动物,并用于采集第二类振动信号;振动检测器与固定组件间隔设置,振动检测器可调节方向并测量不同区域的振动强弱度;测量电极用于接触节肢动物的感受器,并用于记录节肢动物的胞内或/和胞外的生物电信号;数据处理器分别电连接第一振动接收器、第二振动接收器、振动检测器、以及测量电极。解决了现有技术中没有对于节肢动物的感受器进行微振动形式的刺激后的生物电信号测量的系统的问题。
-
公开(公告)号:CN109249415B
公开(公告)日:2021-03-30
申请号:CN201811462253.5
申请日:2018-12-03
Applicant: 吉林大学
Abstract: 一种基于仿生应变传感器阵列感知的柔性机械手,液晶弹性体(1)为手型结构,弹性绝缘底板(4)位于手心处,嵌入液晶弹性体(1)中并在有压力时能形成形变;仿生应变传感器(2)组成的阵列粘贴在弹性绝缘底板(4)上;仿生应变传感器(2)与供电部分(5)连接,所述供电部分(5)为惠斯通电桥,每一个电桥里面都连接一个仿生应变传感器(2);供电部分(5)通过放大电路模块(6)与控制模块(7)连接;液晶弹性体(1)所有手指的第一指间关节、第二指间关节和掌指关节处分别嵌入柔性电路聚酰亚胺薄膜,可以随液晶弹性体(1)的弯曲而弯曲,每一片聚酰亚胺薄膜加热器(3)都与控制模块(7)相连接。本发明适用于一些质量小、体积小、比较难抓握的物体。
-
公开(公告)号:CN109781244B
公开(公告)日:2020-06-02
申请号:CN201910137443.8
申请日:2019-02-25
Applicant: 吉林大学
IPC: G01H11/06
Abstract: 本发明公开了一种数控机床刀具振动信号检测系统及检测方法,包括振动信号采集装置、数据处理模块和分析判断模块;所述振动信号采集装置固定于数控机床刀台上,用于检测刀具振动信息并输出相应的检测信号至数据处理模块;所述数据处理模块用于对所述检测信号进行差分放大处理后输出待分析数据至分析判断模块;所述分析判断模块用于根据预先存储的数据类别对当前采集的待分析数据进行判断分类,当判断为异常振动数据类别时输出预警信号。通过封装固定在机床上的刚性振动信号采集装置,非接触式采集机床刀具的运行状态信息,并且基于预先训练识别的数据类别实现对刀具振动信号的故障检测及预警,具有灵敏度高、非接触式检测、测量识别精度高等优点。
-
公开(公告)号:CN110245707A
公开(公告)日:2019-09-17
申请号:CN201910521435.3
申请日:2019-06-17
Applicant: 吉林大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于蝎子定位的人体行走姿态振动信息识别方法及系统,所述方法包括以下步骤:采集人体行走的振动数据,并进行预处理;对预处理的振动数据进行特征提取,并将提取的特征进行归一化得到特征集;根据特征集计算行走姿态的输出概率后在预设模型中匹配并输出相似度最高的分类结果。基于蝎子对振动信息快速、精准定位的机理,能非接触、机械、隐蔽地对人体行走的振动信号进行分析,从而推断人体行走姿态,对人体行走姿态的识别具有快速、精准的效果。
-
公开(公告)号:CN110097171A
公开(公告)日:2019-08-06
申请号:CN201910532786.4
申请日:2019-06-19
Applicant: 吉林大学
IPC: G06N3/02
Abstract: 本发明公开了一种基于蝎子微振动定位机理的活动轨迹定位方法及系统,所述方法包括以下步骤:建立仿蝎子感觉神经元的一级神经元模型,将传感器接收到的振动信号转换为脉冲信号;建立仿蝎子突触的可塑性突触模型,根据脉冲信号得到突触电导;建立二级神经元模型,根据突触电导发射二级神经元脉冲估计振源方位。本发明模仿蝎子精准定位猎物,这一生物功能的定位技术。利用脉冲神经网络将到达不同接收器的振动信号进行联合编码,通过建立神经元之间的突触连接,实现神经元之间的信息传递,从而得到振源信号的方位信息。
-
-
-
-
-
-
-