-
公开(公告)号:CN109239646A
公开(公告)日:2019-01-18
申请号:CN201811017215.9
申请日:2018-09-01
Applicant: 哈尔滨工程大学
IPC: G01S3/00
Abstract: 一种冲击噪声环境下连续量子水蒸发的二维动态测向方法,属于阵列信号处理领域。本发明方法利用连续量子水蒸发计算方法在搜索区间内求解根据均匀圆阵方位角和俯仰角二维动态测向问题设计的圆阵无穷范数极大似然方程,通过逐步缩小搜索区间以减少运算量,同时依据量子编码和模拟量子演化方程设计的水蒸发计算方法还可以加快算法的收敛速度,快速获得最优二维波达方向,提高冲击噪声环境下动态来波方向的跟踪精度。本发明方法搜索速度快,既能实现二维波达方向的非相干信源动态估计,又可实现二维波达方向的相干信源动态估计,不仅适用于高斯噪声环境,也可应用于冲击噪声环境,应用前景广泛。
-
公开(公告)号:CN107302140A
公开(公告)日:2017-10-27
申请号:CN201710333471.8
申请日:2017-05-12
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。
-
公开(公告)号:CN106501801A
公开(公告)日:2017-03-15
申请号:CN201610859072.0
申请日:2016-09-28
Applicant: 哈尔滨工程大学
IPC: G01S13/68
CPC classification number: G01S13/68
Abstract: 本发明涉及一种基于混沌多种群共生进化的双基地MIMO雷达跟踪方法。本发明包括获取信号采样数据,并获得分数低阶协方差;初始化搜索区间;利用Sine混沌反向学习策略初始化个体的位置和速度,并根据适应度值确定每个种群的最优个体位置和整个生态系统的最优个体位置;利用Sine混沌多种群共生进化机制更新生态系统中各种群个体的速度;判断生态系统中的所有个体在经过σ次迭代后是否能搜寻到更好的位置;判断是否达到最大迭代次数;更新2P个角度的搜索区间。本发明既可以解决高斯噪声环境下双基地MIMO雷达的动态方向跟踪问题,又可以解决冲击噪声环境下双基地MIMO雷达的动态方向跟踪问题。
-
公开(公告)号:CN109829237B
公开(公告)日:2022-04-05
申请号:CN201910103520.8
申请日:2019-02-01
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06N3/00 , G06N10/20 , H04B17/391
Abstract: 本发明涉及一种基于量子海鞘群的无线信道衰减模型拟合方法,具体为:设置Nakagami‑m分布的参数并获取Nakagami‑m逆累积分布的准确数据集;初始化海鞘群的量子位置及位置;对所有海鞘位置进行适应度评价,并确定食物的量子位置与位置;根据策略一或策略二依次更新选定的海鞘的量子旋转角、量子位置与位置;依次对选定的海鞘按照策略三更新量子旋转角、量子位置与位置;对所有海鞘位置进行适应度评价,并更新食物的量子位置与位置;最终输出的食物位置即为拟合方程的最佳系数,即可得到Nakagami‑m逆累积分布函数的最佳拟合方程。本发明具有更高的拟合精度、更快的拟合速度以及更广的适用范围。
-
公开(公告)号:CN107302140B
公开(公告)日:2020-01-17
申请号:CN201710333471.8
申请日:2017-05-12
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。
-
公开(公告)号:CN107944133A
公开(公告)日:2018-04-20
申请号:CN201711172473.X
申请日:2017-11-22
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法,建立环形天线阵列稀疏模型,设置恰当的系统参数,并初始化种群中每只蜘蛛在解空间中的量子位置和{0,1}编码位置。设计多目标适应度函数。计算种群中每只蜘蛛的重量,根据重量划分蜘蛛的性别。根据初始种群,生成初始精英解集。从精英解集中选取全局最优解和次优解。然后分别更新雌性蜘蛛和雄性蜘蛛的量子位置,并根据量子位置通过测量的方式转化为{0,1}编码位置。更新精英解集,并更新种群中所有蜘蛛的重量。最后判断是否达到最大迭代次数,如果达到最大迭代次数,则输出精英解集;否则返回迭代。本发明解决了多目标环形天线阵列稀疏构建这样的高维度离散多目标问题。
-
公开(公告)号:CN107333317A
公开(公告)日:2017-11-07
申请号:CN201710562235.3
申请日:2017-07-11
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于量子猫群搜索机制的多目标中继选择方法。一,建立中继系统模型。二,初始化三个量子猫群。三,对第1个量子猫群和第2个量子猫进行更新。四:对第3个量子猫群中的每一量子猫进行更新。五:将第3个量子猫群更新出的H个量子猫放入非支配解集中。对非支配解集中的量子猫进行非支配解排序和拥挤度计算,保留前H个量子猫作为非支配解。将第3个量子猫的解群替换为非支配解集中的解。六:对非支配解集和演化单目标的量子猫群进行操作。七:如果进化没有终止,返回步骤三,否则,终止迭代,输出非支配解集中的非支配解。本发明可以同时考虑输出端信噪比和网络能量效率来解决多目标中继选择问题,适用性强,应用范围广泛。
-
公开(公告)号:CN107238812A
公开(公告)日:2017-10-10
申请号:CN201710342910.1
申请日:2017-05-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于最小间隙阵列的鲁棒动态测向方法。一,设置最小间隙阵列;二,初始化搜索空间;三,所有成员在演化前被定义为发现者和游荡者,分别根据发现者演化规则和游荡者演化规则演进搜索步长和量子位置;四,计算第i个成员的适应度,成员使用贪婪策略选取量子位置;将适应度函数最大值对应的量子位置记为全局最优量子位置;五,判断是否达到最大迭代次数;六,进行第k+1次快拍采样;七,是否达到最大快拍采样数;八,将每个快拍采样获得的全局最优量子位置都映射为全局最优位置即需要跟踪的动态目标方向值。本发明基于最小间隙阵列和加权范数协方差更新规则,设计了量子群搜索机制的动态测向方法,获得一种鲁棒动态测向方法。
-
公开(公告)号:CN106452625A
公开(公告)日:2017-02-22
申请号:CN201610880914.0
申请日:2016-10-09
Applicant: 哈尔滨工程大学
IPC: H04B17/382
CPC classification number: H04B17/382
Abstract: 本发明提供的是一种多目标绿色认知无线电系统参数生成方法。建立多目标绿色认知无线电参数设计模型,确定需要优化的多目标问题所对应的适应度函数形式。设计量子多目标多种群共生进化方法,通过量子多目标多种群共生进化方法,对种群中所有量子粒子的量子速度和位置进行更新,并使用非支配位置排序和位置拥挤度计算。使用多目标多种群共生进化方法实现确保可靠性的多目标绿色认知无线电参数设计。根据所得到的最终的非支配位置集,确保可靠性的多目标绿色认知无线电系统根据用户的实际需要选取相应的参数设计方案。本发明的使用范围广泛,能应用在现有绿色认知无线电参数设计方法所不能很好解决的确保可靠性的绿色认知无线电系统。
-
公开(公告)号:CN109239646B
公开(公告)日:2023-03-31
申请号:CN201811017215.9
申请日:2018-09-01
Applicant: 哈尔滨工程大学
IPC: G01S3/00
Abstract: 一种冲击噪声环境下连续量子水蒸发的二维动态测向方法,属于阵列信号处理领域。本发明方法利用连续量子水蒸发计算方法在搜索区间内求解根据均匀圆阵方位角和俯仰角二维动态测向问题设计的圆阵无穷范数极大似然方程,通过逐步缩小搜索区间以减少运算量,同时依据量子编码和模拟量子演化方程设计的水蒸发计算方法还可以加快算法的收敛速度,快速获得最优二维波达方向,提高冲击噪声环境下动态来波方向的跟踪精度。本发明方法搜索速度快,既能实现二维波达方向的非相干信源动态估计,又可实现二维波达方向的相干信源动态估计,不仅适用于高斯噪声环境,也可应用于冲击噪声环境,应用前景广泛。
-
-
-
-
-
-
-
-
-