-
公开(公告)号:CN110285834A
公开(公告)日:2019-09-27
申请号:CN201910609900.9
申请日:2019-07-08
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于一点位置信息的双惯导系统快速自主重调方法。一:根据获得的一点外部位置信息,对系统A进行位置重调,二:系统A实时解算的位置作为系统B的外部辅助信息进行kalman滤波,利用估计出来的误差对系统B的导航参数进行校正,系统B得到准确的速度、位置和姿态信息,三:系统B被校正之后,再利用系统B的位置和速度作为系统A的外部辅助信息进行滤波,对系统A的导航参数进行校正,系统A得到准确的位置、速度和姿态信息,最终实现两套系统快速自主重调。本发明无需连续外部测量设备辅助即可实现系统的快速自主重调,不仅缩短了重调时间,而且能够有效利用量测信息,适用于水下环境。
-
公开(公告)号:CN105889642A
公开(公告)日:2016-08-24
申请号:CN201610421671.4
申请日:2016-06-12
Applicant: 哈尔滨工程大学
Abstract: 本发明的目的在于提供管道智能减振器,包括管箍、托架、中间框架结构、下层橡胶减振器,所述管箍为两个半圆型管箍围在一起组成的圆环结构,管道从圆环结构内部通过,圆环结构与管道之间安装橡胶阻尼圈,管箍固定在托架上,托架固定在中间框架结构上,中间框架结构与基础结构之间安装下层橡胶减振器,中间框架结构里设置功率放大模块,功率放大模块的两侧分别设置与其相连的惯性式电磁作动模块,中间框架结构的顶板上设置加速度传感器,加速度传感器连接功率放大模块。本发明主要针对船舶上普遍存在的管路系统振动进行隔离,可以有效地控制管路系统宽频带的振动向船体结构的传递。
-
公开(公告)号:CN104500904A
公开(公告)日:2015-04-08
申请号:CN201510001285.5
申请日:2015-01-04
Applicant: 哈尔滨工程大学
IPC: F16L55/033
CPC classification number: F16L55/033
Abstract: 本发明提供的是一种高压充液管路一体化集成有源消声器。主要包括圆筒形外壳,设置于外壳中间的基于管状压电陶瓷的作动器,上下游管段内侧的传感器,壳体与作动器管段之间的信号拾取和调理系统、功率放大系统、基于DSP的高速信号处理系统。本发明提供的是一种可用于高压充液管路、基于管状压电陶瓷作动器、高度一体化集成的有源消声器。该有源的管路消声器根据实时测量的管路内流噪声的频率、大小和相位提供反噪声去抵消管道内原有的噪声,因此它能适应噪声频率的变化,消声频带宽,消声效果良好。
-
公开(公告)号:CN104500647A
公开(公告)日:2015-04-08
申请号:CN201510001287.4
申请日:2015-01-04
Applicant: 哈尔滨工程大学
CPC classification number: F16F15/035 , B06B1/045 , F16F15/08
Abstract: 本发明提供的是一种双层主被动机电集成式隔振装置。包括被动的上层橡胶隔振器(a)、中间框架结构(c)、安装底板(d)、四台电磁激振器(b)、集成式控制信号调理设备和加速度信号调理设备(f),中间框架结构(c)设置于上层橡胶隔振器(a)与安装底板(d)之间,所述四台电磁激振器(b)作为主动执行机构对称布置在中间框架结构(c)的左右两侧,集成式控制信号调理设备和加速度信号调理设备(f)对称布置在中间框架结构(c)的前后凹槽内。本发明对于频带范围较宽的外扰激励引起的振动有着良好的抑制效果,主要用于各种舰用柴油机、汽轮机、泵等旋转和往复机械设备以及核电应急发电机组等大型动力设备的振动控制。
-
公开(公告)号:CN103115748B
公开(公告)日:2015-02-18
申请号:CN201310029558.8
申请日:2013-01-25
Applicant: 哈尔滨工程大学
IPC: G01M11/00
Abstract: 基于贝叶斯理论的光纤陀螺光源可靠性检测方法,本发明涉及光纤陀螺光源可靠性的检测方法。本发明是要解决光纤陀螺光源可靠性的检测方法过程中检测的时间长,准确率低,资源浪费的问题。一、对光纤陀螺用掺铒光纤光源进行结构和原理分析,明确各组成部分的工作原理;二、对光纤陀螺用掺铒光纤光源进行失效模式分析,得到掺铒光纤光源的可靠性模型;三、利用贝叶斯理论对掺铒光纤光源失效率进行估计;四、掺铒光纤光源可靠性模型参数进行估计,得到各可靠性指标;步骤五、以公式(15)、(16)和(17)为判断掺铒光纤光源是否失效的参数,即完成了基于贝叶斯理论的光纤陀螺光源可靠性检测方法。本发明应用于可靠性检测领域。
-
公开(公告)号:CN102853833B
公开(公告)日:2014-12-17
申请号:CN201210110895.5
申请日:2012-04-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种捷联惯性导航系统快速阻尼方法。步骤一:捷联惯导系统进行预热准备;步骤二:捷联惯导系统进行初始对准;步骤三:进行正向姿态矩阵更新;步骤四:进行正向速度更新;步骤五:进行正向位置更新;步骤六:对上述数据完成存储,进行姿态矩阵、速度、位置的重新初值赋值,进行惯导系统逆向解算;步骤七:进行逆向姿态矩阵更新;步骤八:进行逆向速度更新;步骤九:进行逆向位置更新;步骤十:重新对姿态矩阵、速度、位置进行初值赋值,并重复步骤三至步骤九。本发明充分利用捷联惯性导航系统的“数学平台”多样性的特点,引入可逆算法,最终实现了捷联惯性导航系统系统误差的快速收敛。本发明的方法可用于船用捷联惯导系统的导航误差抑制领域。
-
公开(公告)号:CN103344260A
公开(公告)日:2013-10-09
申请号:CN201310302760.3
申请日:2013-07-18
Applicant: 哈尔滨工程大学
Abstract: 基于RBCKF的捷联惯导系统大方位失准角初始对准方法,本发明涉及捷联惯导系统大方位失准角初始对准方法。本发明是要解决系统的非线性较强时,滤波方法精度较低,而且容易发散,甚至当系统不连续时,EKF滤波就无法应用的问题。一、建立大方位失准角初始对准的误差模型;二、选取滤波初值;三、计算Cubature点集;四、进行状态变量和量测变量的时间更新;五、更新量测方程。本发明应用于大方位失准角下的捷联惯导初始对准领域领域。
-
-
公开(公告)号:CN103256942A
公开(公告)日:2013-08-21
申请号:CN201310156752.2
申请日:2013-04-26
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明提供的是一种在传递对准中杆臂补偿下变形角的测量方法。将主、子惯导系统分别安装在船上;启动主惯导系统,使其完成初始对准后进入导航状态;测量主、子惯导系统之间的距离;启动子惯导系统,用计算机采集陀螺和加速度计的输出;将主惯导系统的速度、姿态信息传递给子惯导系统,进行对准;建立船体变形的模型,计算变形后的主、子惯导系统之间的距离;建立杆臂效应误差模型;建立卡尔曼滤波的状态方程和观测方程;用卡尔曼滤波估计出主、子惯导系统之间的安装误差角和船体的变形角。本发明中变形角的测量是在杆臂补偿下进行测量的,具有一定的实际意义。
-
公开(公告)号:CN102853833A
公开(公告)日:2013-01-02
申请号:CN201210110895.5
申请日:2012-04-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种捷联惯性导航系统快速阻尼方法。步骤一:捷联惯导系统进行预热准备;步骤二:捷联惯导系统进行初始对准;步骤三:进行正向姿态矩阵更新;步骤四:进行正向速度更新;步骤五:进行正向位置更新;步骤六:对上述数据完成存储,进行姿态矩阵、速度、位置的重新初值赋值,进行惯导系统逆向解算;步骤七:进行逆向姿态矩阵更新;步骤八:进行逆向速度更新;步骤九:进行逆向位置更新;步骤十:重新对姿态矩阵、速度、位置进行初值赋值,并重复步骤三至步骤九。本发明充分利用捷联惯性导航系统的“数学平台”多样性的特点,引入可逆算法,最终实现了捷联惯性导航系统系统误差的快速收敛。本发明的方法可用于船用捷联惯导系统的导航误差抑制领域。
-
-
-
-
-
-
-
-
-