-
公开(公告)号:CN108704635A
公开(公告)日:2018-10-26
申请号:CN201810516300.3
申请日:2018-05-25
Applicant: 东北大学
CPC classification number: B01J21/18 , B01J35/004 , B01J35/023 , B01J35/1019 , B01J37/10
Abstract: 本发明公开了一种石墨烯二氧化钛复合纳米材料及其制备方法。方法包括:将采用Hummers法制备的氧化石墨溶于丙酮溶液中,超声分散,制得氧化石墨烯悬浮液A;将钛酸酯类化合物加入到醇溶液中,室温下搅拌,制得二氧化钛前驱物溶液B;将二氧化钛前驱物溶液B加入到氧化石墨烯悬浮液A中,混合均匀,静置,将沉淀物离心分离,得到沉淀物;向沉淀物中加入去离子水后,待水热反应结束后,冷却至室温,得到反应液C;将反应液C离心分离出产物,超声分散,洗涤,分离沉淀后,将沉淀烘干,制得石墨烯二氧化钛复合纳米材料。本发明的工艺简单,适合大规模生产,能在温和条件下,利用水热法一步合成具有高比表面和良好光催化性能的石墨烯二氧化钛纳米复合材料。
-
公开(公告)号:CN108580922A
公开(公告)日:2018-09-28
申请号:CN201810333525.5
申请日:2018-04-13
Applicant: 东北大学
Abstract: 本发明涉及一种制备高性能铝基碳化硅的方法,该方法为S1、在碳化硅中加入偶联剂获得表面改性后的碳化硅;S2、将异丙醇铝水解获得铝溶胶;S3、将步骤S1获得的所述表面改性后的碳化硅加入Al(C3H7O)3/HNO3沉化液中,与步骤S2获得铝溶胶混合,搅拌后、蒸馏得到铝纳米壳包覆碳化硅的核壳结构复合粒子粉末;S4、将步骤S3获得的铝纳米壳包覆碳化硅的核壳结构复合粒子粉末装入模具,进行高速压制,获得铝基碳化硅的压坯。本发明制造的压坯具有密度高,密度均匀,综合性能优良的特点;且生产成本低,生产效率高。
-
公开(公告)号:CN108033482A
公开(公告)日:2018-05-15
申请号:CN201711379354.1
申请日:2017-12-19
Applicant: 东北大学
Abstract: 本发明涉及一种制备氧化铟空心纳米球的方法,该方法利用氯化铟和碳酸氢铵为前驱物,利用水热法合成氧化铟空心纳米球颗粒,该方法不需要向反应体系中加入球形颗粒作为模板,后期处理简单,空壳结构一步成形,操作简单,条件温和,成本较低。本发明制备的氧化铟空心纳米球,其空壳强度高,不易破损,能够有效地提高氧化铟纳米催化材料的光降解能力,可用在光催化、气体传感领域,另外由于其表面具有孔道结构,便于小分子的进出,可用于纳米级颗粒的筛分及反应器。
-
公开(公告)号:CN101618401B
公开(公告)日:2011-10-05
申请号:CN200910012699.2
申请日:2009-07-24
Applicant: 东北大学
Abstract: 本发明涉及一种基于测厚仪反馈信号的高精度板带轧制厚度控制方法,属于板带轧制自动控制技术领域,方法如下:步骤1、输入轧制系统数据及板带数据;步骤2、确定厚控对象的比例系数K;步骤3、设定板带样本跟踪长度;步骤4、计算机将测厚仪对每一个板带样本长度Ls(i)的厚差Δh实测值进行多点采集,并确定i时刻板带样本的平均厚差Δh(i);步骤5、确定Δs(i);本发明的优点:提出板带样本长度跟踪,解决传统方法中滞后时间随轧制速度变化这一问题,将Smith预估控制方法用于监控AGC系统,给出控制器为积分形式下的控制率,与传统控制方法相比,该方法即有非常快的响应速度,又具有较高的静态控制精度,可以广泛推广到板带轧制厂中,以提高板带产品的厚度精度。
-
公开(公告)号:CN101618401A
公开(公告)日:2010-01-06
申请号:CN200910012699.2
申请日:2009-07-24
Applicant: 东北大学
Abstract: 本发明涉及一种基于测厚仪反馈信号的高精度板带轧制厚度控制方法,属于板带轧制自动控制技术领域,方法如下:步骤1.输入轧制系统数据及板带数据;步骤2.确定厚控对象的比例系数K;步骤3.设定板带样本跟踪长度;步骤4.计算机将测厚仪对每一个板带样本长度Ls(i)的厚差Δh实测值进行多点采集,并确定i时刻板带样本的平均厚差Δh(i);步骤5.确定Δs(i);本发明的优点:提出板带样本长度跟踪,解决传统方法中滞后时间随轧制速度变化这一问题,将Smith预估控制方法用于监控AGC系统,给出控制器为积分形式下的控制率,与传统控制方法相比,该方法既有非常快的响应速度,又具有较高的静态控制精度,可以广泛推广到板带轧制厂中,以提高板带产品的厚度精度。
-
公开(公告)号:CN117875158A
公开(公告)日:2024-04-12
申请号:CN202311668474.9
申请日:2023-12-07
Applicant: 东北大学
IPC: G06F30/27 , G06F30/10 , G06F30/28 , G06F111/10 , G06F113/10
Abstract: 本发明提供一种基于模拟仿真和人工智能的FFF 3D打印工艺的优化方法,提出熔融沉积成型3D打印工艺打印喷头优化设计方案;构建熔融沉积成型3D打印工艺打印喷头模型;进行CFD‑DEM耦合数值模拟实验以及搭建人工神经网络,最终实现最优参数的确定。本发明将用于熔融沉积成型的打印喷头倾斜一定角度,打印喷头出口处为弧型设计。然后使用CFD‑DEM耦合数值模拟方法得到优化喷头后碳纤维的变形和断裂情况,然后将模拟结果用于搭建和训练预测人工神经网络,用于高效预测打印喷头改进后的优化效果。
-
公开(公告)号:CN109344485B
公开(公告)日:2022-01-04
申请号:CN201811109903.8
申请日:2018-09-21
Applicant: 东北大学
IPC: G06F30/20
Abstract: 本发明提供一种基于数值模拟的絮团识别方法及系统。本发明方法,包括:建立球形微细颗粒间相互作用模型,在三维空间尺度对絮凝体系进行数值模拟,形成絮凝混合体系;对数值模拟形成的絮凝混合体系进行几何解析和参数表征;根据颗粒空间直角坐标系中球心距离公式与颗粒半径之和公式判断絮凝体系中颗粒之间粘结接触情况,对单个颗粒和絮团进行划分;通过三维数据可视化工具对单个絮团进行三维空间尺度解析,完成三维空间的可视化絮团识别。本发明基于先进数值模拟技术的仿真结果,通过读写絮凝体系中所有颗粒有效参数信息,实现颗粒絮凝过程到结果的数字化转换,克服了现有常规絮凝物理试验操作复杂、测量难度大、检测精度低的问题。
-
公开(公告)号:CN113369027A
公开(公告)日:2021-09-10
申请号:CN202110859896.9
申请日:2021-07-28
Applicant: 东北大学
Abstract: 本发明涉及一种多级旋流分离柱,包含进料通道、外溢流管、内溢流管、分离腔、分离腔顶盖、分离腔底盖和底流管;其特点是分离腔至少由两级直径和高度均不相同的分离腔组成,各分离腔依照直径由大到小的顺序依次装配;相邻分离腔之间通过分离腔底盖连接,分离腔底盖内径与下级分离腔直径一致,形成“台阶效应”。本发明通过逐级缩小分离腔直径,强化颗粒切向速度和速度梯度,增强颗粒所受到的离心力和剪切力,从而促进被内旋流裹挟的粗颗粒再次进入分离空间,减少粗颗粒在溢流中的错配,提高宽级别物料的分离效率和分离精度;同时利用“台阶效应”逐级强化阻塞排料,并破坏边界层,减少细颗粒在沉砂中的分配率,进一步提高分离效率和分离精度。
-
公开(公告)号:CN113247959A
公开(公告)日:2021-08-13
申请号:CN202110643981.1
申请日:2021-06-09
Applicant: 东北大学
Abstract: 本发明公开了一种以烧结机机头除尘灰(机头灰)为原料,通过调节Fe3+在乙二醇溶剂中的浓度,制备功能性四氧化三铁纳米颗粒、三氧化二铁纳米颗粒以及四氧化三铁掺杂三氧化二铁纳米颗粒的方法。其方法包括步骤:S1:取机头灰加入超纯水洗涤,超声、离心后收集水洗渣,水洗渣用一定浓度的无机酸在一定温度下浸泡一段时间,离心分离收集含Fe3+上清液;S2:利用氢氧化钠调节上述含Fe3+上清液的pH值,加入无水醋酸钠和乙二醇,搅拌后转移到反应釜中密封,将反应釜置于鼓风干燥箱中加热反应则可获得铁氧化物纳米颗粒。本发明方法获得的铁氧化物纳米颗粒直径为50~100nm,具有优秀的降解性能和气敏性能,为进一步开发机头灰高效综合利用提供新的思路。
-
公开(公告)号:CN109038564B
公开(公告)日:2021-05-11
申请号:CN201810934067.0
申请日:2018-08-16
Applicant: 东北大学
Abstract: 本发明提供一种基于改进粒子群算法的次同步振荡抑制系统及方法,涉及次同步振荡抑制技术领域。本发明是由态势感知模块将所需信息传入分配调度运算模块,由分配调度运算模块中的次同步振荡抑制方案生成单元经过改进粒子群算法得出最优控制参数,并将该参数传入次同步振荡抑制执行模块。本发明改善了粒子群算法容易陷入局部最优和易早熟的问题,提高了计算收敛速度,能够快速对次同步振荡进行恢复控制。
-
-
-
-
-
-
-
-
-