-
公开(公告)号:CN114863291A
公开(公告)日:2022-08-05
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06K9/62 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
公开(公告)号:CN112884791A
公开(公告)日:2021-06-01
申请号:CN202110140509.6
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了一种构建大规模遥感影像语义分割模型训练样本集的方法,将已有的遥感影像矢量数据与多期遥感影像进行配准,并依据图斑密度分别通过滑窗算法自动切割提取初级样本集;对初级样本集中每一张图像进行特征提取,并采用聚类算法进行分类,剔除图像质量不佳的样本,获得中间样本集;将中间样本集分批次输入语义分割模型进行迭代优化训练,并在每次迭代优化完成后对样本进行预测,剔除中间样本集中的错误样本,获得目标样本集。其显著效果是:能够避免生成整幅影像且占用空间极大的掩膜,减少滑窗的滑动次数,提高样本的提取速度与数据质量;提高了正确样本在样本集中的纯度,大幅降低了制作大规模样本集的成本。
-