-
公开(公告)号:CN113011427B
公开(公告)日:2022-06-21
申请号:CN202110285256.1
申请日:2021-03-17
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了基于自监督对比学习的遥感图像语义分割方法,包括以下步骤:构建语义分割网络模型(如Deeplab v3+);采用无标注数据对所述网络模型的编码器进行预训练;预训练完成后,在标注样本上对所述网络模型进行有监督语义分割训练;采用有监督语义分割训练完成的网络模型对遥感图像进行语义分割;在预训练的过程中,采用全局风格对比和局部匹配对比结合的方式进行对比学习。本发明将对比自监督学习应用于到了遥感语义分割数据集,提出了全局风格和局部匹配对比学习框架,形成了基于自监督对比学习的遥感图像语义分割方法,使得语义分割方法的适用面更广,分割效果更好。
-
公开(公告)号:CN112883839A
公开(公告)日:2021-06-01
申请号:CN202110140498.1
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种基于自适应样本集构造与深度学习的遥感影像解译方法,包括步骤:对样本总集进行特征提取,并对提取的特征进行聚类,构建视觉词袋模型的特征词典,得到样本子集;构建基于深度学习网络的解译模型,并先后输入样本总集和聚类的样本子集对解译模型进行训练,分别得到总解译模型和与各样本子集相对应的子解译模型;采用总解译模型以及根据待解译遥感影像的影像特征选取的合适的若干子解译模型,对待解译遥感影像进行自适应解译。其显著效果是:通过聚类的自动化、分布式手段快速建立海量遥感影像的样本库,并利用机器深度学习技术对样本库数据进行训练,获得适应于不同场景的智能解译模型,解译精度高,鲁棒性好。
-
公开(公告)号:CN110348383B
公开(公告)日:2020-07-31
申请号:CN201910625253.0
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 丁忆 , 李朋龙 , 胡翔云 , 曾安明 , 张泽烈 , 胡艳 , 徐永书 , 魏域君 , 李晓龙 , 张觅 , 罗鼎 , 陈静 , 郑中 , 刘朝晖 , 王亚林 , 范文武 , 王小攀 , 连蓉 , 林熙 , 谭攀
Abstract: 本发明公开了一种基于卷积神经网络回归的道路中心线和双线提取方法,包括如下步骤:利用已训练卷积神经网络,预测出待提取的高分辨率遥感影像的道路中心线距离图和道路宽度图;利用非极小值抑制算法,结合道路中心线距离图提取出道路中心线;根据提取出的道路中心线,结合道路宽度图提取出道路双线;选取道路中心线上的像素点作为初始道路种子点,计算初始道路种子点所在的道路方向,利用道路追踪算法重建道路网络的拓扑结构,输出道路网络提取结果。该方法通过端对端的训练,直接从训练数据中学习到易于分类的特征,不需要任何后处理来提取道路中线和边线,泛化能力更强,道路提取精度高,细小道路提取效果较好。
-
公开(公告)号:CN110991359A
公开(公告)日:2020-04-10
申请号:CN201911243932.8
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 曾安明 , 李晓龙 , 马泽忠 , 肖禾 , 罗鼎 , 段松江 , 胡艳 , 王岚 , 陈静 , 刘金龙 , 刘朝晖 , 魏文杰 , 谭攀 , 范文武 , 林熙 , 刘建 , 叶涛 , 袁力
Abstract: 本发明公开了一种基于多尺度深度卷积神经网络的卫星图像目标检测方法,包括步骤收集卫星图像训练数据集,并进行样本标注;对卫星图像训练数据集进行预处理;搭建多尺度深度卷积神经网络;将预处理后的训练数据集输入到基于所述多尺度深度卷积神经网络的目标检测框架进行训练,获得训练好的目标检测神经网络;输入待检测卫星图像集,采用训练好的所述目标检测神经网络进行目标检测,输出识别结果。其显著效果是:提高了网络对于细粒度特征的检测结果以及区分不同物体的能力,改善了对于小物体和密集物体群的检测效果,具有更强的鲁棒性,有效地提高了目标检测效率,降低了硬件需求。
-
公开(公告)号:CN115761020A
公开(公告)日:2023-03-07
申请号:CN202211476822.8
申请日:2022-11-23
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06T9/00 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种基于神经网络自动构建的影像数据压缩方法,包括步骤:待压缩影像数据预处理;初始化神经网络种群;神经网络种群的迭代训练与更新;神经网络种群演化;导出数据完成压缩。其显著效果是:通过神经网络对影像数据进行编码和重建,将影像数据压缩存储至神经网络的参数中,大幅减少了数据占用的存储空间;具有更强的通用性和易用性,能够用于压缩各种类型、不同规模、不同复杂度的影像数据集。
-
公开(公告)号:CN113269223B
公开(公告)日:2022-04-22
申请号:CN202110281893.1
申请日:2021-03-16
Applicant: 重庆市地理信息和遥感应用中心 , 中南大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于空间文化模因分析的城市风格分类方法,包括以下步骤:对数据集的样本去除噪声;通过训练神经网络获取风格特征,及每个样本的风格特征向量;利用DPC方法对训练集的风格特征向量进行字典学习,获取到每个城市的字典和稀疏矩阵,通过字典和稀疏矩阵计算城市间的模因距离;计算风格距离、稀疏表示和风格类型,并根据风格距离、风格类型和稀疏表示进行城市文化模因分析,根据字典和模因距离对城市进行风格分类,并将城市间的风格差异进行量化。本发明可定量和准确对城市风格进行准确分类,通过量化不同的模因类型分析风格相似和差异的原因,分析城市街景图片风格的模因线性组合,及不同城市的两张街景图片之间风格相似的原因。
-
公开(公告)号:CN112862774B
公开(公告)日:2021-12-07
申请号:CN202110140476.5
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心 , 武汉大学
Abstract: 本发明公开了一种遥感影像建筑物精确分割方法,包括步骤:构建包括特征提取模块、空洞卷积模块、注意力模块、上采样模块与卷积预测模块的建筑物提取网络;基于训练样本集,采用Dice Loss与BCE Loss相结合的多尺度复合损失函数,对构建的建筑物提取网络进行训练;将待提取的遥感影像输入训练好的建筑物提取网络,得到建筑物提取结果。其显著效果是:特征学习,泛化能力强;网络复杂度低,易于训练;建筑物提取精度高。
-
公开(公告)号:CN113269223A
公开(公告)日:2021-08-17
申请号:CN202110281893.1
申请日:2021-03-16
Applicant: 重庆市地理信息和遥感应用中心 , 中南大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于空间文化模因分析的城市风格分类方法,包括以下步骤:对数据集的样本去除噪声;通过训练神经网络获取风格特征,及每个样本的风格特征向量;利用DPC方法对训练集的风格特征向量进行字典学习,获取到每个城市的字典和稀疏矩阵,通过字典和稀疏矩阵计算城市间的模因距离;计算风格距离、稀疏表示和风格类型,并根据风格距离、风格类型和稀疏表示进行城市文化模因分析,根据字典和模因距离对城市进行风格分类,并将城市间的风格差异进行量化。本发明可定量和准确对城市风格进行准确分类,通过量化不同的模因类型分析风格相似和差异的原因,分析城市街景图片风格的模因线性组合,及不同城市的两张街景图片之间风格相似的原因。
-
公开(公告)号:CN118710114A
公开(公告)日:2024-09-27
申请号:CN202410797721.3
申请日:2024-06-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06Q10/0639 , G06Q50/02 , G06Q50/26
Abstract: 本发明公开一种基于耕地保护和粮食安全考核系统的自动计分监督方法,包括如下:步骤S1:基于最小颗粒度划分原则,层层分解指标,构建多级考核指标,将所述考核指标转换为量化计算的定量指标和判断的定性指标;步骤S2:根据计分类型构建指标计分模型,所述指标计分模型包括:递增模型、递减模型、直接判分、倒扣分、一票否决;步骤S3:构建考核指标中评分项参与计算的填报字段和评价字段,并根据所述步骤S1中定量指标和定性指标匹配对应的所述指标计分模型;步骤S4:将下级部门填报的考核数据的评价结果代入对应的所述指标计分模型,统计各考核指标的评分。本发明实现了将考核指标定量化转化并构建指标计分模型,自动计算考核得分,实现了量化考核。
-
公开(公告)号:CN114863291B
公开(公告)日:2023-08-08
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
-
-
-
-
-
-
-
-