-
公开(公告)号:CN117726687B
公开(公告)日:2024-06-21
申请号:CN202311851986.9
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
公开(公告)号:CN115880325A
公开(公告)日:2023-03-31
申请号:CN202211562504.3
申请日:2022-12-07
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06T7/181 , G06T5/00 , G06F18/2321
Abstract: 本发明提供了一种基于点云维度和空间距离聚类的建筑物轮廓自动提取方法,包括:S1、对带有真实地理坐标的激光点云进行去噪处理;S2、通过对所述激光点云进行点云滤波,分离场景中的地面点云及非地面点云;S3、计算所述非地面点云所属维度可能性,通过空间聚类分析获取建筑物点云;S4、获取建筑物点云轮廓,并拟合轮廓函数。本发明数据源采用激光点云,不仅能解决传统方法中由于遥感影像分辨率低导致的地物分类不准确等问题,也能面向大场景开展建筑物轮廓提取,还通过计算点云所属维度,从非地面点云中分离现状点云、面状点云和散状点云,再依据空间距离聚类方法准确提取建筑物点云。不光使得提取建筑物点云的结果更精确,还提升了效率。
-
公开(公告)号:CN114863291B
公开(公告)日:2023-08-08
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
公开(公告)号:CN117746250A
公开(公告)日:2024-03-22
申请号:CN202311852221.7
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的烟火智能识别与精准定位方法,首先利用深度学习方法在图像处理上的优势,采用双光谱云台摄像机进行实时自动识别,烟火识别精度高。其次在定位时,融合了实景三维信息和视频信息,烟火定位的精度高。最后分别通过实时识别烟火和定位烟火,实现了森林烟火自动实时识别和定位,减少人工工作量,提高了工作效率。
-
公开(公告)号:CN117726687A
公开(公告)日:2024-03-19
申请号:CN202311851986.9
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
公开(公告)号:CN114863291A
公开(公告)日:2022-08-05
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06K9/62 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
公开(公告)号:CN110427836B
公开(公告)日:2020-12-01
申请号:CN201910625252.6
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
Abstract: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
公开(公告)号:CN111079604A
公开(公告)日:2020-04-28
申请号:CN201911243920.5
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 罗鼎 , 张泽烈 , 李晓龙 , 肖禾 , 马泽忠 , 段松江 , 刘金龙 , 王亚林 , 吴凤敏 , 钱进 , 刘朝晖 , 曾远文 , 魏文杰 , 林熙 , 范文武 , 刘建 , 黄印 , 卢建洪
Abstract: 本发明公开了一种面向大尺度遥感图像的微小目标快速检测方法,包括步骤:利用轻量级的残差结构构建Tiny-Net模块,并对输入的遥感图像进行特征图提取;搭建全局注意力模块;在全局注意力模块后依次连接分类器与检测器,并利用分类器检测当前输入图像块中的目标;对检测出的目标采用k-means聚类方法得到k个尺度的先验框;使用区域提案网络得到提案区域,并采用位置敏感的ROI池化对提案区域进行池化;训练网络,并利用训练好的网络对新输入的遥感图像进行微小目标的精确检测定位。其显著效果是:实现了快速精确的检测大尺度遥感图像中的微小目标,使得对大尺度遥感图像的目标实时检测成为可能。
-
公开(公告)号:CN110427836A
公开(公告)日:2019-11-08
申请号:CN201910625252.6
申请日:2019-07-11
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 曾安明 , 李朋龙 , 丁忆 , 胡翔云 , 张泽烈 , 胡艳 , 段伦豪 , 张觅 , 李晓龙 , 段松江 , 罗鼎 , 吴凤敏 , 刘金龙 , 刘建 , 黄印 , 陈雪洋 , 钱进 , 魏文杰 , 张黎 , 黄潇莹
Abstract: 本发明公开了一种基于多尺度优化的高分辨率遥感影像水体提取方法,包括如下步骤:搭建待训练卷积神经网络,基于该网络从输入遥感影像中提取多尺度特征,从最低分辨率的特征中获取初始粗糙水体分割结果;通过擦除注意力方法,结合多尺度特征和初始分割结果,输出全分辨率下的水体提取结果;构建多尺度损失函数,获得训练好的卷积神经网络;将待提取的高分辨率遥感影像输入训练好的网络,得到水体提取结果。该方法通过对具有真实水体标注的遥感影像训练数据集进行学习与训练,通过擦除注意力机制的引导,结合多尺度优化策略,在显著提高了总体水体提取精度的同时,还加强了对细小水体的识别与提取。
-
-
-
-
-
-
-
-