顾及层次任务依赖的遥感影像并行拼接方法

    公开(公告)号:CN105913378B

    公开(公告)日:2019-03-08

    申请号:CN201610216866.5

    申请日:2016-04-08

    Applicant: 南京大学

    Abstract: 一种顾及层次任务依赖的遥感影像并行拼接方法,采取了分层次生成接缝线的方法,将上一层次的计算结果作为下一层次计算的输入数据,具体过程为:首先生成原始遥感影像的有效区;根据已获取的影像有效区生成有效区矢量图层,通过矢量图层获得不同层数相交区多边形,对每一多边形的分水岭变换作为一个任务,当前图层中多边形加入任务队列;再将任务分配给空闲进程进行并行处理,当前层所有多边形处理完毕后再处理上一层标记多边形,直至所有任务都已完成;最终求得各影像最终在拼接影像中的拼接范围,对拼接影像中的各像元赋值。本发明可精确地完成遥感影像并行拼接,并能够解决并行拼接中存在层次任务依赖问题,能够满足实际生产的需要。

    一种基于功能混合度和集成学习的城市功能区识别方法

    公开(公告)号:CN114969007B

    公开(公告)日:2025-01-10

    申请号:CN202210621710.0

    申请日:2022-06-01

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于功能混合度和集成学习的城市功能区识别方法,属于数字信息技术领域。该方法执行如下步骤:1)收集数据以及预处理;2)构建所述城市功能区的识别体系的10个指标特征;3)结构化指标;通过空间统计工具统计各宗地所对应的10个指标特征数据;4)自变量数据集构建;5)响应变量标记;6)根据功能混合度将训练数据集划分为若干子训练集;7)基于Stacking策略的集成学习训练;8)属性表连接完成该宗地的功能区识别。本发明通过对功能混合度进行分级的方式将训练集分开并让预测集数据按照对应功能混合度进行预测,提供了一种较为准确挖掘城市功能区类型和城市特征之间的相关性,实现城市特征映射城市功能区类型识别的方法。

    一种基于多源数据和集成学习的人口空间化方法

    公开(公告)号:CN115129802B

    公开(公告)日:2024-12-10

    申请号:CN202210782643.0

    申请日:2022-07-05

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于多源数据和集成学习的人口空间化方法,该方法包括以下步骤:S1、获取多源数据并进行融合,构建人口空间化数据库;S2、从所述人口空间化数据库中构建用于模型拟合的指标体系,通过集成学习模型计算的特征重要性筛选出有效指标;S3、结合所述有效指标与社区人口之间的关系,构建Pop‑XGBoost人口空间化模型;S4、预测人口空间分布,并将格网人口模拟数据汇总至社区尺度,与真实的社区人口统计数据对比,验证结果精度。通过结合多源数据融合技术、指标筛选技术和集成学习技术等构建人口空间化模型,准确高效地实现高精度人口空间化预测。

    基于图卷积神经网络的土地利用结构模式层次挖掘方法

    公开(公告)号:CN117575014B

    公开(公告)日:2024-08-16

    申请号:CN202311285655.3

    申请日:2023-10-07

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于图卷积神经网络的土地利用结构模式层次挖掘方法,包括如下步骤:获取土地利用数据;构建图结构;生成标签输入模型;通过图卷积神经网络模型,对所述标签输入模型进行训练,生成图嵌入;利用空间约束多元聚类方法对所述图嵌入进行划分,得到从分区到各级子分区的层次分区结构;对每一年的土地利用数据,分别以土地利用类型的频率特征构建各区域的区域级图元,根据某区域不同年份的区域级图元的变化反映该区域土地利用结构的时空变化。本发明构建图元时考虑了多阶邻域的影响,能够根据土地利用空间结构的不同进行分区,可以有效挖掘层次土地利用结构模式及其动态特征。

    一种改进辐射模型的跨境人口流动模拟方法

    公开(公告)号:CN115221766A

    公开(公告)日:2022-10-21

    申请号:CN202210671133.6

    申请日:2022-06-15

    Applicant: 南京大学

    Abstract: 本发明公开了一种改进辐射模型的跨境人口流动模拟方法,该方法包括以下步骤:基于互联网爬虫技术对跨境航班的基本信息进行获取,并对区域内的人口公里格网数据进行获取;基于航班的通行时间信息及道路网的通行时间构建引力模型,且通过改进空间邻域,完成辐射模型的构建;通过对引力模型及辐射模型进行耦合,完成引力‑辐射模型的构建;采用引力‑辐射模型计算格网级的人口流动模拟结果,并将人口流动模拟结果汇总至区县级、省级与国家级,同时与人口流动统计结果进行对比,完成引力‑辐射模型的精度验证。本发明能够有效提升跨境人口流动模拟的精度。

    一种基于多源数据和集成学习的人口空间化方法

    公开(公告)号:CN115129802A

    公开(公告)日:2022-09-30

    申请号:CN202210782643.0

    申请日:2022-07-05

    Applicant: 南京大学

    Abstract: 本发明公开了一种基于多源数据和集成学习的人口空间化方法,该方法包括以下步骤:S1、获取多源数据并进行融合,构建人口空间化数据库;S2、从所述人口空间化数据库中构建用于模型拟合的指标体系,通过集成学习模型计算的特征重要性筛选出有效指标;S3、结合所述有效指标与社区人口之间的关系,构建Pop‑XGBoost人口空间化模型;S4、预测人口空间分布,并将格网人口模拟数据汇总至社区尺度,与真实的社区人口统计数据对比,验证结果精度。通过结合多源数据融合技术、指标筛选技术和集成学习技术等构建人口空间化模型,准确高效地实现高精度人口空间化预测。

    基于改进边界代数法的相交多边形提取方法

    公开(公告)号:CN108985306B

    公开(公告)日:2020-03-31

    申请号:CN201810731268.0

    申请日:2018-07-05

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于改进边界代数法的相交多边形提取方法,包括以下步骤:对所有图层中的多边形顺序进行编号;计算包含所有图层的MBR,数组hDstDS、pIDArray和RLEGroup分别存放栅格单元的属性值、多边形ID和游程;对所有多边形使用边界代数算法依次进行栅格化,在栅格化过程中赋予各多边形的属性值均为1;在数组hDstDS中获取当前多边形MBR包含的栅格单元,并逐行读取获取其属性值,并根据不同的属性值进行相应处理;从数组RLEGroup存储的游程中提取相应的相交多边形组,即每个游程中的数组pGroup即对应一个相交多边形组。本发明计算复杂度低,尤其适用于规模化的多边形数据集的相交多边形提取。

    基于多边形复杂度的并行栅格化数据划分方法

    公开(公告)号:CN109003316A

    公开(公告)日:2018-12-14

    申请号:CN201810730005.8

    申请日:2018-07-05

    Applicant: 南京大学

    Abstract: 本发明涉及一种基于多边形复杂度的并行栅格化数据划分方法,包括以下步骤:遍历所有多边形,计算每个多边形的最小外接矩形包含的栅格数目并归一化;计算各多边形的复杂度PC,并按从小到达的顺序进行排序形成队列;每次从队列首端和末端分别取出一个多边形,将其依次分配给所有的进程,直至所有的多边形分配完毕;各进程分别对被分配的多边形的最小外接矩形依次进行栅格化,其栅格化的结果以矩形栅格组存在,记录所述矩形栅格组的左上角点坐标以及该矩形栅格组的X方向和Y方向的栅格长度;各进程分别将其栅格化后得到的矩形栅格组写入到目标栅格中。本发明可以保证负载均衡并提高栅格化并行处理的效率。

    一种CPU-GPU协同的遥感影像边缘检测并行计算方法

    公开(公告)号:CN115100227B

    公开(公告)日:2025-01-03

    申请号:CN202210760820.5

    申请日:2022-06-29

    Applicant: 南京大学

    Abstract: 本发明涉及一种CPU‑GPU协同的遥感影像边缘检测并行计算方法,属于数据处理技术领域。该方法执行如下步骤:步骤1、并行环境初始化;步骤2、CPU主线程初始化GPU,并优化GPU内存;步骤3、由CPU计算端与GPU计算端分别执行计算任务;步骤4、同步CPU与GPU;步骤5、更新任务队列,若任务队列不为空,则返回步骤3,否则退出并行环境,终止计算。本发明通过对任务队列的数据进行划分以及GPU与CPU各计算线程双向任务调度分配的方式,优化了CPU与GPU内的线程组织与调度模式,实现了CPU与GPU间的负载均衡与高效并行的兼得。

    一种融合位置和语义约束的多源POI数据清洗方法

    公开(公告)号:CN114911787B

    公开(公告)日:2023-10-27

    申请号:CN202210613379.8

    申请日:2022-05-31

    Applicant: 南京大学

    Abstract: 本发明涉及一种融合位置和语义约束的多源POI数据清洗方法,属于数据处理技术领域。该方法执行如下步骤:步骤1,对收集到的多源POI数据进行GeoHash转换;步骤2,对转换后的字符串进行邻近点查询;步骤3,对步骤2中存在邻近点的窗口进行冗余处理;步骤4,构建分词方案;步骤5,对步骤4处理后的数据进行冗余处理;步骤6,基于步骤5重新构建的分词方案的词频统计完成POI数据重匹配。该方法能更加准确高效地完成数据清洗工作,清洗结果更加优秀,更切合实际且行之有效。

Patent Agency Ranking