一种考虑标签信息的贝叶斯个性化排序推荐方法

    公开(公告)号:CN107833117B

    公开(公告)日:2020-03-17

    申请号:CN201711331175.0

    申请日:2017-12-13

    IPC分类号: G06Q30/06 G06F16/9535

    摘要: 本发明公开了一种考虑标签信息的贝叶斯个性化排序推荐方法,其特征按如下步骤进行:步骤一、定义一个表示用户与产品的交互关系;步骤二、定义用户与交互项产品的标签匹配度;步骤三、定义用户的偏好反馈集合的划分标准;步骤四、构建用户对产品的矩阵分解模型;步骤五、利用贝叶斯个性化推荐方法对模型进行求解;步骤六、获得某个用户的为交互项产品的降序排列,并将前top个产品推荐给用户。本发明具有较好的推荐性能,特别是在数据稀疏与冷启动用户推荐情况下。

    基于协同演化的个性化推荐方法及装置

    公开(公告)号:CN109190040A

    公开(公告)日:2019-01-11

    申请号:CN201811013374.1

    申请日:2018-08-31

    摘要: 本发明提供了一种基于协同演化的个性化推荐方法及装置。一种基于协同演化的个性化推荐方法,包括:基于贝叶斯定理获取预先设置的模型的学习目标;所述模型至少包括:用户消费行为的概率模型、用户加群行为的概率模型、产品的隐特征矩阵、用户的隐偏好张量和群组的隐偏好张量;基于所述学习目标,利用随机梯度下降法和投影梯度法来更新所述模型的最优参数,得到训练好的模型;利用所述训练好的参数预测用户在T+1时刻的加群行为、偏好及标记行为。本发明实施例中可以在动态场景中同时考虑到用户的历史偏好和加入群组的影响来预测用户的加群行为和偏好,以及标记行为。

    面向问答平台的融合用户隐连接关系的标签推荐方法

    公开(公告)号:CN108804689A

    公开(公告)日:2018-11-13

    申请号:CN201810614031.4

    申请日:2018-06-14

    IPC分类号: G06F17/30 G06N3/04

    摘要: 本发明的面向问答平台的融合用户隐连接关系的标签推荐方法,可解决传统标签推荐方法推荐结果有限不能满足用户需求的技术问题。包括构建问题集合、问题对应的标签集合、用户集合;构建用户网络;经处理得到用户的特征向量;再得到问题的特征向量;将所述用户的特征向量和所述问题的特征向量做拼接,经过一层全连接网络,得到融合用户隐性连接的多特征向量集;将所述多特征向量集使用逻辑回归模型映射成概率,基于输出的概率值对标签进行降序排序,取前top个标签;训练初步模型,训练终止后,得到最终的推荐模型;当用户在向网站提交问题时,从所述推荐模型中把前top个标签推荐给用户。本发明能提高标签系统的多样性及准确性,能够满足用户需求。

    一种考虑用户特征信息的主题-情感联合建模方法

    公开(公告)号:CN107808008A

    公开(公告)日:2018-03-16

    申请号:CN201711145941.4

    申请日:2017-11-17

    IPC分类号: G06F17/30 G06K9/62

    摘要: 本发明公开了一种考虑用户特征信息的主题-情感联合建模方法,包括如下步骤:1、构建语料特征集合;2、构建用户特征矩阵;3、将语料文本表示为向量形式;4、构建语料情感字典;5、初始化语料特征词的主题、情感和用户特征参数向量;6、更新语料特征词的主题、情感和用户特征参数向量,最终得到语料文本的情感分布、主题分布和词分布。本发明能有效解决现有主题情感联合模型因忽略用户特征而导致情感分析出现偏差的问题,从而能提高文本情感分类的准确度。

    一种基于专业生成内容的产品替代性信息抽取方法

    公开(公告)号:CN113704404B

    公开(公告)日:2024-03-05

    申请号:CN202110995578.5

    申请日:2021-08-27

    摘要: 本发明公开了一种基于专业生成内容的产品替代性信息抽取方法,包括:1构建专业生成内容数据集合并表示,2建模市场竞争结构,获得市场环境下与产品相关的竞争信息和替代性关系,3构建有参贝叶斯模型,4整合变分推理和坍塌式吉布斯抽样,使用坍塌式变分贝叶斯推断算法进行参数推断。本发明在应对社交媒体中的大规模的专业生成内容时,能够有效、快速、准确地发现专业生成内容中的产品竞争关系,抽取出市场中产品间的替代性信息,帮助企业发现市场中产品间的替代性关系,有助于企业识别直接或间接竞争对手,为企业提供重要的竞争情报。

    基于主题演化趋势的科技大数据流行性及前沿性度量方法

    公开(公告)号:CN114417837B

    公开(公告)日:2024-02-13

    申请号:CN202210060381.7

    申请日:2022-01-19

    IPC分类号: G06F40/242 G06F40/289

    摘要: 本发明公开了一种基于主题演化趋势的科技大数据流行性及前沿性度量方法,其步骤包括:1.获取科技大数据基本信息数据并进行数据预处理获得模型输入语料;2.基于动态主题模型(DTM)对输入语料进行学习,得到文档主题分布及主题演化趋势;3.基于文档主题分布和科技大数据发表年份计算出不同年份的主题热度;4.基于主题热度演化趋势计算科技大数据的流行性和前沿性。本发明通过DTM模型计算出主题热度演化趋势,以此作为计算科技大数据流行性和前沿性的基础,结合科技大数据的发表年份及其文档主题分布,可以度量科技大数据流行性和前沿性指标,从而能提高科技大数据价值评估准确性。